
The-Han
of

••:•:•k
A\jron
Barrg^

Edward A,

Feigenbaum

m

VOLUME 2

The Handbook of Artificial Intelligence

Volumes I and II by Avron Barr and Edward A. Feigenbaum

Volume III by Paul R. Cohen and Edward A. Feigenbaum

VOLUME I

I. Introduction

A. Artificial Intelligence

B. The AI Handbook

C. The AI literature

II. Search
A. Overview

B. Problem representation

1. State-space representation

2. Problem-reduction representation

3. Game trees

C. Search methods

1. Blind state-space search

2. Blind AND/OR graph search

3. Heuristic state-space search

a. Basic concepts in heuristic search

b. A*—Optimal search for an optimal solution

c. Relaxing the optimality requirement

d. Bidirectional search

4. Heuristic search of an AND/OR graph

5. Game tree search

a. Minimax procedure

b. Alpha-beta pruning

c. Heuristics in game tree search

D. Sample search programs

1. Logic Theorist

2. General Problem Solver

3. Gelernter's geometry theorem-proving machine

4. Symbolic integration programs

5. STRIPS
6. ABSTRIPS

IDE. Knowledge Representation
A. Overview

B. Survey of representation techniques

C. Representation schemes

1. Logic

2. Procedural representations

3. Semantic networks

4. Production systems

5. Direct (analogical) representations

6. Semantic primitives

7. Frames and scripts

IV. Understanding Natural Language
A. Overview

B. Machine translation

C. Grammars
1. Formal grammars
2. Transformational grammars
3. Systemic grammar
4. Case grammars

D. Parsing

1. Overview of parsing techniques

2. Augmented transition networks

3. The General Syntactic Processor

E. Text generation

F. Natural language processing systems

1. Early natural language systems

2. Wilks's machine translation system

3. LUNAR
4. SHRDLU
5. MARGIE
6. SAM and PAM
7. LIFER

V. Understanding Spoken Language
A. Overview

B. Systems architecture

C. The ARPA SUR projects

1. HEARSAY
2. HARPY
3. HWIM
4. The SRI/SDC speech systems

VOLUME n

VI. Programming Languages for AI Research

A. Overview

B. LISP

C. AI programming-language features

1. Overview

2. Data structures

3. Control structures

4. Pattern matching

5. Programming environment

Dependencies and assumptionsD.

VH. Applications-oriented AI Research: Science

A. Overview

B. TEIRESIAS
C. Applications in chemistry

1. Chemical analysis

2. The DENDRAL programs

a. Heuristic DENDRAL
b. CONGEN and its extensions

c. Meta-DENDRAL
3. CRYSALIS
4. Applications in organic synthesis

D. Other scientific applications

1. MACSYMA
2. The SRI Computer-based Consultant

3. PROSPECTOR
4. Artificial Intelligence in database management

VTH. Applications-oriented AI Research: Medicine

A. Overview

B. Medical systems

1. MYCIN
2. CASNET
3. INTERNIST

The Handbook of Artificial Intelligence

The Handbook of Artificial Intelligence

Volume II

Edited by

Avron Barr

and

Edward A. Feigenbaum

Department of Computer Science

Stanford University

HeurisTech Press William Kaufmann, Inc.

Stanford, California Los Altos, California

Library of Congress Cataloging in Publication Data:

The handbook of artificial intelligence.

Bibliography: p. 381

Includes index.

I. Artificial intelligence. I. Barr, Avron, 1949

II. Feigenbaum, F,dward A.

Q335.H36 001.53'5 80-28621

ISBN 0-86576 004 7 (set)

ISBN 0-86576 006 3 (Vol. II)

Copyright © 1982 by William Kaufmann, Inc.

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or trasmitted, in any form or by any

means, electronic, mechanical, photocopying, recording, or other-

wise, without the prior written permission of the publisher. How-

ever, this work may be reproduced in whole or in part for the official

use of the U. S. Government on the condition that copyright notice

is included with such official reproduction. For further information,

write to: Permissions, William Kaufmann, Inc., 95 First Street,

Los Altos, California 94022.

10 9876543 2 1

Printed in the United States of America

To Herbert A. Simon, scholar and teacher,

In honor of his sixty-fifth birthday and

In recognition of his seminal contributions

to the scientific study of thinking and

to the field of Artificial Intelligence

CONTENTS OF VOLUME II

List of Contributors / ix

Preface / xi

VI. Programming Languages for AI Research / 1

A. Overview / 3

B. LISP / 15

C. AI programming-language features / 30

1. Overview / 30

2. Data structures / 34

3. Control structures / 45

4. Pattern matching / 58

5. Programming environment / 65

D. Dependencies and assumptions / 72

VII. Applications-oriented AI Research: Science / 77

A. Overview / 79

B. TEIRESIAS / 87

C. Applications in chemistry / 102

1. Chemical analysis / 102

2. The DENDRAL programs / 106

a. Heuristic DENDRAL / 106

b. CONGEN and its extensions /111

c. Meta-DENDRAL / 116

3. CRYSALIS / 124

4. Applications in organic synthesis / 134

D. Other scientific applications / 143

1. MACSYMA / 143

2. The SRI Computer-based Consultant / 150

3. PROSPECTOR / 155

4. Artificial Intelligence in database management / 163

VIII. Applications-oriented AI Research: Medicine / 175

A. Overview / 177

vn

viii Contents

B. Medical systems / 184

1. MYCIN / 184

2. CASNET / 193

3. INTERNIST / 197

4. Present Illness Program / 202

5. Digitalis Therapy Advisor / 206

6. IRIS / 212

7. EXPERT / 217

EX. Applications-oriented AJ Research: Education / 223

A. Overview / 225

B. ICAI systems design / 229

C. Intelligent CAI systems / 236

1. SCHOLAR / 236

2. WHY / 242

3. SOPHIE / 247

4. WEST / 254

5. WUMPUS / 261

6. GUIDON / 267

7. BUGGY / 279

8. EXCHECK / 283

D. Other applications of AI to education / 291

X. Automatic Programming / 295

A. Overview / 297

B. Methods of program specification / 306

C. Basic approaches / 312

D. Automatic programming systems / 326

1. PSI and CHI / 326

2. SAFE / 336

3. The Programmer's Apprentice / 343

4. PECOS / 350

5. DEDALUS / 355

6. Protosystem I / 364

7. NLPQ / 370

8. LIBRA / 375

Bibliography for Volume II / 381

Indexes for Volume II / 403

LIST OF CONTRIBUTORS

Non-Stanford affiliations indicated if known.

Chapter Editors

Janice Aikins (Hewlett-Packard)

James S. Bennett

Victor Ciesielski (Rutgers U)

William J. Clancey

Paul R. Cohen

James E. Davidson

Thomas G. Dietterich

Bob Elschlager (Tymshare)

Lawrence Fagan

Anne v.d.L. Gardner

Takeo Kanade (CMU)

Jorge Phillips (Kestrel)

Steve Tappel

Stephen Westfold (Kestrel)

Contributors

Robert Anderson (Rand)

Douglas Appelt (SRI)

David Arnold

Michael Ballantyne (U Texas)

David Barstow (Schlumberger)

Peter Biesel (Rutgers U)

Lee Blaine (Lockheed)

W. W. Bledsoe (U Texas)

David A. Bourne (CMU)
Rodney Brooks (MIT)

Bruce G. Buchanan

Richard Chestek

Kenneth Clarkson

Nancy H. Cornelius (CMU)
James L. Crowley (CMU)
Randall Davis (MIT)

Gerard Dechen

Johan de Kleer (Xerox)

Jon Doyle (CMU)

R. Geoff Dromey (U Wollongong)

Richard Duda (Fairchild)

Robert S. Engelmore (Teknowledge)

Ramez El-Masri (Honeywell)

Susan Epstein (Rutgers U)

Robert E. Filman (Hewlett-Packard)

Fritz Fisher (Ramtek)

Christian Freksa (Max Plank, Munich)

Peter Friedland

Hiromichi Fujisawa (CMU)

Richard P. Gabriel

Michael R. Genesereth

Neil Goldman (ISI)

Ira Goldstein (Hewlett-Packard)

George Heidorn (IBM)

Martin Herman (CMU)

Annette Herskovits

Douglas Hofstadter (Indiana U)

Elaine Kant (CMU)

Fuminobu Komura (CMU)
William Laaser (Xerox)

Douglas B. Lenat

William J. Long (MIT)

Robert London

Bruce D. Lucas (CMU)
Pamela McCorduck
Mark L. Miller (Computer Thought)

Robert C. Moore (SRI)

Richard Pattis

Stanley J. Rosenschein (SRI)

Neil C. Rowe
Gregory R. Ruth (MIT)

Daniel Sagalowicz (SRI)

IX

List of Contributors

Contributors (continued)

Behrokh Samadi (UCLA)

William Scherlis (CMU)

Steven A. Shafer (CMU)

Andrew Silverman

David R. Smith (CMU)

Donald Smith (Rutgers U)

Phillip Smith (U Waterloo)

Reid G. Smith (Schlumberger)

William R. Swartout (ISI)

Steven L. Tanimoto (U Washington)

Charles E. Thorpe (CMU)
William van Melle (Xerox)

Richard J. Waldinger (SRI)

Richard C. Waters (MIT)

Sholom Weiss (Rutgers U)

David Wilkins (SRI)

Terry Winograd

Reviewers

Harold Abelson (MIT)

Saul Amarel (Rutgers U)

Robert Balzer (ISI)

Harry Barrow (Fairchild)

Thomas Binford

Daniel Bobrow (Xerox)

John Seely Brown (Xerox)

Richard Burton (Xerox)

Lewis Creary

Andrea diSessa (MIT)

Daniel Dolata (UC Santa Cruz)

Lee Erman (ISI)

Adele Goldberg (Xerox)

Cordell Green (Kestrel)

Norman Haas (Symantec)

Kenneth Kahn (MIT)

Jonathan J. King (Hewlett-Packard)

Casimir Kulikowski (Rutgers U)

John Kunz
Brian P. McCune (AI&DS)

Jock Mackinlav

Ryszard S. Michalski (U Illinois)

Donald Michie (U Edinburgh)

Thomas M. Mitchell (Rutgers U)

D. Jack Mostow (ISI)

Nils Nilsson (SRI)

Glen Ouchi (UC Santa Cruz)

Ira Pohl (UC Santa Cruz)

Arthur L. Samuel

David Shur

Herbert A. Simon (CMU)

David E. Smith

Dennis H. Smith (Lederle)

Mark Stefik (Xerox)

Albert L. Stevens (BBN)

Allan Terry

Perry W. Thorndyke (Perceptronics)

Paul E. Utgoff (Rutgers U)

Donald Walker (SRI)

Harald Wertz (U Paris)

Keith Wescourt (Rand)

Productiion

Max Diaz

David Eppstein

Lester Ernest

Marion Hazen

Janet Feigenbaum

David Fuchs

Jose L. Gonzalez

Dianne G. Kanerva

Jonni M. Kanerva

Dikran Karagueuzian

Arthur M. Keller

Barbara R. Laddaga

Roy Nordblom

Thomas C. Rindfleisch

Ellen Smith

Helen Tognetti

Christopher Tucci

PREFACE

THE PROJECT to write the Handbook of Artificial Intelligence was born in

the mid-1970s, at a low ebb in the fortunes of the field. AI, in our view, had

made remarkable contributions to one of the grandest of scientific problems

—

the nature of intelligence, in humans and in artifacts. Yet it had failed

to communicate its concepts, its working methods, its techniques, and its

successes to the broad scientific and engineering communities. The work

remaining to be done was almost limitless, but the number of practitioners

was few. If AI were to succeed, it would have to communicate more clearly

and widely to others in science and engineering. So we thought, and thus

were we motivated to assemble and edit these volumes.

In the last few years, we have seen an astonishing change in the percep-

tion and recognition of AI as a science and as a technology. Many large

industrial firms have committed millions of dollars to the establishment of

AI laboratories. The Japanese have even committed a national project, the

so-called Fifth Generation, to the engineering of "knowledge information

processing machines," that is, Al-oriented hardware and software. Newspaper,

magazine, and broadcast features on AI are common. A lively new professional

society, the American Association for Artificial Intelligence, has been formed.

And university graduate-school enrollments in AI are booming. Indeed, Vol-

ume I of the Handbook was the main selection, in August 1981, of one of

the major book clubs; it is now undergoing its second printing and is being

translated into Japanese.

The crisis we face now is a crisis of success, and many wonder if the

substance of the field can support the high hopes. We believe that it can,

and we offer the material of the three massive volumes of the Handbook as

testimony to the strength and intellectual vigor of the enterprise.

The five chapters in this volume cover three subfields of AI. Chapter VI,

on AI programming languages, describes the kinds of programming-language

features and environments developed by AI researchers. These languages are,

like all programming languages, not only software tools with which the many
different kinds of AI programs are constructed, but also "tools of thought" in

which new ideas and perspectives on the understanding of cognition are first

explored. Of note here is the extended discussion of LISP—by far the most

important tool of either kind yet invented in AI.

Chapters VII through DC are about expert systems, in science, medicine,

and education. These systems, which vary widely in structure and behavior,

all focus on one important methodology, called the transfer of expertise. Early

in AI's history, researchers agreed that high performance on difficult problems

would require large amounts of real-world knowledge, the knowledge that a

XI

xii Preface

human expert in a particular domain has extracted from his (or her) experience

with the problems he solves. The idea of expert-systems research was to find

ways of transferring the necessary kinds and quantities of knowledge from

human experts to AI systems. This technology has advanced to the point

where these systems can perform at the level of human experts and may be

available commercially in the next few years.

Finally, Chapter X reviews the area of AI research called automatic pro-

gramming. This research has focused on systems that can produce a program

from some "natural" description of what it is to do or that attend to some

other important aspect of programming, like verifying that a program does

what it was intended to do. For example, some automatic-programming sys-

tems produce simple programs from examples of input/output pairs or from

English specifications of the program's intended behavior. But there is a much
deeper purpose to automatic-programming research than just easing the bur-

den of the programmer. To achieve their pragmatic goals, these systems must

understand programs just as other AI systems understand language or chess or

medical diagnosis. They must reason about programs and about themselves as

programs, and, as we discuss in Chapter X, this is a central and characteristic

feature of many AI systems.

Acknowledgments

The chapter on AI programming languages was first drafted by Steve

Tappel and Stephen Westfold. Johann de Kleer and Jon Doyle contributed

the excellent article on dependencies and assumptions. A thorough review

and additional material were supplied by Christian Freksa. Other reviewers

included Robert Balzer, Cordell Green, Brian McCune, and Harald Wertz.

The chapter on scientific-applications research was edited by James Ben-

nett, Bruce Buchanan, Paul Cohen, and Fritz Fisher. Original material and

comments were contributed by, among others, James Davidson, Randall Davis,

Daniel Dolata, Richard Duda, Robert Engelmore, Peter Friedland, Michael

Genesereth, Jonathan King, Glen Ouchi, and Daniel Sagalowicz.

Chapter VIII, on research in medical applications of AI, was edited by

Victor Ciesielski and his colleagues at Rutgers University. James Bennett and

Paul Cohen continued work on the material. Others who contributed to or

reviewed this material include Saul Amarel, Peter Biesel, Bruce Buchanan,

Randall Davis, Casimir Kulikowksi, Donald Smith, William Swartout, and

Sholom Weiss.

The educational-applications chapter was compiled by Avron Barr and

William Clancey, and, once again, James Bennett and Paul Cohen continued

the editing process. Contributors and reviewers included Harold Abelson, Lee

Blaine, John Seely Brown, Richard Burton, Andrea diSessa, Adele Goldberg,

Ira Goldstein, Kenneth Kahn, Mark Miller, Neil Rowe, Albert Stevens, and

Keith Wescourt.

Preface xiii

Finally, the automatic-programming chapter was edited by Bob Elschla-

ger and Jorge Phillips, working from original material supplied by David

Barstow, Cordell Green, Neil Goldman, George Heidorn, Elaine Kant, Zohar

Manna, Brian McCune, Gregory Ruth, Richard Waldinger, and Richard Waters.

The design and production of the volume were the responsibility of Dianne

Kanerva, our professional editor, and Jose Gonzalez. The book was typeset

with TgX, Donald Knuth's system for mathematical typesetting, by David

Eppstein, Janet Feigenbaum, Jose Gonzalez, Jonni Kanerva, Dikran Kara-

gueuzian, and Barbara Laddaga. Our publisher William Kaufmann and his

staff have been generous with their patience, help, and willingness to experi-

ment.

The Advanced Research Projects Agency of the Department of Defense

and the Biotechnology Resources Program of the National Institutes of Health

supported the Handbook project as part of their longstanding and continuing

efforts to develop and disseminate the science and technology of AI. Earlier

versions of material in these volumes were distributed as technical reports of

the Department of Computer Science at Stanford University. The electronic

text-preparation facilities available to Stanford computer scientists on the

SAIL, SCORE, and SUMEX computers were used throughout the writing and

production of the Handbook.

Chapter VI

Programming Languages

for AI Research

CHAPTER VI: PROGRAMMING LANGUAGES

FOR AI RESEARCH

A. Overview / 3

B. LISP / 15

C. AI Programming-Language Features / 30

1. Overview / 30

2. Data Structures / 34

3. Control Structures / 45

4- Pattern Matching / 58

5. Programming Environment / 65

D. Dependencies and Assumptions / 72

A. OVERVIEW

ARTIFICIAL INTELLIGENCE is a branch of computer science—the study of

the relation between computation and cognition. Research in AI involves

writing programs that attempt to achieve some kind of intelligent behavior.

Besides the computers themselves, the most important tools in AI are the pro-

gramming languages in which these programs are conceived and implemented.

A programming language provides a means of specifying the objects and

procedures needed to solve certain classes of problems. Languages such as

FORTRAN and COBOL were developed to make this specification easier by

supplying higher level algebraic and business primitives, respectively (and

also to establish vocabularies that could be used on a variety of machines).

Contemporaneously with the development of these languages, researchers in

AI were developing their own programming languages with features designed

to handle AI problems.

Once a programming language has been designed, the implementation

of that language is itself a serious and time-consuming programming task.

There must at least be a translator from the high-level language to the

particular machine's language (a compiler or interpreter) as well as a run-time

environment that supports the new objects and procedures allowed in the

language. For example, the SIN function supplied in languages like FORTRAN
makes it convenient to do trigonometric calculations and requires, since SIN is

not a primitive function on most computers, a procedure in the run-time envi-

ronment that calculates the value of the function on the arguments supplied

while the program is running. Most AI programming languages, in addition to

supporting many quite novel high-level features, offer splendid environments

for writing, debugging, and modifying programs.

AI programming languages have had a central role in the history of

Artificial Intelligence, serving two important functions. First, they allow con-

venient implementation and modification of programs that demonstrate and

test AI ideas. Second, they provide vehicles of thought: As with other high-

level languages, they allow the user to concentrate on higher level concepts.

Frequently, new ideas in AI are accompanied by a new language in which it is

natural to apply these ideas.

Symbol Manipulation and List Processing

The first and most fundamental idea in AI programming languages was

the use of the computer to manipulate arbitrary symbols—symbols that could

stand for anything, not just numbers. This idea, and the list-processing

4 Programming Languages for AI Research VI

techniques that followed from it, were first introduced in the IPL language,

one of the earliest programming languages of any kind.

IPL was created by Newell, Shaw, and Simon (1957) for their early AI work

on problem-solving methods. Its design was guided by ideas from psychology,

especially the intuitive notion of association. The primary elements of the

language were symbols, as opposed to numbers. To form associations of these

symbols, list processing was introduced, which allowed programs conveniently

to build data structures of unpredictable shape and size: When parsing a

sentence, choosing a chess move, or planning robot actions, one cannot know
ahead of time the form of the data structures that will represent the meaning

of the sentence, the play of the game, or the plan of action, respectively. The
unconstrained form of data structures is an important characteristic of AI

programs and is discussed further in Article VI. CI.

The problem of unpredictable shape of data structures was solved in IPL

by the use of primitive data elements (now commonly called cells) consisting of

two fields, each of which could hold either a symbol or a pointer to another cell.

This simple arrangement, called a list structure, allows arbitrarily branched

binary trees to be constructed. List structure is an extremely general data

structure: For instance, an array, normally implemented as a sequence of

words in memory, can be thought of as a list of cells whose left halves each

contain a symbol and whose right halves each contain a pointer to the next

memory location. The problem of unpredictable size was handled by having

a free list of cells that are to be allocated to the various data structures as

required.

As AI programming languages evolved, these simple list-structure ideas

were expanded to include utilities that allowed truly convenient application.

For instance, a programmer should not have to attend to the fact that, as a

program runs, cells in temporary list structures have to be returned to the

free list or else the program runs out of memory space. Eventually, these

chores would be attended to automatically by the operating environments

of AI programming languages. This is the sense in which a programming

language can free the programmer from attending to detail, allowing him (or

her) to think at a higher level, that is, in terms of list structures instead of

memory addresses or even arrays. (See Article VI.B for a complete discussion

of list processing.)

Another feature introduced in IPL is the generator, a procedure for com-

puting a series of values. It produces one value each time it is called and is

then suspended, so that it starts from where it left off the next time it is called

(see Article VI. C3). This important idea was to turn up later in CONNIVER
and similar languages.

Many of the first AI programs were written in IPL. These include the

Newell-Shaw-Simon Chess Program (Article II.C5c, in Vol. I), the Logic Theo-

rist (Article II.Dl), the General Problem Solver (Article II.D2), SAD-SAM

A Overview 5

(Article rv.Fi), EPAM (Article XI.D, in Vol. Ill), Feldman's two-choice decision

model, and Tonge's Assembly Line Balancing Program; many of these are

described in the Computers and Thought collection (Feigenbaum and Feldman,

1963). Some later programs written in IPL are Quillian's memory model

(Article XI.E1, in Vol. Ill) and REF-ARF (Fikes, 1970).

LISP

In the very early years of AI research, the idea of list processing was

incorporated, along with some other novel ideas about programming, into the

language that has become the mainstay of AI programming. Since its invention

in 1958 by John McCarthy, LISP has been the primary AI programming

language—used by the vast majority of AI researchers in all subfields. The
reasons for this are in part historical: LISP was established early, several large

systems have been developed to support programming in the language, and

all students in AI laboratories learn LISP, so that it has become a shared

language. However, the language continues to be the natural vehicle for AI

research because there are features of LISP that are critically important in AI

programming. As John McCarthy (1978) himself put it in an excellent article

on the history of LISP:

LISP is now the second oldest programming language in present widespread

use (after FORTRAN). ... Its core occupies some kind of local optimum in the

space of programming languages given that static friction discourages purely

notational changes. Recursive use of conditional expressions, representation

of symbolic information externally by lists and internally by list structure,

and representation of program in the same way will probably have a very

long life. (p. 221)

In truth, computer science has explored the "space of programming languages"

with only a few dozen experiments—an understanding of what it means to be

a "local optimum" must await major advances in the study of computation.

But LISP has survived and flourished where many competing programming

languages have been all but forgotten. The following treatment of LISP's

distinguishing features is meant to illustrate its nature and importance. A
full discussion of the language, along with sample programs, is to be found in

Article VI.B and in the several references given there.

Applicative style. Besides its use of list structures as its primitive

(and only) data type, LISP probably differs most from other programming

languages in its style of describing computations. Instead of being described as

sequences of steps, LISP programs consist of functions defined in a rather

mathematical format. Each function call is represented as a list, the value of

whose first element is the name of the function and the values of whose other

elements are the arguments. For instance, consider the LISP definition of the

function FACTORIAL^)

6 Programming Languages for AI Research VI

FACTORIAL (N)

:

(COND ((EQUAL N 1) 1)

(TRUE (TIMES N (FACTORIAL (DIFFERENCE N 1))))),

where the function EQUAL takes two arguments and returns TRUE if they

are equal, the function COND takes pairs of expressions as its arguments

and evaluates the left expression in each pair in sequence until one left half

evaluates to TRUE, and then COND returns the value of the right half of that

pair. The LISP definition of the function FACTORIAL looks very much like its

recursive mathematical definition:

«.{;
if N = 1

N(N-1)\, if TV > 1

Thus, the basic LISP procedure specification involves, not a sequence of

program steps, but a function definition in terms of applications of func-

tions to arguments (especially recursive applications of the same function to

a "depleted" argument). This applicative style of programming, pioneered

in LISP (and also used in APL), has been suggested by a number of people

(e.g., Backus, 1978) to be a more appropriate style than the von Neumann-
machine-oriented sequential languages that currently dominate (in which a

program consists of a sequence of instructions, much like machine-language

programs, which are a collection of instructions in sequential memory loca-

tions). This orientation, and the use of embedded parentheses to indicate list

structure, gives LISP programs a distinctly different appearance from those in

other languages. In fact, people who know other programming languages fre-

quently have difficulty learning LISP, while many people with a mathematical

background find LISP an easy first language to learn.

The design of LISP and of ALGOL overlapped in time, with McCarthy

involved with both. McCarthy was influential in the decision to include both

conditional expressions and recursion in ALGOL-60, having already decided to

include them in LISP. However, in LISP these two features, conditionals and

recursion, form the core of the programming style in procedure definitions,

much as variable assignment and loops do in ALGOL.
Programs as data. One characteristic of LISP that is unique among

high-level programming languages and that seems particularly important in

AI work is the representation of the programs themselves in the same data

structure as all the other data, namely, list structure. This simple device has

proved central to AI programs whose purpose is often to manipulate other

programs, sometimes themselves. For instance, a program that is to explain

its line of reasoning must examine its operation in reaching a conclusion

—

it must determine what functions were called and with what values (see,

e.g., Article DC.C6). Programs that learn to do some task, for another example,

A Overview 7

often involve procedures that create and modify new procedures to accomplish

the task (see Chap. X, in this volume, and Chap. XIV, in Vol. III).

The idea is simply that in most programming languages the executing

program does not have access to the actual code, while any procedure in LISP

can manipulate another procedure as easily as it can other data. For example,

since the first element of a function call is the name of the function to be called,

a general-purpose procedure that returns the value of the first element of a list

will, when applied to a function call like (TIMES X Y) , return the name of the

function to be called, TIMES. Imagine trying to write a FORTRAN program

that analyzes another program written in the usual FORTRAN syntax.

Another ramification of the program-as-data idea is that LISP program-

ming environments tend to be extremely interactive: Since programs can be

manipulated easily by other LISP programs, utilities such as program editors

and debugging facilities can be written in LISP. Thus, they can be easily

tailored by each programmer for a specific application or even used by a

program to edit or monitor another program (see Article VI.C5).

Associations. The idea of associations of symbols, mentioned as a

central motivation of IPL, was implemented in LISP in a simple and elegant

mechanism called property lists. Symbols in LISP are called atoms, and every

atom can have several properties associated with it—more precisely, the user

can define properties and associate them with each atom. For instance, there

might be associated, with each atom that represents a person, a property

called SEX with the symbols for MALE and FEMALE as values. And there

might be other properties of each person called MOTHER and FATHER whose

values are the symbols for other people. Property lists are thus a very general

way of associating symbols (see related work on knowledge representation

in Chap. Ill, in Vol. i). Once again, the job of a LISP programming, run-

time environment is to make this simple but powerful tool of property lists

convenient to use (see Article VI. C2).

LISP as a target language. Finally, McCarthy (1978) points out

another feature of LISP that, although in part an accidental side effect of

its first implementation, proved to be important. It is that programs are

represented in a simple syntax, namely, as lists:

One can even conjecture that LISP owes its survival specifically to the fact

that its programs are lists, which everyone, including me, has regarded

as a disadvantage. Proposed replacements for LISP, e.g., POP-2 (Burstall,

Collins, and Popplestone, 1968, 1971), abandoned this feature in favor of

an ALGOL-like syntax leaving no target language for higher level systems.

(P- 221)

In other words, since the LISP language syntax is so simple, LISP programs

that produce other programs as their output do not have to worry about

expressing their results in a complex format. Many of the systems described

in this chapter and throughout the Handbook are indeed programs of this

sort.

8 Programming Languages for AI Research VI

LISP today. Current LISP programming environments are themselves

very large LISP programs. MACLISP from M.I.T. and INTERLISP from BBN
and Xerox are the most highly developed systems, although there are several

others. All of these systems offer support for creating and modifying pro-

cedures, for managing the hundreds of individual procedures that make up

a LISP program, and for debugging those systems interactively. LISP lends

itself to incremental program-writing. Functions can be defined incremen-

tally, without declarations; data structures and variable names (atoms) can be

created dynamically. Using the interpreted form of functions, it is simple to

make try-and-see modifications to functions. The implementors of the major

LISP environments have tended to stay in close contact with the users (since

the LISP systems are LISP programs, the implementors are users), with the

result that the LISP systems have tended to evolve relatively rapidly.

The system that has gone farthest in including user facilities is INTERLISP
(Teitelman et al., 1978), which evolved from a series of LISP systems at BBN,

notably 940 LISP in 1967 and BBN LISP in 1970. In addition to highly devel-

oped versions of the facilities described above, INTERLISP has the following

features:

1. A uniform error-handling system, which allows some kinds of automatic

error correction, such as spelling correction, entry to a special, flexible

debugging facility, and handling of particular error conditions by user

functions;

2. CLISP, which is an alternative, extensible, expression syntax;

3. Programmer's Assistant, which keeps track of a user's commands and so

allows selected commands to be undone, retried, or changed and retried;

4. Masterscope, which is a cross-referencing facility to create a model of a

user's program that can be used to help manage a large system;

5. File Package, which offers assistance such as storing functions that have

been altered during a debugging session on a permanent file.

MACLISP has been under continuous development at M.I.T. since about

1966. It was developed in parallel with INTERLISP, and frequently a feature

in one that was found to be useful was implemented in the other. There has,

however, been more emphasis on efficiency in the use of time and space in

MACLISP. Some of the main forces pushing in this direction were the increas-

ing requirements of MACSYMA (Article VII.Dl) and, to a somewhat lesser

extent, of higher level Al programming languages like MICRO-PLANNER and

CONNIYER, which were implemented in MACLISP. In contrast to INTERLISP,

where most of the user facilities reside in the system, user facilities in MACLISP
are in separate programs and are loaded automatically when required. The
code produced by the MACLISP compiler is very efficient. Particular effort was

directed at producing efficient compiled arithmetic, and by 1974 this objec-

tive had been accomplished to such an extent that the efficiency of compiled

arithmetic in MACLISP was comparable to that of FORTRAN.

A Overview 9

Several personal computers designed specifically for LISP programming

are now available. These "LISP machines" offer complete, powerful computa-

tion facilities, very good graphics interfaces, interfaces to networks for sharing

resources between personal work-stations, and all the features of the advanced

LISP programming environments.

PLANNER and CONNIVER

We have said that a high-level programming language supplies some useful

data and control concepts and makes it easier to use these constructs. For

instance, list structure is a high-level data type, and LISP offers primitives

for manipulating lists and run-time facilities to take care of bookkeeping and

collecting unused cells, thus freeing the programmer from concern about these

details and making it easier for him to think in terms of the list-structure

concepts.

Representing knowledge. Carl Hewitt (1971) developed the PLANNER
language around an idea about knowledge and reasoning in problem solving.

In PLANNER, the programmer expresses his program in terms of a collec-

tion of statements, called theorems, about how to achieve goals given cer-

tain preconditions and about what to do should certain situations arise in

the process. PLANNER encourages the encoding of procedural knowledge—
knowledge about how to do things—and offers utilities for using that kind

of knowledge in a particular style of problem solving (see Article III.C2, in

Vol. I, on procedural knowledge representation). For example, the PLANNER
theorem

(CONSE (MORTAL ?X) (GOAL (HUMAN <-X)))

states that one way to show that someone (?X) is mortal is to show that

they are human. The pattern (MORTAL ?X) is stored in a database. Later,

in solving a problem, should some goal come up that matches the pattern,

for example, (MORTAL (MOTHER HARRY)) , the system knows that this consequent

theorem might be useful; that is, if it can prove that Harry's mother must be

human, it can conclude that she is mortal. This automatic retrieval of relevant

facts is called pattern- directed invocation of procedures and is commonly used

in expert-systems research in AI (see Chaps. VII, VIII, and DC; also, Waterman

and Hayes-Roth, 1978). Article VI.C4 discusses the pattern-matching facilities

of AI programming languages.

Control of reasoning. PLANNER offers facilities for automatic back-

tracking: The PLANNER run-time environment takes a goal to be achieved

and a collection of theorems like the one above and attempts to find a theorem

to achieve the goal. If the first theorem that matches the goal must in turn

be proved (e.g., proving that mothers are human, so that one can conclude

that Harry's mother is mortal), the system attempts to prove this goal in the

10 Programming Languages for AI Research VI

same way, that is, by matching it against the knowledge base of theorems.

This process continues, recursively, until either it succeeds in finding a fact

that proves some goal or the line of attack fails. In this case, the system

automatically backtracks to the most recent point of deciding between several

alternative theorems for proving a goal and tries another theorem.

Only a portion of PLANNER was actually implemented, as MICRO-
PLANNER (Sussman, Winograd, and Charniak, 1971). It included pattern-

directed invocation of procedures and automatic backtracking. There are two

types of procedures: consequent theorems and antecedent theorems. A conse-

quent theorem is called when its pattern matches a subgoal to be solved; an

antecedent theorem is called when its pattern matches an assertion added

to the database (there is another kind of antecedent theorem for assertions

deleted from the database). An important program written in MICRO-
PLANNER is Winograd's SHRDLU (see Article IV.F4, in Vol. I).

CONNIVER was developed in reaction to the rigidity of the conception

of backtracking in MICRO-PLANNER (Sussman and McDermott, 1972). The

CONNIVER program retained many of the ideas of PLANNER, but at a lower

level, so that fewer of the mechanisms were imposed on the user. In particular,

Sussman and McDermott objected to the use of automatic backtracking. In

MICRO-PLANNER, most of the information gained from following a wrong

choice was lost upon failure. As a result, programs tended to get bogged down

in blind backtracking.

Contexts. CONNIVER introduced the idea of a tree of contexts in the

database. This tree represented simultaneously the different situations for

different choices of actions. A powerful pattern matcher allowed flexible

associative access to the database. A version of the spaghetti stack (see

Article VI. C3) was also implemented (rather inefficiently, because it used lists

rather than a stack). Together, the spaghetti stack and context tree allowed

a problem solver, for example, to suspend a process that was working on

one subproblem, continue work on another subproblem that seemed more

promising, and then, at some later point, resume the process working on the

original subproblem if necessary. Sussman 's HACKER system (Article XV.C,

in Vol. Ill) was written in CONNIVER. Continued research on the role of

contexts in reasoning is described in Article VI. D.

The important point about PLANNER and CONNIVER, which are as

much knowledge-representation languages as programming languages, is that

they made some high-level control constructs (as well as data structures)

convenient to use. These languages were very influential in the history of

AI (see Article III.A, in Vol. i), but neither is used anymore. They can be

viewed as empirical studies of the space of programming languages—studies

on how to specify reasoning and problem-solving activities.

A Overview 1

1

Other Languages Covered

The articles in Section VI.C attempt to analyze the issues explored in

programming-language research in AI by comparing seven major languages:

LISP, PLANNER, CONNIYER, QLISP, POP-2, SAIL, and FUZZY. By way of

preparation for this study, the last four will be introduced here briefly.

SAIL. Developed in 1969 at the Stanford Artificial Intelligence Labora-

tory, the SAIL language is based on ALGOL-60 with extended string, macro,

and input/output capabilities (Feldman et al., 1972). It thus has the typi-

cal block structure and is compiler based, like the majority of modern pro-

gramming languages. But incorporated into SAIL from the beginning was an

associative retrieval formalism called LEAP (Feldman and Rovner, 1969),

which allowed rapid lookup of multiply indexed facts in a small database.

SAIL was designed especially for those AI systems, such as vision and speech-

understanding systems, that required fast arithmetic as well as some of the

symbol-manipulation facilities available in LISP. The language was extended

in 1973 to include listlike data structures, records, coroutining, and a powerful

interactive debugging environment (Reiser, 1975, 1976).

QLISP. The problem-solving language QA1 was developed by Cordell

Green at SRI International in the mid-1960s as an attempt to formalize the

ideas in Bertram Raphael's SIR program (see Article IY.Fl, in Vol. I). This

effort was followed immediately by QA2, which applied the ideas of resolution

theorem proving as the inference-making mechanism. QA2 introduced the now
standard method for extracting answers from the process of proving theorems

with existentially quantified variables—that is, binding values to the variables

that satisfy the theorem (see Chap. XII, in Vol. III). QA3 was an improved

implementation of QA2, in which Green explored how to tackle various types

of problems with a resolution theorem prover, including program synthesis,

verification, and problem solving (Green, 1969). QA3 was also used in STRIPS

(Article II.D5, in Vol. I).

QA4 was developed by Rulifson and others (1971) at SRI around the time

that MICRO-PLANNER was implemented at M.I.T. QA4 was intended to

overcome certain problems with QA3—specifically the difficulties in guiding

the search to relevant facts and theorems in trying to derive a proof. It was

necessary somehow to specify procedural and domain-specific knowledge about

what facts to use and when to use them, in a way that a theorem prover—the

underlying inference engine—could use. Theorems or procedures had to be

indexed by their purposes, an idea that led to the implementation of pattern-

directed invocation similar to that of PLANNER. QA4 was the first language

to develop the idea of representing assertions uniquely, in the way that simple

symbols are represented uniquely, so that properties can be associated with

12 Programming Languages for AI Research VI

assertions. QA4 adopted a context mechanism like that of CONNIVER and

also had a general control structure.

To make the language more widely available and to take advantage of the

new facilities in INTERLISP, a cleaner implementation of QA4 was embedded

in INTERLISP and called QLISP. When the spaghetti stack was implemented

in INTERLISP, QLISP was modified to take advantage of it. Unlike MICRO-
PLANNER and CONNIVER, which are interpreted languages on top of LISP,

QLISP is basically a subroutine package for INTERLISP, making it much easier

to mix QLISP with INTERLISP in programming. (This extended-language

design has been found advantageous in current representation-language

research as well.)

Some special features of QLISP are its extra data types, such as sets,

tuples, and bags, together with procedures for handling them, and QLISP's

ability to use them in pattern matching. Pattern matching plays a major

role in QLISP, being used for such things as constructing data. QLISP also

makes the distinction, blurred in PLANNER, between (a) finding the truth

of an assertion by a simple lookup in the database and (b) finding it by

deduction using consequent theorems, as described above. QLISP also intro-

duced the notion of a team of procedures that the programmer could specify

as worth considering anywhere that a pattern-directed procedure invocation

might occur. (A team consisting of a single procedure corresponds to the

traditional subroutine call. At the other extreme, a team consisting of all the

goal-achieving procedures in the system corresponds to the nondeterministic

style of PLANNER.) The NOAH systems (Article XV.Dl, in Vol. Ill) and the

DEDALUS systems (Article X.D5) were written in QLISP.

POP-2. AI researchers at the University of Edinburgh developed the

POP-2 language because good implementations of LISP were not available

on the machines they were using and because they disagreed about the use-

fulness of some of the features of LISP and thought that others could be

improved (Popplestone, 1967). POP-2 is still the most common AI language

in Great Britain, but it has not found broad use elsewhere. It has many
of the properties of LISP but an ALGOL-like syntax. Like LISP, it is inter-

active and allows general manipulation of functions, but it has several novel

features, including partially applied functions, dynamic lists (generators), and

explicit stack manipulation, allowing multiple-valued procedures. POP-2 was

intended for efficient implementation on the medium-sized machines available

to the designers of the language.

POPLER is a language based on PLANNER and embedded in POP-2
(Davies et al., 1973). It has an implementation of the spaghetti stack and

makes the same distinction as QLISP between testing the database and calling

consequent procedures. POPLER further distinguishes between those proce-

dures that deduce the value of an assertion in a world model from those that

achieve the assertion as a goal, producing a new world model from the old

model.

A Overview 13

FUZZY. The most recently developed language included in this study

illustrates current work in AI programming languages. The design of the

FUZZY language (Le Faivre, 1977) was motivated by the theory of fuzzy sets

(Zadeh, 1965; Gupta, Saridis, and Gaines, 1977), a generalization of Boolean

set theory that allows for "graded" set membership (rather than all-or-none).

For many natural-language concepts, for instance, there is no sharp boundary

between situations for which the concept applies and situations for which it

does not. Consider, for example, the concept young. We may say that people

under 10 years of age are young and those above 60 years are not young.

However, there is no particular day at which a person's age switches from

"young" to "not young"; rather, this is a gradual transition. In fuzzy set

theory, the concept of young in this context is expressed by a "membership

function" representing the degree to which a person of a particular age can

be considered to be young.

Many AI systems deal explicitly with fuzzy information (see, e.g., the cer-

tainty factor in MYCIN, Article VIII.Bi), and FUZZY is designed to facilitate

certain types of reasoning with fuzzy sets. It has been used for various

AI projects, including the AIMDS/BELIEVER system at Rutgers University

(Schmidt and Sridharan, 1977) and HAM-RPM, a knowledge-based conver-

sationalist at the University of Hamburg (Wahlster, 1977).

Logic Programming

Two languages based on first-order predicate calculus are PROLOG and

FOL. PROLOG programs consist of "axioms" in first-order logic together

with a theorem to be proved. The axioms are restricted to implications with

the left- and right-hand sides in horn-clause form. If the theorem contains

existentially quantified variables, the system will return instantiations of these

that make the theorem true (if such exist) using methods developed from those

of QA3. The style of programming is similar to that demonstrated in QA3
and, to a lesser extent, PLANNER. Automatic backtracking is used, but the

programmer may add annotation to control the order in which clauses and

axioms are considered. A compiler has been implemented for PROLOG that

allows programs in a variety of domains to be executed in about the same

time as corresponding compiled LISP programs. (See Clocksin and Mellish,

1981; Warren, Pereira, and Pereira, 1977.)

Another direction of logic—the uses of meta-theory—has been explored

in FOL (Weyrauch, 1979). This program is primarily a proof checker that

accepts logic statements and proof-step commands that can be carried out and

tested for correctness. However, it provides a powerful theory-manipulating

structure that allows the building of arbitrary meta-theory. Thus, for exam-

ple, a theorem may be proved not only within a theory but also with the help

of the meta-theory. Proving a theorem by going through the meta-theory

corresponds closely to executing a procedure to produce the theorem.

14 Programming Languages for AI Research VI

Modern AI Programming Environments

Current programming in AI research laboratories is done predominantly

on Digital Equipment Corporation's PDP-lOs and PDP-20s in LISP, principally

MACLISP or INTERLISP. Other LISP dialects, for the DEC VAX machine and

for several other machines, are in relatively sparse use, as are some other

general-purpose languages like SAIL, POP-2 (used mostly in Great Britain),

and PROLOG (used mostly in Europe). Work on languages as specialized

as PLANNER comes under the heading of knowledge representation these

days and is reported in Chapter III (in Vol. i). The recently introduced LISP

machines promise to alter AI programming environments radically.

References

The review article by Rieger, Rosenberg, and Samet (1979) gives examples

of procedures in several languages. More complete introductions to AI pro-

gramming include Charniak, Riesbeck, and McDermott (1979), Schank and

Riesbeck (1981), and Winston and Horn (1981).

B. LISP

THE BEGINNINGS of LISP date from the first days of computing machinery:

John McCarthy, who invented the language in 1958, states that he was moti-

vated by a desire to implement a practical list-processing language for AI

work on the IBM 704 computer. As his ideas about the language developed,

McCarthy came to see LISP as an elegant mathematical tool as well. His first

paper on LISP, in 1960, described it both as a practical programming language

and as an idealized model of computation suitable for use in recursive-function

theory.

McCarthy (1978) cites the following as the key ideas about computation

that are embodied in LISP:

1. Computing with symbolic expressions rather than numbers; that is, bit

patterns in a computer's memory and registers can stand for arbitrary

symbols, not just those of arithmetic.

2. List processing, that is, representing data as linked-list structures in the

machine and as multilevel lists on paper.

3. Control structure based on the composition of functions to form more

complex functions.

4. Recursion as a way to describe processes and problems.

5. Representation of LISP programs internally as linked lists and exter-

nally as multilevel lists, that is, in the same form as all data are

represented.

6. The function EVAL, written in LISP itself, serves as an interpreter for

LISP and as a formal definition of the language.

This article concentrates on describing LISP as a practical programming lan-

guage. After a sketch of the basic design of the language, enough of the

most important language constructs are defined to allow readers to under-

stand small LISP programs and some sample programs are provided. After

the definitions, some general implications of the structure of LISP for the way
it is used in AI are discussed, and some of its drawbacks are mentioned. A
more complete introduction to the language can be found in several books

mentioned at the end of this article.

Description of LISP

Data structure. In basic LISP there is only one data type, namely, list

structure. In most LISP programming situations, a datum takes the specific

15

16 Programming Languages for AI Research VI

form of a list or an atom. Atoms have identifiers such as I-AM-AN-ATOM, 3,

XYZ, or NIL. They have no component parts—hence, the name—but various

properties or attributes can be attached to individual atoms. The most

important attribute an atom can have, besides its name, is a value—in the

same sense that variables have values. Certain atoms have standard values:

The atom NIL has the value NIL, T has the value T, and any numerical atom,

such as 12, 1.732, or -1.066E3, has the corresponding integer or floating-point

number as its value. (Note that the atoms are not "typed"—any atom, besides

these constants, can have any value bound to it.)

A list is defined recursively as a sequence of zero or more elements enclosed

in parentheses,

(elementi . . . elementn)

,

where each element is either an atom or a list. (The definition is recursive

because it mentions the thing being defined in the body of the definition.)

The null or empty list is written as () or NIL. NIL, you will remember, is

also an atom. In fact, NIL has the distinction of being the only LISP datum

that is both an atom and a list. Some other examples of LISP lists are:

(SPOT RAN HOME)

(SPOT RAN (TO JANE))

(SPOT RAN (TO (JANE AND DICK))) .

The inherently recursive structure of lists is very flexible and turns out

to be a convenient representation for many kinds of information:

(2 3 5 7 11 13 17 19) A set of numbers.

((- B) + (SQRT ((B * B) - (4 * A * C)))

)

An algebraic expression.

(I (saw ((that (gasoline can)) explode))) A parsed sentence.

(GREEN GRASS) An assertion.

(AND (ON A B) (ON A C) (NOT (TOUCH B C))) A conjunctive clause.

The internal representation of LISP lists is built from primitives called CONS

cells. Each CONS cell is an address that contains a pair of pointers, and each

pointer can point either to an atom or to another CONS cell. In a typical LISP

implementation, the CONS cells are computer words with pointers in their

right and left halves, like the cell z diagrammed below:

CAR(z)

The CONS cell z.

- CDR(z)

The left-half pointer points to the CAR of the cell z; the right half, to the

CDR (pronounced cood-er; the names originated in the architecture of the

R LISP 17

IBM 704). The list (A B C) is represented by three CONS cells whose left halves

point to the atoms A, B, and C, and whose right halves are used to link the

cells together:

NIL

B

In mathematics, sets are taken as the fundamental objects, and other

concepts, such as ordered pairs, sequences, tuples, and relations, are defined in

terms of sets. LISP data may be regarded as an alternative formalism in which

the ordered pair, represented by the CONS cell, is fundamental. Sequences and

sets are then represented by LISP lists, an n-tuple by a list of length n, and

a relation by a list of tuples.

The list structure of LISP can be used to model essentially any data

structure. For example, a two-dimensional array may be represented as a

list of rows, and each row in turn as a list of elements. Of course, for

many purposes, this implementation of arrays would be relatively clumsy or

inefficient, but the point is not so much to model standard data structures

with lists as to model the complicated and often unpredictable data structures

that arise in many symbol-manipulation tasks (see below).

Control structure. LISP's control structure is primarily applicative—
the flow of control is guided by the application of functions to arguments,

where the arguments in turn may be applications of functions. This contrasts

with the sequential control structure of most programming languages, in which

separate statements are executed one after another. Compare, for example,

the ALGOL-like and LISP-like versions of a program to compute the two square

roots of a nonnegative number:

ALGOL-like: procedure ROOTS (value X: real; Rl , R2: real);

begin

Rl <- SQRT (X) ;

R2 <- -Rl

end

LISP-like: ROOTS (X) : (BOTHSIGNS (SQRT X)

)

where BOTHSIGNS (Y) : (LIST Y (MINUS Y)) .

The LISP function ROOTS applies the duplicating function BOTHSIGNS to the

result of the function SQRT. In LISP, statements are not differentiated from

expressions, nor are procedures differentiated from functions. Each function,

whether it is a language primitive or defined by the user, returns a single

value in the form of a pointer to a list structure.

18 Programming Languages for AI Research VI

Syntax. LISP syntax reflects its uniform control structure. A LISP

expression is defined recursively either as an atom, which when evaluated

returns its value, or as a list of the form

(F eie2 ...en).

When evaluated, this expression first evaluates (again recursively) the argu-

ments e\ through en , which may be atoms or lists, and then calls (evaluates)

the function F with those values as arguments. For example, the expression

(TIMES 3 (PLUS 4 1)) would evaluate to 15.

Dynamic scoping. The scoping rule of LISP is also closely linked to

its applicative control structure. Purely dynamic scoping is used: During the

evaluation of a function F, a nonlocal variable x will have the value bound

to it most recently in the calling hierarchy. In other words, if x was assigned

a value by the function that called F, say, G, that will be its value when F
is evaluated; otherwise, the value for x would be the one bound to it by the

function that called G; and so on. Scoping in LISP, then, depends only on the

calling order of functions (dynamic scoping) and in no way depends on when
or where they were declared in the program text (static scoping).

Recursion. Dynamic scoping allows the free use of recursive functions

—

functions that can call themselves. Recursive functions are most easily under-

stood as operations that are defined in terms of themselves. For example, the

factorial function, iV! , on the positive integers is defined as 1 when N = 1

and otherwise as N(N — 1)!. Thus, the control structure of LISP, like the

data structure, is uniform and based on a recursive definition. In the sample

LISP programs presented later in this article, we illustrate recursion with a

LISP version of the factorial function and other LISP programs.

Storage allocation and garbage collection. LISP relies completely on

dynamic allocation of space for data storage. During execution of a program,

each evaluation of the CONS function causes one CONS cell to be allocated to

the list structure being manipulated. Gradually, the program's available space

(e.g., the free list of CONS cells) is used up. Fortunately, after the program

has used a CONS cell, it often forgets all about it—that is, it retains no direct

or indirect pointer to it and will never access it again—so these old CONS cells

can be recycled. When the available storage gets low, LISP systems suspend

the user program and call the garbage collector, which locates all the forgotten

cells and makes them available again to the user program.

Comparing this scheme to static allocation, in which each variable or

array has a fixed amount of storage reserved for it before the program is

executed, it is clear that static allocation requires less overhead. But for

LISP, in which list structures grow unpredictably, static allocation would be

hopelessly restrictive. The time spent in garbage collection is part of the price

paid for the flexibility of LISP's data structure.

B LISP 19

LISP's Primitive Functions

There are only a few basic LISP functions in terms of which other LISP

functions can be defined. (Most LISP programming environments offer a very

large set of utility functions for the convenience of the programmer. They

include systems functions for writing files, etc., and other functions written

in terms of these few primitives.) With the exception of the function CONS,

which causes a CONS cell to be made, none of these basic functions has any

side effects, so they can be described by the value they return.

Most LISP functions evaluate their arguments before computing anything

from them. (Here, only the function QUOTE does not.) Beginner's problems

with LISP frequently stem from not making the distinction between an expres-

sion and the value of that expression. For instance, if the value of the atom

A is ALDO, then the value of the expression A is ALDO, but the value of the

expression (QUOTE A) is A. The value of an unbound atom is undefined in LISP

and will cause an error in all implementations.

In Table B-l, let the atom X have as its value (TIMES 3 (PLUS 4 1)), which

is a list. The symbols e, ei, pi, etc., stand for any expressions given as

arguments to the functions, and e, ei, pi, etc., stand for the values of those

expressions. The seven functions have the power to compute anything that

can be computed—they have the computing power of a Turing machine.

However, they do not allow one to write programs in the style common
to most programming languages, that is, as a sequence of statements that

operate by causing side effects. The prime example of this kind of statement

is assignment, performed by the SET function in LISP:

Expression Value Comment

(SET ei e 2) e2 Like all LISP functions, SET

(SET 'Y (EVAL X)) 15 returns a value, but its real

(SET 'Y X) (TIMES 3 (PLUS 4 1)) purpose is its side effect.

(SETQ Y X) (TIMES 3 (PLUS 4 1)) The more commonly used

form, SETQ, automatically

quotes its first argument.

Another construct imported to LISP from other programming languages

is the sequential-statement program format. In LISP, this is accomplished

with the PROG function. (It is really stretching terminology to call PROG a

function, since it is basically a BEGIN-END block with local variables. However,

PROG does have the standard LISP-function syntax and does always return a

value.) Here is what a PROG block looks like:

(PROG (atomi . . . atom^) e\e2 • • • en)

.

20 Programming Languages for AI Research VI

TABLE B-l

LISP Primitive Functions

Expression Value Comments

e

X

(QUOTE e)

(QUOTE X)

(CAR e)

(CAR X)

(TIMES 3 (PLUS 4 1))

e

X

first element of e

TIMES

An expression is an atom or a

list of the form (F e\ . . . en)

.

QUOTE is essential to manipulate

an expression itself, rather than

its value. We abbreviate

(QUOTE e) as 'e.

Not defined if e is not a list.

(CDR e)

(CDR X)

(CADDR X)

the rest of e

(3 (PLUS 4 1))

(PLUS 4 1)

Not defined if e is not- a list.

(CAR (CDR e)) is abbreviated

(CADR €), (CDR (CDR (CAR e)))

is abbreviated (CDDAR e), etc.

(CONS e, e2)

(CONS 'F X)

(CONS ' (A B) ' (A B)

)

(CONS NIL NIL)

prefix ei onto e2 Has side effect of setting up a

(F (TIMES 3 (PLUS 4 1))) CONS cell. (CAR (CONS t x e2))

((A B) A B) is d, (CDR (CONS t\ e2)) is e2 .

(NIL)

(EQUAL e,e2)

(EQUAL '(B) (CONS 'B NIL))

(EQUAL X 15)

(EQUAL (EVAL X) 15)

(ATOM e)

(ATOM (CAR X))

(ATOM (CADDR X))

(COND (Pl ej) ... (pn en))

(COND (NIL 'A) (T 'B))

T ife, = e2

T

NIL

T

T ife is an atom

T
NIL

Ife, == T then pi else

if en = T then pv

Note how NIL is used to mean "False.

(EQUAL e 'e)) = NIL, usually, but

(EQUAL NIL ' NIL) = T.

(ATOM NIL)

This is the basic branching

function of LISP.

(EVAL c)

(EVAL X)

value of e

15

EVAL is the opposite of QUOTE;

(EVAL 'e) = value(e).

B LISP 21

PROG does not evaluate its first argument, which has to be a list (possibly

empty) of atoms. Each of these atoms is a local variable inside the PROG
block. The subsequent expressions ei, e2, etc., are evaluated in that order.

The special function (RETURN eo) causes termination of the PROG, returning

the value of eo

.

A few of the more commonly used nonprimitive functions are defined here

in terms of LISP primitives:

(NULL e) or (NOT e) <-* (COND (e NIL) (T T))

(ORei...en)
*-> (COND (ei T) ... (en T) (T NIL))

(AND ei . . . en)
*- (COND ((NOT e x)

NIL) . . . ((NOT en) NIL) (T T))

(LIST ei . . . en)
<- (CONS d (CONS . . . (CONS en NIL) ...)).

Thus, (NULL e) returns T only if e evaluates to NIL, and (OR e\ . . . en) returns

T if and only if e evaluates to TRUE.

User-defined functions in LISP are written in a notation derived from the

lambda-calculus of Church (1941). The LAMBDA function in LISP corresponds

loosely to a procedure declaration in an ALGOL-like language, in the same

way that PROG corresponds to a BEGIN-END block. The expression

(LAMBDA (atomi . . . atomm) e)

evaluates to a function of m parameters, where e is the LISP form of an

expression to be evaluated. When a function is called, giving m expressions

as actual parameters, all actual parameters are evaluated and their values are

bound to the formal parameter atoms. Thus, if the user defines the function

EXCHANGE as:

EXCHANGE: (LAMBDA (Y) (LIST (CADR Y) (CARY))),

the value of (EXCHANGE '(A B)) would be (B A). We have now introduced

enough of LISP to go through some sample programs.

Examples of LISP Programming

FACTORIAL—A simple recursive program. This example was chosen

for the sole purpose of showing how recursion works in LISP. Even so, it is

not unrealistically simple.

FACTORIAL: (LAMBDA (N) (COND ((EQUAL N 1) 1)

(T (TIMES N (FACTORIAL (SUB1 N))))))

The evaluation of an expression like (FACTORIAL 3) proceeds as follows: First,

N is bound to 3 and then the (COND. . .) expression is evaluated. COND takes a

list of pairs of expressions as its arguments—the first pair is composed of the

22 Programming Languages for AI Research VI

expressions (EQUAL N 1) and 1. If the left half of the pair evaluates to TRUE,

the value of the right half is returned as the value of the COND. Otherwise,

the next pair is processed.

In this case, since (EQUAL N 1) evaluates to NIL, that is, "false," the next

pair, composed of T and (TIMES N (FACTORIAL (SUB1 N))) must be evaluated.

Since T always evaluates to TRUE—it is a special symbol—the value of the

COND expression is the value of (TIMES 3 (FACTORIAL 2)) , so FACTORIAL must

be called again with an argument of 2. These recursive calls in the evaluation

of (FACTORIAL 3) can be summarized as follows:

value of (FACTORIAL 3)=3X value of (FACTORIAL 2)

value of (FACTORIAL 2) = 2 X value of (FACTORIAL 1)

value of (FACTORIAL 1) = 1 .

The third call of FACTORIAL in this evaluation binds N to 1 and, since the

case of N = 1 is treated specially in the definition of the function, it can

return a numeric value, namely, 1, without recursion. Most recursive-function

definitions are of this form: a general case involving a recursive call with

a "diminished" argument and a special case for some known value of the

argument.

The various calls to FACTORIAL are "stacked" like any other procedure

calls, so that after (FACTORIAL 1) is evaluated
—

"returns" a value—the evalua-

tion of (FACTORIAL 2) continues; and so on.

Recursion is a programming method of great power in tasks that have an

inherently recursive structure, which is the case in much of AI problem solving.

If the programmer can think of a way to reduce the general problem to

simpler problems of the same form, which finally reduce to one or two special

cases, he need not state the step-by-step solution to the general case. In our

FACTORIAL example, this reduction was accomplished in the very definition

of the FACTORIAL function, N\ = N(N - 1)! , which was itself recursive. If

we had been given an alternate definition of FACTORIAL, like

AM = N(N-l)(N-2)--- 1,

we might have written a more standard program, perhaps using a loop, to

evaluate the function. The power of thinking recursively in AI is illustrated

in the next example.

"Tower of Hanoi"—Recursive problem solving. In the "Tower of

Hanoi" puzzle, a tower formed by disks stacked on a peg must be transferred

to another peg, say, from peg A to peg B in Figure B-l, moving only one disk

at a time and never placing a larger disk on top of a smaller. (Peg C may be

used for temporary storage.)

B LISP 23

Figure B-l. The "Tower of Hanoi" puzzle.

In looking for a recursive solution to the problem, one would notice that

to move a tower of just two disks, one would move the smaller disk from peg A
to peg C, then move the big disk from peg A to peg B, and finally move the

little disk back on top on peg B. Now the general problem of moving a tower

of TV disks can be reduced to three steps, as shown in Figure B-2: Transfer

the subtower of disks 1 through TV — 1 from peg A to peg C, move the biggest

disk, TV, from peg A to peg B, and then transfer the subtower back from peg C
to peg B.

Of course, in the special case of only one disk (TV =1), the solution is

trivial—just move the disk from peg A to peg B. Now we can directly write

a recursive program to find the general solution.

MOVETOWER :

(LAMBDA (DiskList PegA PegB PegC)

(IF DiskList THEN

(PROG ()

(MOVETOWER (CDR DiskList) PegA PegC PegB)

(PRINT (LIST 'Move (CAR DiskList) 'from PegA 'to PegB))

(MOVETOWER (CDR DiskList) PegC PegB PegA)))) .

Figure B-2. Solution of the "Tower of Hanoi
1

' puzzle.

24 Programming Languages for AI Research VI

The IF . . . THEN construct here is an abbreviation of the COND statement

that is very commonly used. If DiskList is not empty, the MOVETOWER
function will first execute a recursive call on the rest of DiskList to move

the subtower to peg C, print that it is moving the last disk, and then execute

another recursive call to move the subtower back to peg B. Here is the printout

resulting from evaluation of MOVETOWER with a three-disk tower:

(MOVETOWER ' (Diskl Disk2 Disk3) 'A 'B 'C)

:

(Move Diskl from A to B)

(Move Disk2 from A to C)

(Move Diskl from B to C)

(Move Disk3 from A to B)

(Move Diskl from C to A)

(Move Disk2 from C to B)

(Move Diskl from A to B)

NIL .

Observe the following points:

1. NIL is returned as the value of the PROG.

2. Each instance of the function MOVETOWER calls two other instances.

The reader is invited to draw the tree of recursive calls to MOVETOWER
and calculate how many moves it takes for N disks. By the way, it is

not hard to see that this solution is optimal.

3. One may regard the tree of calls to MOVETOWER as a problem-reduction

tree consisting entirely of AND nodes (see Article II. B2, in Vol. I). When
the subproblems are of the same form as their parent nodes, problem-

reduction methods lead to recursive solutions—a very general situation

in AI and a strong point of LISP.

Manipulating facts and rules. This sample program makes simple

logical deductions from a database of assertions represented as LISP lists.

The assertions are of two kinds: facts indicating a certain predicate is true

of a certain object (e.g., (MAN Socrates) asserts that Socrates is a man) and

a general rule saying that one predicate implies another. These rules will

be represented as lists of the form (ALL predicatei predicate2); for example,

(ALL MAN MORTAL) asserts that all men are mortal.

The program PROVE, described below, takes two arguments, a statement

such as (MORTAL Socrates) and a database in the form of a list of assertions,

and returns T if the statement can be deduced from its database, NIL if not.

PROVE uses two auxiliary functions, FINDASSERTION and PROVESIT.

PROVE:

(LAMBDA (Statement DataBase) (FINDASSERTION DataBase))

B LISP 25

FINDASSERTION

:

(LAMBDA (RestOfDataBase)

(COND ((NULL RestOfDataBase) NIL)

((OR (PROVESIT (CAR RestOfDataBase)))

(FINDASSERTION (CDR RestOfDataBase)))))

PROVESIT:

(LAMBDA (Assertion)

(OR (EQUAL Statement Assertion)

(AND (EQUAL (CAR Assertion) 'ALL)

(EQUAL (CADDR Assertion) (CAR Statement))

(PROVE (CONS (CADR Assertion) (CDR Statement))

DataBase))))

We would describe this system of three functions in English by saying that a

statement can be proved from a database if the first assertion in the database

proves it, or it can be proved from the rest of the database. (The LISP function

OR returns the value of the first clause that does not evaluate to NIL.) An
assertion in the database proves a statement of the form (predicate object)

if it is either identical with the statement or of the form (ALL predicate2

predicate) and the new statement (predicate2 object) can be proved from the

database.

Evaluation of the form (PROVE '(MORTAL Socrates) '((MAN Socrates)

(ALL MAN MORTAL))) builds up the following tree of function calls before return-

ing T:

PROVE ... to prove (MORTAL Socrates)

FINDASSERTION

/ \
PROVESIT FINDASSERTION

I

PROVESIT

I

PROVE ... to prove (MAN Socrates)

I

FINDASSERTION

I

PROVESIT .

Observe the following points:

1. Clarity is enhanced by splitting the prover, which could be written as

a single function, into three smaller functions that each perform an

identifiable subtask.

2. The three functions are purely applicative—no assignments or PROG
statements. LISP programs tend to be most elegant when written in this

style, but for MOVETOWER it would have been clumsy.

26 Programming Languages for AI Research VI

3. Though they do not directly call themselves, the functions PROVE and

PROVESIT are still considered recursive, since the system of three func-

tions is mutually recursive—from each function, there is a chain of calls

leading back to itself:

PROVE

FINDASSERTION — PROVESIT

4. FINDASSERTION illustrates a very common scheme for recursion "down

a list," meaning that the diminished argument of the recursive call is the

rest of the original list argument after processing its CAR. This general

form can be expressed symbolically as the pattern:

F: (LAMBDA (X) (COND ((NULL (X) NIL)

(T (G (H (CAR X))(F (CDR X))))))),

where F, G, and H are arbitrary functions. In FINDASSERTION,
G = OR and H = PROVESIT, making

(FINDASSERTION • (e x . . .

e

n))

= (OR (PROVESIT eO ... (PROVESIT en)) .

If G were CONS instead of OR, another very common pattern would

result:

(F ' (ex ...en)) = ((H eO ... (H en)) ,

that is, the values of H on the elements e\ to en would be CONSed into

a new list that is returned as the value of the function call.

5. The variable statement is not defined as a parameter to PROVESIT, and

so the dynamic scoping rule of LISP applies. The variable statement is

defined by the function PROVE, which calls FINDASSERTION, which

in turn calls PROVESIT, so the value of statement in the function

PROVESIT is the one established in PROVE. If PROVESIT now calls

PROVE and passes it a new value of statement as a parameter, this new

value is used in the next instantiation of PROVESIT.

Some Important Features of LISP

As described above, data and programs in LISP are highly recursive and

are represented as nested lists. There are even closer connections between

them.

Programs mirror data. In LISP, functions may be written so as to

mirror the structure of the data they operate upon. As an example, the

B LISP 27

function SUBSTITUTE takes any list Object and generates a copy of it in which

every occurrence of a given atom Old is replaced by another list or atom New.

SUBSTITUTE:

(LAMBDA (Object Old New)

(COND ((ATOM Object) (COND ((EQUAL Object Old) New) (T Object)))

(T (CONS (SUBSTITUTE (CAR Object) Old New)

(SUBSTITUTE (CDR Object) Old New)))))

Suppose we evaluate (SUBSTITUTE '(PLUS (TIMES A X) X) 'X (PLUS 2 3)),

replacing all occurrences of X with (PLUS 2 3) . SUBSTITUTE is called a total of

13 times. If we draw out the internal representation of (PLUS (TIMES A X) B)

in terms of CONS cells and pointers, we find that it contains six CONS cells and

seven atoms. In evaluating this structure, SUBSTITUTE is called exactly once

for each of these pieces, and the tree structure of instances of SUBSTITUTE is,

in general, isomorphic to the internal structure of its argument. There are two

cases: Either Object is an atom, and the appropriate value is returned without

recursion, or Object is a list, in which case SUBSTITUTE is applied recursively

to the CAR and CDR of Object and the results CONSed together. Note that

should Old not occur in Object, the body of SUBSTITUTE simplifies to:

(IF (ATOM Object)

THEN Object

ELSE (CONS (CAR Object) (CDR Object))) .

This parallelism of control structure to data structure is an enormous help

in dealing with complex nested data. It is very characteristic of programming

in LISP that, in writing functions, one need only concern oneself with the

recursive definition of the data and not with all possible cases, much as a

language is adequately and conveniently described by its grammar for many
purposes.

Programs are data. The internal representation of a LISP program

(assuming it has not been compiled) is the same as that of any other multi-

level list, that is, CONS cells and atoms. LISP is unique among programming

languages in storing its programs as structured data. (Of course, many lan-

guages store programs unstructured, as bit strings or sequences of tokens.)

This property is very important, for several reasons.

First, it is particularly easy to write LISP programs that generate LISP

expressions and programs, as in automatic-programming research (Chap. X).

Second, functions can be passed as parameters to other functions (just as any

list structure can). For instance, suppose we had a function to do minimax

game-tree search as in chess-playing programs (see Article II.C5a, in Vol. i). We
could pass as a parameter to the search routine its evaluation function—the

code that evaluates the positions to determine which are "best" to pursue.

Changing this parameter, under the control of some strategy, would cause

different moves to be chosen, depending possibly on global strategy, known

28 Programming Languages for AI Research VI

traits of the opponent, or other considerations. Third, there is procedural

representation of knowledge: LISP procedures for deducing facts can be stored

in a database as if they were facts.

Last, and most important, is the manner in which LISP can be a founda-

tion for more advanced languages. The method is to write an interpreter, in

LISP, for a new LISP-like language. Syntactic constructs of the new language

are represented as multilevel lists just as in LISP itself, making the inter-

pretation relatively easy to do. The special AI languages MICRO-PLANNER,
CONNIVER, and QLISP were all implemented in this way.

LISP is interpretive. Originally LISP was to be a compiler-based lan-

guage. While design of the first compiler was under way, it was recognized

that the LISP function EVAL was in essence a LISP interpreter. Before, EVAL

had been of only theoretical interest and existed only on paper. It was soon

hand-coded, and long before a compiler had been implemented, a LISP inter-

preter became available.

Interpretive execution (or evaluation) has strong advantages during pro-

gram development, chiefly in that it permits interactive programming. Once a

program is fully operational, it is usually compiled for greater speed. Another

important consequence of interpretation is greater flexibility of the language

itself. An interpreter is much more accessible to change than a compiler,

especially LISP interpreters, which tend to be written almost entirely in LISP

itself.

LISP is interactive. Any interactive language system must be inter-

preter based rather than compiler based. Interpretation for LISP is far easier

than for most languages, because of its uniform syntax. Other features like

dynamic allocation and the absence of type declarations also suit it to inter-

active use. Essentially all existing LISP systems are interactive.

Since LISP encourages the composition of large programs out of many
small functions, large programs can be developed incrementally by writing

and debugging the component functions one at a time. There are a few

large LISP systems that provide not only the direct language support but

also an entire "environment" for interactive LISP programming, including

editors, debugging and tracing facilities, and alternative syntactic forms more

convenient than the pure list notation. These LISP systems also extend the

basic language with additional special-purpose functions and sometimes new
data types (see Sec. VI. C).

Disadvantages of LISP

Ugly syntax. A common complaint about the list-structure format of

LISP programs is that it makes them difficult to read. The only syntactic

items are separators, such as spaces and parentheses, which provide most

of the structure. This way of representing structure is convenient for the

machine to read, but inconvenient for humans. In practice, facilities are

B LISP 29

provided for printing out programs so that the structure is also indicated with

indention. No attempted alternative formats have caught on (with, perhaps,

the exception of the CLISP dialect provided in the INTERLISP system). The
utility of LISP's structured representation of code outweighs the nuisance of

its external form.

One data type. Not having distinct data types is harmful when it

prevents type-checking at run time, where bugs can often be detected early.

However, many LISP systems do support additional data types, such as strings,

arrays, and records (see also QLISP in Article VI. C2).

Inefficiency. Any language is relatively slow when executed interpre-

tively. Speed is traded for convenience and extensibility. Some LISP compil-

ers, however, produce fairly efficient code: Because of its use in the MACSYMA
system, MACLISP produces very efficient code for numeric calculations.

Lack of a language standard. Unlike FORTRAN and other well-known

languages, there has never been an attempt to agree on a standardized LISP.

The absence of a language standard and the proliferation of incompatible

versions make LISP badly suited to be a production language, and in AI

research work there are severe difficulties in transporting LISP programs to

machines running a different LISP.

Conclusion

It has always been the case that almost all LISP use has been in the AI

community and that almost all AI research employs LISP or a language built

on LISP. Although it is really a general-purpose, list-processing language, LISP

has not found a niche outside of the AI community. But among AI researchers,

the various shortcomings of the language have never outweighed their feeling

for its power and elegance as a tool for programming and for thought.

References

Introductory texts on LISP include the books by Weissman (1967), Fried-

man (1974), and Siklossy (1976), and the second half of Winston's (1977)

text on Artificial Intelligence. Allen (1978) gives a complete introduction to

the theory and practice of LISP programming. Pratt (1979) is an excellent,

short introduction. McCarthy (1978) is a fascinating historical study of the

theoretical origins of the language.

The practical side of AI programming is covered more thoroughly in the

books by Winston and Horn (1981); Charniak, Riesbeck, and McDermott

(1979); and Schank and Riesbeck (1981).

C. AI PROGRAMMING-LANGUAGE FEATURES

CI. Overview

THE PURPOSE of this section on AI programming-language features is

two-fold: to present some powerful programming techniques and to show how
they are implemented in some major AI languages. We describe the special

data representations, control structures, pattern-matching capabilities, and

programming environments that have been developed for AI programming

—

each representing a data point in AI researchers' exploration of the "space

of programming languages." We attempt to explain why these peculiar fea-

tures developed by discussing some of the applications they have found in AI

languages.

In these articles, we focus on more advanced features, built on the basic

features of LISP: symbol manipulation, list processing, and recursion. These

are attempts to supply primitives in the languages for some higher level

conception of data or control. We look at seven AI languages: basic LISP,

PLANNER, CONNIYER, QLISP, SAIL, POP-2, and FUZZY. While the

approach we take is largely comparative, the comparisons are intended to

bring out significant trade-offs and alternatives rather than suggest a best

language for a particular purpose. In fact, except for LISP, none of these

languages is in widespread use (see Article VIA).

No previous knowledge of the languages is assumed here. Nor is any

attempt made to help the reader learn how to program in them. Experience

in programming and familiarity with basic concepts of computer science (data

types, variables, procedures, etc.) will be very helpful, but not essential, in

understanding the discussion.

AI Programming

From the start, it must be admitted that the class of "AI programs" is

not clearly defined. As discussed in Article VI.A, some general features of AI

problems, such as recursive processing and the unpredictable form of data,

dictate some of the structure of the programs. But the variety of the language

features developed to handle even these basic issues shows that the practice

of AI programming is still more of an art form than a technology.

Data structure. Some feeling for the difficulties of designing data

structures for an AI program may be gained from Chapter III (in Vol. i) on

knowledge representation. The simple representation known as a semantic

30

Cl Overview 31

network—a collection of nodes, representing objects and properties, linked

together by a network of labeled links—will serve to illustrate these problems

(see Article III.C3, in Vol. i). As a first cut, a semantic net can be implemented

as a set of records, one per node of the net, each having a field for each kind

of link that can emanate from the node. However, a host of difficult issues

soon arises:

1. What happens if there are many kinds of links (although any node has

only a few)? In this case, records would be impractical and a property

list, that is, a list of name-value pairs for each property a given node

has, would be more appropriate.

2. Suppose we need to find all nodes having a certain kind of link—do we
need some kind of index?

3. How is inconsistency in the net to be detected as new facts are added?

For example, if "Terry ISA man" is already encoded, what happens when
"Terry ISA woman" is asserted?

These sorts of issues demonstrate the trade-offs between alternative data

structures. Each programming language offers primitives for certain types of

data structures, including a wide range of data types (each with appropriate

operations and semantics) and facilities for dealing with large databases. But

to the extent that an AJ language attempts to offer standard data facilities,

it will have to embody choices on difficult issues like those listed above, and

it is not to be expected that the choices will be optimal for all applications.

Control structure. AI programs are generally quite large and, like most

large systems, are made up of many modules each carrying out a certain kind

of subtask. These subtasks must be intelligently sequenced to perform the

whole task properly. How the task can be divided up and how the sequencing

can be accomplished are highly dependent on the control-structure facilities

offered by the programming language.

In most programming languages, modules must obey a strict calling hier-

archy: At any point in the execution, the options are very limited as to what

to do next—that is, only a few alternatives can be indicated by conditional

statements (IF-THEN statements, CASE statements, loop-exit tests, etc.). This

primitive control structure is inappropriate in many situations in which the

programmer wishes to specify the alternatives less rigidly, leaving the decision

to the program.

In the HEARSAY-II speech-understanding system (Article V.Cl, in Vol. i),

for example, several modules monitor a global database, called the blackboard,

for situations in which they can act. The action of one module (e.g., phonetic

analysis, syntactic analysis) modifies the blackboard and may trigger activity

in other modules. The actual flow of control in the system is radically

different on each new utterance it analyzes, with some analyses depending

much more on syntactic constraints and some being driven more by the data.

In HEARSAY-II, each activation of a given module is independent of its last

32 Programming Languages for AI Research VI

activation. In other control structures, it is possible for modules to have an

internal state that survives from activation to activation.

Pattern matching. Both the data structures and the control mecha-

nisms of AI programs are less rigidly specified and more complex than those of

more general languages. Furthermore, there is a greater complexity in their

interaction. On the one hand, the control structure becomes increasingly

"data driven"—procedures are invoked by the situation rather than being

called in a planned sequence. On the other hand, more powerful operations

for accessing the data structures are introduced. A striking fact about AI

programming languages is the extensive use of pattern matching to mediate

both directions of interaction, and so pattern matching is taken up here as a

separate type of language feature.

In HEARSAY-II, for example, the program modules can be described as

looking for certain patterns in the global blackboard. The use of pattern-

matching in controlling the execution is called pattern- directed invocation of

procedures and was introduced in the PLANNER language. In the other

direction, consider the problem of finding an object with certain properties in a

semantic-network database. Since the object being sought can be described in

terms of a small network fragment, the retrieval process is really just matching

the fragment to the same pattern in the database—a subgraph-isomorphism

problem. Unfortunately, the best known algorithms for subgraph isomorphism

require exponential time, so it is not practical as a pattern-matching method.

Different AI programming languages have offered various compromise retrieval

schemes.

Programming environment. AI programs are among the largest and

most complex computer systems ever developed and present formidable design

and implementation problems. This brings up the fourth aspect on which

we compare AI programming languages, namely, their programming-support

facilities. Because they are usually developed as research projects, AI pro-

grams tend to undergo drastic revisions. And since they are quite large, pro-

grammers have difficulty keeping track of things. However, this is a human
limitation that the machine can help overcome. AI researchers, in their

capacity as language designers and programmers, have pioneered an interac-

tive mode of programming in environments with extensive support: editors,

trace and debugging packages, and other aids for the construction of large,

complex systems.

Languages Covered

High-level computer languages tend to fall into two broad classes. The
programs that are written in the ALGOL-like, or block-structured, languages

are recognizable by the many block-delimiting BEGIN and END statements.

These languages usually allocate space for variables, arrays, and other data

before the program is executed (at compile time), so that during execution

CI Overview 33

the space available for its data is fixed. The nested structure of the blocks

defines the scope of the program variables, that is, the region of the program

in which they are accessible, and similarly defines which procedures can call

which other procedures. Only one of the seven AI programming languages

discussed in this chapter, SAIL, is of the block-structured type.

The LISP-like languages are characterized by dynamic allocation and

dynamic scoping. Dynamic allocation means that the space to be used by

a data object is not fixed ahead of time but is allowed to grow and shrink

as needed—an essential attribute for list processing. Dynamic scoping means

that any procedure can call any other, and variable values are passed down
the control chain rather than being determined by the static block structure.

That is, once a variable is declared or otherwise allocated during the execution

of, say, procedure A, it can be accessed from within any procedure B that

A calls, or any procedure C that B calls, and so forth, regardless of where

A, B, and C appear in the actual program text. LISP-like languages are

often interpreted—the run-time environment is available during the program-

writing process so that procedures can be easily tested—which encourages an

interactive style of programming. PLANNER, CONNIVER, and QLISP are all

LISP-like, being built upon LISP itself. (To avoid confusion of LISP dialects,

we speak here of "basic LISP," which corresponds roughly to the LISP 1.5

defined by McCarthy et al., 1962.)

The POP-2 language shares characteristics of both ALGOL-like and LISP-

like languages. It was developed at Edinburgh University as an attempt to

implement LISP-like ideas in an ALGOL-like syntax. The newest language

covered, FUZZY, brings together many of the constructs of previous languages

in a LISP-embedded form much like that of QLISP.

References

A thorough introduction to some AI programming-language features in

the context of detailed examples of AI programming techniques can be found

in the book Artificial Intelligence Programming by Charniak, Riesbeck, and

McDermott (1979).

C2. Data Structures

THE GENERAL GOALS of a data representation are (a) to mirror, in a natural

and convenient way, certain features of the entities in which the programmer

views the problem at hand and (b) to be efficient in storage space and in the

time required to operate on the data. These goals often come into conflict.

In AI programs, data structures tend to become large and complex. But

complex data structures are inefficient, so there is a tendency to sacrifice

some naturalness and convenience in order to make do with simpler data

structures. The data-structure offerings of various languages may be viewed as

compromises toward some kind of optimum. In the context of AI programming

languages, we will discuss three data-structure issues: data types, problems

of storage and retrieval in large databases, and division of the database into

contexts.

Data Types

Every computer-programming language offers a selection of data types:

integers, reals, arrays, strings, records, and so on. AJ programming languages

always include some "list" data type or types because of the fundamental

importance of list processing in AI programs. Lists and list processing are

discussed in the LISP article (Article VI. B). Here, our main concern will be

with the new data types introduced in AI languages, including:

1. Set—a collection; unlike a list in that it is not ordered and each symbol

can appear only once.

2. Bag—like a set, but with repeated elements.

3. Tuple—basically a list of fixed length; for example, an ordered pair is a

2-tuple.

4. Record—like a tuple with named components, so the progammer need not

keep track of their actual position.

5. Function—a procedure treated as data (see Article VI.A).

Some languages also allow users to define their own data types.

Database Storage and Retrieval

As AI systems involve the application of ever more knowledge to the

problems they address, there is a growing concern with questions of how to

organize and access large knowledge bases. The term knowledge base indicates

that these AI databases are not merely big files of uniform content but are

34

C2 Data Structures 35

collections of facts, inferences, and procedures that correspond to the kinds of

things people know (see Article III.A, in Vol. i). The ideal, from the program-

mer's point of view, would be a system that can retrieve data according to

any specification that might be constructed by the program. However, the

less that is known at the time the knowledge is encoded and stored about

how it is going to be eventually used, the harder it is later to retrieve appro-

priate facts—computational limits on retrieval are real constraints in AI pro-

gramming. Ideally, again, the programmer would like the language system

to perform certain updating and bookkeeping tasks, even to the extent of

automatically detecting inconsistencies in the knowledge base.

The languages covered here all have a set of database features that are

of considerable utility and are reasonably efficient for some kinds of retrieval.

A programmer designing, say, a semantic-network knowledge base (which

none of the languages offers), would have to construct the semantic-net primi-

tives from whatever database primitives the AI programming language does

provide.

The selection of a good set of database primitives is crucial. There is

still much debate on the relative utility of alternative schemes. One common
scheme uses multiple indices: Incoming data are indexed by several of their

attributes. Data about books, for instance, might be indexed by author,

title, and subject, and the retrieval process would then be simple and fast:

An attribute and its value are specified (e.g., AUTHOR-VONNEGUT), and the

system looks in the appropriate index, finds the entry (if any) for that value,

and retrieves all items listed for that entry. McDermott (1975) argues that

multiple indexing can be implemented efficiently even when the database is

split into contexts (see below).

A more advanced scheme, introduced by Carl Hewitt in the PLANNER
language, retrieves data according to a pattern, a sort of structural sketch of

an item with some pieces left undefined. The system retrieves all items that

fit the general pattern. Implementation must be done carefully, however. The
simpleminded approach of scanning the entire database and testing each item

against the pattern—the British Museum algorithm—is out of the question

for large databases.

Contexts

Beyond pattern-directed retrieval, one can speak of semantically directed

retrieval in which items are somehow located by their meaning, rather than by

their explicit structure. One can also raise legitimate objections to the whole

idea that databases should consist of a set of separate items. We will leave

these issues aside—no AI programming language has attained such a level of

sophistication. There is, however, one quite standard technique that starts to

move away from the crude notion of a set of items. This is the division of a

database into contexts.

36 Programming Languages for AI Research VI

The basic idea of this technique is to replace the global database with a

tree of distinct databases called contexts (see Fig. C2-1). The contexts are

arranged in a tree because each represents a distinct state of the world (or

set of assumptions about its state): As the world changes, a context naturally

gives rise to "descendant" contexts, which differ slightly from each other and

from their common parent. Conceptually, each context is a full database in

its own right. In reality, most of the information in a given context will be the

same as in the (parent) context just above it, so that, to save space, only the

differences are actually stored. The root of the tree, of course, must actually

be a full database.

Contexts have been found especially useful in hypothetical reasoning sys-

tems. In robot planning, for example, the robot can simulate alternative

sequences of actions, creating contexts to represent the different states of the

world that result. If the consequences of an action are undesirable, the robot

planner can delete the context and try something else. (See Article VI.D for

further discussion.)

A process at any given time uses one specific context as its database—the

current context. Referring to Figure C2-1, assume that the current context

is A and that no other contexts exist yet. The following context-manipulation

primitives may offer a clearer idea of what context mechanisms look like.

1. PUSH. This creates a new context as a descendant of the current context

and enters it. Initially the contents of the new context are identical to its

parent. If we PUSH from context A, context B is created and becomes

Context
A

Context
B

Context
E

Context
C

Context
D

Figure C2-1. A tree of contexts.

C2 Data Structures 37

the current context. And if we PUSH again, C is created and becomes

the current context.

2. SPROUT (cxt). This is like PUSH, except that the new context is a

descendant of the designated (cxt) and is not automatically entered.

SPROUT A creates E, and SPROUT B creates D. We are still in C.

3. POP. This is the inverse of PUSH. It moves up the context tree to the

parent of the current context. POP may be destructive; that is, the

current context may be deleted. POP puts us back in B.

4. SWITCH (cxt). This leaves the current context and enters the designated

context (cxt). SWITCH E makes E be the current context, that is, puts

us in E.

5. DELETE (cxt). This deletes the context (cxt) and all its descendants.

DELETE B deletes B, C, and D.

LISP

In looking now at the data-structure features of the individual languages,

we see that basic LISP has little in the way of sophisticated data facilities,

but it provides a flexible base on which they may be built. As described in

Article VLB, the original LISP had only one data type, namely, list structure

built from CONS cells and atoms. This makes for a simple and elegant lan-

guage, but at considerable cost in efficiency and readability. A list-structure

representation of arrays, for instance, is highly inefficient, and the access of

its elements by a chain of CAR and CDR list-selector functions is somewhat

opaque to the reader of a program. To supplement lists, later versions of LISP

have tended to add more data types. Integer, real, string, array, and record

types are more or less standard. Many versions also allow the user to define

new data types. Finally, LISP was the first computer-programming language

to represent procedures as data in a practical way (see Article VI.A).

LISP provides a database facility of a crude sort through the property

list. Every atom has attached to it a list of property-value pairs; for instance,

the property list of atom K2 might include the property RANGE paired with

the value HIMALAYAS. The main deficiency of property lists as a database

mechanism is that they are indexed only one way; given atom K2, we can

retrieve all its property-value pairs (or its value for any given property), but we
cannot efficiently retrieve all atoms having the RANGE property HIMALAYAS.

Pattern-matching data-retrieval and context mechanisms are not provided

in basic LISP, though, as we shall see, they are relatively easy to include in

languages built on top of LISP. The recursive structure of LISP is especially

well suited to implementing pattern matchers.

38 Programming Languages for AI Research VI

PLANNER

PLANNER was the first language to implement a general-format associa-

tive database. The particulars of PLANNER'S database stem from its

theorem-proving semantics, in which having a theorem that can prove a fact is

equivalent to having the fact explicitly stored. The global associative database

can store two semantically different classes of data items. The first class is

assertions, which are LISP lists. Their elements may be of any MACLISP
type (because PLANNER is implemented in MACLISP). All assertions in

the database are assumed to be true for purposes of PLANNER'S automatic-

deduction control structure. But beyond that, assertions are treated merely

as lists with no inherent semantics. Thus, either (RED MARS) or (MARS RED)

,

or even (MARS IS RED) , could have the same meaning, if the PLANNER pro-

gram is written so as to manipulate them appropriately. Some examples of

assertions are the following:

(COLOR GRASS GREEN)

(HOT SOUP)

(LOCATION PUMP-BASE (10 4 50)).

The second class of data items is procedural data in the form of theorems,

which typically state when they can be invoked and what their effects will

be. (PLANNER theorems are explained further in Articles VI.C3 and VI.C4.)

Assertions are explicitly added to the database by an ASSERT operation and

deleted by ERASE. They may also be added implicitly: Whenever an assertion

is added to or deleted from the database, it may trigger certain PLANNER
theorems to perform updating operations or consistency checks. More will be

said about these "antecedent theorems," or demons, in Article VI.C3. Theo-

rems can also be added and deleted in the database, but this is seldom actually

done by a PLANNER program.

CONNIVER

It is sometimes helpful to view CONNIVER as a restructured and extended

PLANNER (both are built on MACLISP). All the PLANNER data types are

carried over to CONNIVER, with three important additions:

1. possibility lists,

2. tags, and

3. context tags.

Possibility lists and tags are discussed in Article VI.C3. Possibility lists are

used during fetch operations on the database, and tags are used for jumping

C2 Data Structures 39

from one process to another in CONNIVER's generalized control structure.

Context tags designate contexts, which we discuss shortly.

The database facilities of CONNIVER are virtually identical to those of

PLANNER. Again, the database contains assertions and theorems (called

methods in CONNIYER) that are all assumed to be true and that are accessed

by pattern matching. The only important difference between the PLANNER
and CONNIVER databases is that CONNIVER's database is organized into

contexts.

The global variable CONTEXT holds the context tag of the current context.

By storing tags for other contexts and then reassigning CONTEXT to one

of them, the program switches its context. Context tags are generated by

standard functions like the following:

(PUSH-CONTEXT (context tag)) sets up a new context as a direct descendant

of (context tag) and returns a context tag

representing it.

(POP-CONTEXT (context tag)) returns a context tag representing the direct

ancestor of (context tag).

CONNIVER has the most fully developed context mechanism of the lan-

guages discussed here. Some context mechanisms were implicitly present in

PLANNER but were tied to the backtracking control structure and were inac-

cessible to the programmer. CONNIVER made them explicit and also per-

mitted general switching from any node on the context tree to any other,

which is more general than the strict hierarchical movement done during

PLANNER deductions. In terms of search methods described in Chapter II (in

Vol. i), CONNIVER programs can execute a breadth-first or best-first search

(or any other kind), whereas PLANNER programs are constrained to a depth-

first search.

QLISP

QLISP has a wide range of data types. All the data types of INTERLISP
are available in QLISP: integers, reals, strings, lists, pointers, arrays of any of

the previous types, and records with fields of any of the previous types. And
the user can define new data types.

The unique data types that QLISP provides are TUPLE, VECTOR, BAG,

and CLASS. The names are a bit confusing. VECTORS correspond to what we
called tuples in the introduction to this chapter—lists of fixed length. QLISP

TUPLES are just like VECTORS except that their first component is a function.

A CLASS is a set, that is, an unordered collection of distinct elements. A BAG
is like a set except that it may contain more than one copy of an element.

For two QLISP objects to be equal, they must be of the same data type and

40 Programming Languages for AI Research VI

have the same components. In the case of CLASS and BAG, the order of the

components does not matter. Here are some examples:

(TUPLE FA) 7^ (VECTOR F A)

(VECTOR ABC) ^ (VECTOR B A C)

(CLASS B C A) = (CLASS A B C A)

(BAG A A B C) = (BAG C A B A) ^ (BAG ABC)
(BAG C A) 7^ (CLASS C A)

(BAG B (CLASS C A B C) A A) = (BAG B A (CLASS C A B) A)

Every datum stored in the database is first transformed to a canonical

form, such that any two data that are theoretically the same, for example,

(BAG B A A C) and (BAG C A B A) , will map onto the same canonical represen-

tation, in this case, (BAG A A B C). Pattern matching is greatly simplified

by this. In theorem proving, for example, a BAG is the natural representation

for the operands of functions such as PLUS, where repetition is important but

order is not. QLISP easily can prove that (PLUS (BAG A B C D)) is equal to

(PLUS (BAG C D B A)) by canonicalizing the BAGs, since the two expressions

then become identical.

Canonical representation also allows QLISP to make use of two unique

database methods. First, the entire database is stored as a discrimination

net (see Article XI.D, in Vol. III). Only the canonical forms are put in the

net, making it feasible to search the database in a uniform top-down manner.

Retrieval in general, and especially pattern matching, is thereby simplified.

QLISP, unfortunately, stores every subexpression of an item as a separate item

in the discrimination net and suffers from excessive use of space.

Second, since every object is uniquely represented, a property list just

like that attached to atoms in LISP can be attached to every object in the

database. In LISP, only atoms are uniquely represented and only atoms can

have a property list. Here is a QLISP property statement:

(QPUT (TUPLE PH0NE-NUMBER-0F MIKE) LENGTH 7) .

This sample statement adds a TUPLE representing Mike's telephone number to

the database, if it is not already there, and says that the LENGTH property of

the number has the value 7. Object properties provide an elegant solution to

the problem, from which PLANNER and CONNXVER suffer, of being unable

to distinguish the mere presence of a statement in the database from its truth.

In QLISP, truth or falsity is indicated by setting the MODELVALUE property

of a statement to be T or NIL. Thus, to claim it is true that grass is green,

one executes

(QPUT (VECTOR COLOR GRASS GREEN) MODELVALUE T)

.

For automatic inference and updating of the database, IF-ADDED and

IF-REMOVED demons similar to those of PLANNER and CONNrVER are avail-

able in QLISP. Context mechanisms for QLISP were inherited from QA4,

C2 Data Structures 41

an ancestor of QLISP, where they were developed independently of those of

CONNIVER.

SAIL

SAIL has three categories of data types. First, there are the types inher-

ited from ALGOL—integers, reals, Booleans, strings, and arrays. Second,

the user can define record types, in which the components of a record are

specifiable as any of the above types or as some record type. Records are

especially important in AI applications in SAIL because they can serve as

buUding blocks for list structures. The CONS cell of LISP is essentially a record

with two components (CAR and CDR), whereas SAIL records can have any

number of components. More general list structures can be built. However,

the LISP approach has the advantage that standard functions are available for

searching lists, deleting from lists, appending lists, and so forth; in SAIL, these

must be defined by the user. The third data category is the most interesting,

namely, the items of SAIL's associative-database mechanism.

Items were the major feature of the earlier LEAP language, which was

incorporated into SAIL (Feldman et al., 1972). The motivation for LEAP was

to implement an efficient software scheme for associative processing, or the

accessing of data by partial specification of its content rather than by the

address of the storage location it happens to reside in. An item is either a

primitive identifier (atom) or a triple of items. Triples are formed by the

association of three items:

Attribute (g) Object = Value

.

Here are examples of associative triples:

COLOR (g) MARS == RED

CLASS (g) RED == COLOR

SATELLITE (g) MARS == PHOBOS

SATELLITE (g) MARS = DEIMOS

Notice that items are not restricted to any one position in associations, nor

does the value have to be unique. In fact, the labels "Attribute," "Object,"

and "Value" are mere conveniences with no special significance. Associations

can themselves be items:

DISCOVERER (g) [COLOR (g) MARS = RED] = ANONYMOUS.

Associations are created and removed from the global database by the state-

ments:

MAKE (itemi) (g) (iteni2> = (items)

ERASE (itemi) (g (item 2) = (item3)

42 Programming Languages for AI Research VI

Associations in the SAIL database are triply indexed and can be retrieved

quite efficiently. (Retrieval statements are explained in Article VI.C4.) There

are no facilities for automatic updating or consistency checking for the SAIL

database.

POP-2

POP-2 has a quite rich collection of data types. Many of them are

standard special cases of more general types, as indicated below. For example,

the POP-2 data type STRIP is a sequence of elements of any type, and the

data type STRING is a STRIP of CHARACTERS. Specializations of the RECORD
data type include POINTER, ATOM, and ORDERED PAIR (like the LISP CONS
cell). And the POP-2 ARRAY data type is a specialization of the FUNCTION
data type (conceptually an array, as a function from the index to the element).

Data types are classified as simple and composite. Integers, Booleans, reals,

pointers, and atoms are simple; the rest are composite. User-defined data

types are allowed.

POP-2 has the helpful property (for clarity and ease of programming) of

treating all data types in a uniform way. Data of any type can be

—

1. used as the actual parameters of functions,

2. returned as the results of functions,

3. assigned to variables of their type, or

4. tested for equality.

Components of composite data types are always accessed by four kinds of

functions, illustrated below for the type LIST. In the case of user-defined types,

the user must supply the four kinds of functions. Note that the destructor

function shown here produces two outputs. In general, POP-2 functions can

produce multiple outputs. Also note that the selector and the updater have

the same name.

Kind of function For lists

constructor cons(x, (y z)) = (x y z)

destructor dest((x y z)) = x, (y z)

selector hd((x y z)) = x, tl ((x y z)) = (y z)

updater hd(MY-LIST) <- x, tl(MY-LIST) <- (y x)

Now MY-LIST = (x y x)

.

Associative database and context facilities are not part of the basic POP-2
language, but some facilities are available in POP-2 libraries.

C2 Data Structures 43

FUZZY

Much like PLANNER, the programming language FUZZY maintains a

database of assertions. However, FUZZY assertions include a Z-value indicat-

ing the degree of certainty, for example, ((CHANCE OF RAIN) . 0.30). FUZZY
maintains an associative network of assertions quite similar to that of PLAN-
NER and CONNIVER. Any arbitrary LISP list structure may be entered into

this net. In addition, an assertion may have a Z-value associated with it,

if desired. The Z-value of the assertions can be used to control success and

failure of retrieval or subsequent actions.

FUZZY has a context mechanism that activates and deactivates associative

nets of assertions. It is also possible to save the state of the entire system

in order to allow for later restoration. Functions are available to compute

differences between states and to add differences to a state. State changes can

be set, if desired, so that they cannot be undone by a subsequent restoration.

This feature is useful to control backtracking. Several FUZZY primitives exist

in backtrackable and in finalizing versions to give the programmer easy control

over the global control mechanisms.

Summary

Data types. The languages vary considerably in the number and kinds

of data types they offer. Basic LISP is at one extreme: It began with exactly

one data type, with a few supplementary ones added later. Advantages of

a sparse set of data types accrue mostly to the writers of LISP compilers

and interpreters, whose job is simplified because there are fewer operations

and less need for type conversion. Also, the relatively small compilers and

interpreters that are produced help conserve available core space. From the

user's point of view, however, there is little to recommend such a small set of

data types, except that it (almost) removes the need for type declarations.

Later versions of LISP, such as INTERLISP and MACLISP, and to an even

greater extent the languages QLISP and POP-2, have provided rich sets of

data types and the access functions that go with them. Programming is

easier because the data structures can more closely mirror the programmer's

ideas, and type checking becomes available. Efficiency is improved because

the standard data types can be implemented closer to the machine level than

equivalent structures built of more primitive units. For example, a SAIL or

POP-2 record uses fixed-offset fields and avoids the overhead of the pointers

needed in an equivalent LISP list structure.

A related issue is whether to allow user-defined data types. The advan-

tages are similar to those of having many data types, but when user-defined

data types have been allowed, as in POP-2, they have not found great utility.

Probably the main reason is simply the extra effort required from the user

44 Programming Languages for AI Research VI

(who has to define all the primitive operations on each new data type). User-

definable data types also result in "unique" programs that other people may
have difficulty understanding.

Large database facilities. Database facilities were present in a crude

form in the LISP property-list feature. The next level of complexity is rep-

resented by the multiple-index scheme of SAIL associations. Next above the

use of fixed-form associations is the structural pattern-match as a general

retrieval mechanism, found in PLANNER, CONNIYER, QLISP, and FUZZY.

Appropriate retrieval is somewhat hampered in PLANNER and CONNIVER,
however, because they cannot attach properties to assertions as QLISP can.

PLANNER also keeps the possibilities lists hidden from the programmer, who
always has to operate at the goal level even though it may be inefficient to

do so.

Context mechanisms. Context mechanisms may also be arranged in

a loose ordering of complexity, starting with the scoping rules that virtually

all languages have. These provide a new context whenever a new function or

block is entered and restoration of the previous context upon exit. This basic

level of context manipulation is extremely useful in programming practice.

Next comes the ability of a program to PUSH and POP contexts on demand,

whenever they are needed, rather than in rigid correspondence to the structure

of the program. In both these forms, the contexts existing at any given time

are simply those in the direct line from the global context down to the current

context. CONNIVER is more advanced and allows a whole tree of contexts

to exist, with freedom for the program to SPROUT new contexts below any

existing context and to jump around arbitrarily between contexts.

To sum up very briefly, LISP introduced a simple and flexible data type

and a way to represent functions as data. PLANNER introduced the general

associative database, and CONNIVER improved it by the addition of contexts.

QLISP and FUZZY increased the power of the database by defining special

data types and putting everything into a discrimination net. SAIL went

in another direction, developing an efficient multiple-index scheme. Finally,

POP-2 showed how a wide range of data types can all be treated in a clear

and uniform way.

C3. Control Structures

THE MOST IMPORTANT of the AI control structures we discuss in this article

is coroutining. The central idea here is to relax the strict control hierarchy

found in most languages (including LISP), in which every procedure runs for

a while, then returns control to the procedure that called it, and vanishes.

Coroutines are procedures that can pass control to any other coroutine and,

furthermore, can suspend themselves and continue later. To make these

concepts more precise, we need some new terminology.

First of all, it is loose terminology to talk about procedures or coroutines

suspending or vanishing; a procedure is a piece of code. To draw the dis-

tinction, an instantiation of a procedure, a copy of the code that is actually

running, will be called a process. For a process to suspend, its current state

must be saved—that is, the current values of its variables and the point at

which to resume execution. There is initially only one process, and it can

create new processes. Once created, a process can be in one of three states:

running, suspended, or terminated. If control is transferred to the process

when it is created, it is running; otherwise, it is suspended. A running process

can resume or activate some other process, that is, pass control to the other

process, causing itself to suspend. While a process is suspended, its state is

preserved but nothing happens. A running process can also terminate as it

passes control to another process.

Bobrow and Wegbreit (1973) provide a formal, clear model for general

coroutining in terms of stack frames, a construct that has the advantage of

being efficiently implementable in current machine architectures. Their model

unified the various types of procedural interconnections seen in previous AI

languages (e.g., recursion, coroutines, generators, FUNARGs, FUNVALs). Each

process is represented by one stack frame, which contains the process state

and links indicating where control was passed from and where the values of

free variables are to be obtained.

The generator is a common specialization of the coroutine. Generators

are used when a potentially large set of results may be produced by a function

(e.g., one that looks for matches in a database) but only a few of these are

needed at a time. A generator is a coroutine that runs until it produces

one item and then suspends itself. When a process needs another piece of

information, it resumes the generator. A generator always returns control to

the routine that activated it. This continues until there are no more items to

produce, and the generator terminates.

In a coroutining regime, only one process is running at any given time.

There can be a considerable amount of communication and cooperation

between processes, but it is rather awkward, since process A must suspend

itself in order to pass information to process B. In a multiprocessing regime,

45

46 Programming Languages for AI Research VI

many processes can run at once and freely pass messages back and forth.

SAIL is the only language covered here that allows for multiprocessing, and

its facilities are primitive. With the declining cost of computation, however,

there is increasing interest in models for parallel communicating processes (see

Hewitt, 1977; Kornfeld, 1979; Kornfeld and Hewitt, 1981; Smith and Davis,

1981).

Coroutining and multiprocessing only provide more flexibility in the flow

of control, without alleviating the problem of determining where control is

to flow. The most common programming-language facility for directing the

flow of control is the conditional statement (e.g., an IF or CASE statement),

which chooses one of a few predetermined directions. Some AI programming

languages introduce the much more powerful method of pattern- directed invo-

cation, described in Article VI. C4.

Another important control concept is the demon. Implementations differ,

but, in concept, a demon is a kind of suspended process that "waits" for a

certain kind of event to occur (e.g., a certain kind of update operation on a

database). When such an event occurs, the demon is activated automatically,

performs its job, and either terminates or suspends in wait for the next event.

Typically, demons are used to make inferences as new information comes

in, to perform bookkeeping tasks of some kind, or to recognize important

occurrences.

LISP

Basic LISP lacks any coroutining or multiprocessing facilities. The LISP

control structure is suited to AI programming mainly by its emphasis on

recursion (see Article VI.B). Recursion allied with LISP's dynamic scoping

rule allows functions to be used by other functions in a context-free manner:

A function's behavior depends only on its arguments and the values that its

free variables have when it is called; the context in which the function was

originally defined is not significant. Furthermore, any function is allowed to

call any other function. This freedom makes it easier in many cases to put

together separate modules to form an AI system.

The FUNARG mechanism of LISP permits functions to be used in a context-

dependent or history-dependent way when desired. A FUNARG is a call to a

LISP function together with an environment, or context (see Article VI.C2),

for the variables used by the function. For example, FUNARGs can be used to

implement generators: Suppose we tried to write a generator as an ordinary

LISP function. We would define a function that generates just one item each

time it is called and changes the state of the generation process by updating

a free variable. Here is such a generator for squares of numbers:

NextSquare: (LAMBDA NIL

(PROG NIL

(SETQ N (ADD1 N)

)

(RETURN (TIMES N N)))) .

C3 Control Structures 47

NEXTSQUARE uses the free variable N to hold the state of the generation. If

initially N = 3 and we call NEXTSQUARE repeatedly, we will get the sequence

16, 25, 36, ...

However, NEXTSQUARE is not really a generator. It is not an independent

process, because if any function happens to use a variable called N locally and

calls NEXTSQUARE, then NEXTSQUARE will use the local value of N and the

sequence will be disrupted. A true generator results when we construct a

FUNARG, say, GENSQUARE, which consists of the function NEXTSQUARE and

a pointer to an environment (in which N has some initial value, say, 3). If

we repeatedly evaluate (GENSQUARE), we get 16, 25, 36, ... as before, only

GENSQUARE always uses that N which is in its specified environment and

so is unaffected by local versions of N. In general, FUNARGs act much like

coroutines; they "activate" when their function is called and "suspend" when
it exits. Unlike general coroutines, FUNARGs always return control to the

function that called them.

PLANNER

While CONNIVER has a control structure very much like that of LISP,

with the addition of full coroutining facilities, PLANNER extends the LISP

control structure in a completely different direction. PLANNER is somewhat

like a backtracking version of LISP—functions call each other recursively as in

LISP, but when a function fails (returns NIL), it is automatically called again

using the next possible value of the argument. This continues until either the

function succeeds or all arguments have failed.

The control structure of PLANNER is very interesting. The important

point to keep in mind is that PLANNER is always goal directed. Functions are

invoked because they might possibly cause a goal to be satisfied, not because

some other function called them. PLANNER functions simply do not call each

other; they just state a goal and the system chooses functions to apply toward

that goal.

A rather strong analogy may be drawn to the control structure of GPS
(Article II.D2, in Vol. i). Both systems completely separate domain-dependent

information from the control structure and employ a uniform depth-first

search to solve problems. In both systems, the problem is represented by

a goal to be reached or established. The starting point is different, however;

GPS is given a single initial object (which may be thought of as the initial state

of the world) that it then tries to transform into the goal object. PLANNER
is given a whole database of facts and tries to prove that the goal follows from

them.

Thus, although GPS's paradigm is actions on the world and PLANNER'S
is theorem proving, the actual methods they use are quite similar:

1. Each first will check to see if the goal is equal to the initial state (or

some fact in the database). If not, GPS looks for an operator that will

48 Programming Languages for AI Research VI

reduce the difference between the goal state and the initial state, and

PLANNER looks for a theorem that can prove the goal from the database.

2. Each then sets up subgoals. For GPS, the subgoals are (a) to transform

the initial state into a state to which the chosen operator can be applied

and (b) to transform the result of the operator into the goal. The whole

GPS method is applied recursively to these two subgoals. PLANNER
theorems can set up any number of subgoals, namely, whatever facts

must be established before the theorem will imply the goal. Again, the

whole PLANNER method is applied recursively to each subgoal.

3. If at any point a subgoal fails, both GPS and PLANNER will backtrack

and try to apply a different operator or theorem.

4. The net result is a depth-first search of an AND/OR tree (OR nodes

wherever there is a choice of operators or theorems, AND nodes for the

subgoals induced by each operator or theorem).

In addition to the goal-directed or consequent theorems, PLANNER pro-

grams can have antecedent theorems, which are a type of demon that triggers

when facts are added to the database or deleted from it. (GPS has nothing

analogous.) Demons can modify the database in arbitrary ways, generally

filling out implications of a new fact or doing some kind of bookkeeping.

Deductions that would have to be made anew each time a goal called for

them can be done just once by an antecedent theorem, as in the following

example.

Suppose a common goal is to establish that so-and-so is mortal. A conse-

quent theorem for this would read

(CONSE (MORTAL ?X) (GOAL (HUMAN <-X))) .

In other words, this theorem will establish that something is mortal if the

subgoal of proving that it is human is satisfied. Alternately, write the ante-

cedent theorem

(ANTE (HUMAN ?X) (ASSERT (MORTAL <-X))) ,

which watches for any assertions of the form (HUMAN . . .) to be added to the

database and then causes (MORTAL . . .) also to be added.

Here is a more extensive example of PLANNER in action. Suppose we

have a consequent theorem giving one set of conditions under which an object

can be deduced to be broken,

(CONSE (BROKEN ?X)

(GOAL (FRAGILE <-X))

(GOAL (HEAVY ?Y))

(GOAL (ON <-Y <-X)))
,

and a database containing the following assertions, among others,

C3 Control Structures 49

(HEAVY Jumbo)

(FRAGILE Violin)

(ON Jumbo Teacup)

(FRAGILE Teacup) .

Now let's see what happens when the following PLANNER program is exe-

cuted:

(GOAL (BROKEN ?V)) .

It will first scan the database looking for broken things and then use conse-

quent theorems to deduce that other things are also broken. The backtracking

search produces the tree shown in Figure C3-1.

(BROKEN ?V)

Match to Conse Theorem, v = x

No Match (FRAGILE—X)
(HEAVY ?Y)

(ON— X —Y)

X = Violin X = Teacup

(HEAVY ?Y)

(ON —Y Violin)

Y = Jumbo

(ON Jumbo Violin) No Match

No Match

(HEAVY ?Y)

(ON ^Y Teacup)

\
Y == Jumbo

(ON Jumbo Teacup)

Match

Succeed

Figure C3-1. A PLANNER execution tree.

50 Programming Languages for AI Research VI

PLANNER does pure depth-first search (see Chap. II, in Vol. i). In the

tree shown in Figure C3-1, search proceeds top to bottom and left to right.

Initially, the goal is to match or prove (BROKEN ?V) . This fails to match any

assertion in the database, but it does match the consequent theorem that is

illustrated. That theorem sets up three subgoals (FRAGILE, HEAVY, and ON).

These are processed in the same way, first matching (FRAGILE <-X) against

the database entry (FRAGILE Violin) and, when that choice eventually fails,

backtracking to match that clause against the other database fact, (FRAGILE

Teacup) . When all three clauses eventually get matched, control returns to

the original goal and the pattern ?V is bound to the value of X, namely, Teacup.

The goal (BROKEN ?V) has been satisfied by the deduced fact (BROKEN Teacup)

.

PLANNER control structure is actually not quite so rigid as pictured here.

There is a command that finalizes a certain portion of the control tree, so that

actions are not undone during backtracking. Also, there is a mechanism to

fall back to an arbitrary fail point (as opposed to the closest one). However,

the fundamental control structure is rigid depth-first search.

CONNIVER

PLANNER control structure was characterized by the use of three different

kinds of theorems and automatic backtracking. CONNIVER has exactly the

same three theorems, only it calls them methods—the IF-NEEDED, IF-ADDED,

and IF-REMOVED methods. Instead of automatic backtracking, the language

provides a set of primitive control elements out of which a programmer can

construct alternative control regimes, including, if desired, a PLANNER-like

backtracking scheme.

For example, rewriting the PLANNER consequent theorem from the exam-

ple above as a CONNIVER IF-NEEDED method (see Article VLB for help with

the LISP code), we get the following:

(IF-NEEDED (BROKEN ?X)

(PROG (Fragiles Y Heavies Copy-Heavies)

(CSETQ Fragiles (FETCH '(FRAGILE ?X)))

(CSETQ Heavies (FETCH (HEAVY ?Y))

)

0UTERL00P

:

(TRY-NEXT Fragiles ' (ADIEU)

)

(CSETQ Copy-Heavies Heavies)

INNERL00P

:

(TRY-NEXT Copy-Heavies '(GO '0UTERL00P))

(IF (FETCH '(ON <-Y <-X)) THEN (NOTE '(BROKEN <-X)))

(GO 'INNERL00P))) .

A problem with the PLANNER-language solution was its repetition of

the search for heavy objects each time a new fragile object was being tested.

C3 Control Structures 51

This was forced, because the automatic backtracking mechanism assumes that

later choices are dependent on earlier ones, even when, as in this case, they

are independent. In CONNIVER, the list of heavy objects can be fetched once

and used again. Accordingly, the first section of the program finds all fragile

objects and all heavy objects.

In the second section of the CONNIVER program, the generator statement

(TRY-NEXT Fragiles '(ADIEU)) grabs the next fragile object in the list and

binds X to it. The (ADIEU) is executed when there are no more fragile objects;

it causes the method to terminate.

In the third section, the inner loop scans through all heavy objects in the

same fashion, and each pair of a fragile X and a heavy Y is tested to see whether

Y is ON X, and if so, the method NOTEs this and moves on. Noting an item

involves adding it to a "possibilities list." That possibilities list becomes the

result of the IF-NEEDED method, after (ADIEU) is executed. Thus, the effect

of the method is to return a list of all deducible instances of (BROKEN ?V),

which will be just ((BROKEN Teacup)), assuming the same database as in the

PLANNER version of the example.

Unlike PLANNER, CONNIVER's possibilities lists are a separate data type

and may be manipulated by a user program. In many respects, CONNIVER
is like a PLANNER program in which implicit control and data structures

are made explicit and put under the control of the programmer. Greater

flexibility results, at the cost of longer and less organized programs.

CONNIVER allows general coroutining. As one application, a program

can be written to do breadth-first or best-first search; PLANNER, you will

recall, always does depth-first search (see Chap. II, in Vol. i). Another use

of coroutining is the implementation of generators. The broken-object finder

above can be turned into a generator simply by adding (AU-REVOIR) after

(NOTE (BROKEN <-X)) . AU-REVOIR is the CONNIVER function that suspends

the current process and resumes whichever process called it. Now each time

the method is called, it finds one broken item, produces it, and then suspends.

The advantage of this technique is that the calling process can ask for broken

items only as it needs them, and the generator may not have to find them all.

QLISP

The GOAL statement in QLISP works like the one in PLANNER, first

searching the database to try to match the pattern there and then invoking

consequent theorems (IF-NEEDED methods) to try to derive it. Automatic

backtracking takes place whenever one of the theorems fails. The main

difference is that in QLISP the consequent theorems to be tried must be listed

explicitly in the GOAL statement itself. For instance:

(GOAL (MORTAL Socrates) APPLY Grim Reapers) .

52 Programming Languages for AI Research VI

Grim Reapers would be the class of theorems, which might include theorems

similar to the PLANNER consequent theorem we saw before to establish

Socrates' mortality: (CONSE (MORTAL ?X) (GOAL (HUMAN +X))). It is called an

APPLY team. (In PLANNER, the APPLY team for every goal is the set of all

known theorems.) Database operations may also have APPLY teams, which

take the place of the IF-ADDED and IF-ERASED demons of PLANNER and

CONNIVER.

SAIL

The most interesting feature of SAIL's control structure is its multi-

processing capability, something none of the other languages covered here

has. The designers of SAIL wanted to allow parallel exploration and coopera-

tion by problem-solving processes (Feldman et al., 1972). There was also the

need, imposed by address-space limitations, to split large hand-eye systems

in robotics into multiple communicating processes.

Multiprocessing is implemented within the ALGOL-like block structure of

SAIL. Any process (an invocation of a SAIL procedure) can SPROUT another

process. The standard ALGOL scope rules are followed just as if the new
process were started by a procedure call; thus, related processes are automati-

cally able to share a common database. The JOIN primitive suspends a process

until other processes (named in the JOIN statement) have terminated, at which

point the first process resumes execution. JOIN is used as a synchronization

primitive, as shown in the following example:

SPROUT (PI, GRABCHAND1. HAMMER));

SPROUT (P2, GRAB(HAND2, NAIL));

JOIN (PI, P2);

POUND (HAMMER, NAIL);

The variables Pi and P2 hold the (unique) names assigned to the new processes.

The names are used to identify processes in later commands.

Interprocess communication is handled by a "mail" system implemented

as a message-queuing system. The mail is delivered (whenever possible) by the

process scheduler. Processes can simply check for messages as they go along

or they can place themselves in a queue while waiting for an appropriate

message. Using the first method, the robot's grab-hammer process could

inform the grab-nail process about the movements of the arm and hammer,

so the grab-nail process could avoid a collision with the other arm.

Demons can be implemented by means of the second message-passing

scheme. To set up a demon, a process is created that immediately places itself

in a queue waiting for a certain kind of message that is sent out whenever a

C3 Control Structures 53

database update is done. Demons that are waiting for such a message will be

activated, simulating a direct activation of demons by the database update.

Coroutining is a special case of multiprocessing, in which only one process

is active at any time. The coroutining primitives CREATE, TERMINATE,

ACTIVATE, and SUSPEND can all be implemented using SAIL's message-passing

mechanism.

POP-2

The POP-2 control structure is much like that of LISP. The basic language

is very simple, partly in the interests of fast compilation, and contains none

of the specialized AI control structures found in PLANNER, CONNIYER,
and QLISP. Some of these features, including coroutines and multiprocessing

primitives, are available in POP-2 libraries. The POPLER library (Davies

et al., 1973) implemented the spaghetti stack, backtracking, database demons,

and pattern matching in the manner of PLANNER.
The basic POP-2 language does provide for the use of generators to

construct dynamic lists. The programmer defines a function of no arguments,

say, F, and applies the POP-2 function FNTOLIST to F. The result is the list

LF of values that F produces on successive calls. Of course, F has to read

and change a free variable, representing the state of the generation, or else

every element of LF would be the same. Now comes the interesting part. The
program can operate on LF just as on ordinary (static) lists. But, in fact, LF

is not all there; it starts empty and new elements are added onto the back of

it only as needed. This means that LF can be conceptually very large or even

infinite, and it does not matter so long as only the initial part of it is used.

Dynamic lists allow the programmer to abstract away from the details

of how a list is produced, whether it is computed once and for all or is

extended when needed. Similarly, the memo function allows abstraction from

the details of how a function is computed. Memo functions are provided by

one of the POP-2 libraries. The name comes from the notion that a function,

if it is called several times with the same argument, would do better to "make

a memo of it" (the answer) and store it in a lookup table.

FUZZY

FUZZY procedures have a more general global-control mechanism than

PLANNER theorems have. The procedure demons are given control not

only upon failure of an expression (as in MICRO-PLANNER) but also after

successful termination of a top-level expression. This makes it possible to

evaluate globally the results returned by the expressions of a procedure.

With each procedure a variable is associated that maintains an "accumulated

Z-value" for the demon's calculations. The procedure demon is called a

last time when the procedure is exited in order to make any necessary final

computations (e.g., concluding statistics).

54 Programming Languages for AI Research VI

There are several levels at which information is accessed in a knowledge

base:

1. Explicitly available information is requested.

2. An explicit procedure is invoked to retrieve the desired information.

3. A goal is specified and the system is left to decide how to achieve it.

All three methods are possible in FUZZY:

1. The FETCH statement retrieves assertions that are explicitly stored in

the associative net by pattern matching.

2. FUZZY procedures can be called by name.

3. If FUZZY procedures have been stored in the associative net, they can

be invoked by pattern matching through the DEDUCE statement. This

relieves the programmer of keeping track of which particular procedures

may be used to achieve a certain task and allows the easy addition of

new procedures to the associative net that can be utilized automatically

by existing programs without change.

4. The GOAL statement combines the FETCH and DEDUCE statements.

It first checks whether the desired information is explicitly available in

the net of assertions. If it fails, it then attempts to deduce the goal by

invoking DEDUCE procedures that match the specified pattern.

In addition, FUZZY supports ASSERT and ERASE procedures, which are

invoked automatically when assertions of corresponding patterns are added

and removed, respectively, from the associative net.

The following program illustrates how FUZZY may deal with both vague

and incomplete information. The vagueness is expressed here by Z-values

associated with assertions. Incomplete information in this example is mani-

fested by the absence of useful assertions. This "missing information" does

not force the procedure into failure, but rather lowers the confidence in the

result obtained by the procedure:

=== NET ===

((CHANCE OF RAIN) .0.8)
((DRYNESS DESIRED) .0.7)

((BLUE SKY) .0.4)

=== DEDUCE ===

(PROC NAME: UMBRELLA DEMON: CONFIDENCE (RAIN PROTECTION)

(BIND ?SK (FETCH ((*0R CLEAR BLUE) SKY)))

(BIND ?BU (FETCH (BURDENSOME UMBRELLA)))

(BIND ?DD (FETCH (? DESIRED)))

(IF (ZAND THRESH: 0.9 (ZNOT !SK) !DD !BU)

THEN : (SUCCEED @ " STAY HOME !

"

)

ELSE: T)

(BIND ?CR (FETCH (CHANCE ??)))

C3 Control Structures 55

(IF (MINUSP (DIFFERENCE (PLUS (ZVAL !CR) (ZVAL !DD))

(PLUS (ZVAL !SK) (ZVAL !BU))))

THEN: (SUCCEED ©"DON'T TAKE UMBRELLA" ZACCUM)

ELSE: (SUCCEED @"TAKE UMBRELLA" ZACCUM)))

(DEFPROP CONFIDENCE

(LAMBDA (RESULT THRESHOLD C-LEVEL)

(COND [(EQ RESULT FAIL) (COND [(*GREAT C-LEVEL 0.25)

(DIFFERENCE C-LEVEL 0.25)]

[T (FAIL)])]

[(EQ RESULT DONE) C-LEVEL]

[(LESS (ZVAL RESULT) THRESHOLD) (FAIL)]

[T C-LEVEL]))

EXPR)

(; RESULT = result of last top-level expression

THRESHOLD = criterion for forcing procedure to fail

C-LEVEL = current confidence level)

The program listing includes the associative net, containing some declara-

tive knowledge about a potential umbrella carrier and his situation. Next is

the procedural associative net containing a DEDUCE procedure to give advice

whether or not to carry an umbrella in a given situation. Finally, there

is a LISP procedure that is used by the DEDUCE procedure UMBRELLA as

a procedure demon. The procedure UMBRELLA uses assertions and their

modifiers to calculate the projected payoff for carrying an umbrella. The
demon CONFIDENCE watches this calculation and determines a confidence

measure for the result obtained by UMBRELLA. This is done as follows.

UMBRELLA looks for four types of assertions in the associative net:

1. information about the blueness or the clearness of the sky,

2. information about the burden of carrying an umbrella,

3. information about a desired goal that can be satisfied with an umbrella,

and

4. information about the chance that an event would occur that would

make an umbrella desirable.

The most reliable advice can be given by UMBRELLA if all four pieces of

information can be found. If a piece of information cannot be found (i.e., if the

corresponding FETCH returns FAIL), the demon reduces the confidence level

ZACCUM, which is returned as the Z-value of UMBRELLA. Observe that the

Z-value can be used in a single program to do different kinds of qualifications.

Summary

In the chronological sequence PLANNER, CONNIVER, QLISP, we observe

an increase in the variety of control structures and in the programmer's access

56 Programming Languages for AI Research VI

to them. This development seems to address two major needs: to concisely

express powerful control techniques and to make complicated programs as

efficient as possible. PLANNER took a giant step in the direction of increased

power by shifting the entire domain of discourse in which programs are written

from the imperative level (do this, then do that, etc.) to the level of goals. The

programmer formulates problems in terms of goals that are to be established,

writing "theorems" that reduce a goal to subgoals, and sets the automatic-

deduction mechanism going. This approach suffers from the inefficiency of

its central method, automatic backtracking, and the inability of the user

to remedy this by expressing himself at the imperative level on occasion.

Automatic backtracking in PLANNER is convenient if the user has absolutely

no good idea of how to guide the program.

CONNIVER was developed largely in response to these problems. Sussman

and McDermott (1972) argue the following points against PLANNER and for

CONNIVER:

1. Programs that use automatic backtracking often result in the worst

algorithms for solving a problem.

2. The most common use of backtracking can almost always be replaced

by a purely recursive structure that is not only more efficient but also

clearer, both syntactically and semantically.

3. Superficial analysis of problems and poor programming practice are

encouraged by the ubiquity of automatic backtracking and by the illu-

sion of power that a function like GOAL gives the user merely by brute-

force use of invisible failure-driven loops.

4. The attempt to fix these defects by the introduction of failure messages

is unnatural and ineffective.

CONNIVER retreats to the imperative style of programming with some

automatic-deduction primitives kept on, namely, the three kinds of theorems

or methods. In addition, it gives the user the flexibility implied by coroutines,

which permit techniques like breadth-first or depth-first search to be expressed

conveniently.

QLISP reintroduces automatic backtracking, but as optional and under

restrictions (that the consequent theorems to try must be named as a team).

Over all, it includes practically every control structure found in PLANNER or

CONNIVER.
All three of these LISP-based languages rely heavily on pattern matching

to guide the flow of control. The basic technique is pattern-directed invoca-

tion, in which the function to execute next is chosen by its match to a pattern

in the database. A problem here is that, in current schemes, there is little

information passed between the alternative functions that match in a given

situation. It seems plausible that cooperation and sharing of information

between the different functions attempting a goal might be better. This is

C3 Control Structures 57

part of the idea behind SAIL's message-passing, multiprocessing primitives

(see also Article V.Cl, in Vol. i).

Davis (1976) discusses and compares several control schemes in the context

of his own program, TEIRESIAS, which uses strategy rules to decide how to

sequence the application of other rules (Article VII.B). One major dimension

along which control schemes vary is the degree of data-drivenness. In the usual

calling-hierarchy scheme, conditional statements (and loop tests) interrogate

a single data value and select from a few predetermined paths depending

on the value. In the most complex control scheme, the decision about what

to do next would be "reasoned about" with the full power of the problem

solver, considering all of the data available. The control activities offered in

AI programming languages explore the possibilities between these extremes.

References

The book Pattern-Directed Inference Systems by Waterman and Hayes-

Roth (1978) is a good place to begin.

C4. Pattern Matching

PATTERN-MATCHING FACILITIES are supplied in AI programming lan-

guages for two major tasks: finding entries in a database and choosing which

procedure to execute next. Pattern matching can be viewed as a form of

content addressing: In most computer languages, a datum has to be accessed

by its name, for example, the name of a variable. The general idea of content

addressing is to eliminate this need for arbitrary names of things and to access

an item of data by specifying its form (or meaning) instead. A pattern, such

as ((FATHER-OF ?X) ?Y) , is used as a kind of sketch of the datum being sought

in the database and "matches" against stored items like ((FATHER-OF MARY)

(FLIES KITES)) . Thus, the name or address of the stored information need

not be remembered. This is known as pattern- directed retrieval, or retrieval

by pattern match.

Similarly, patterns can be used to make less rigid control regimes possible

by eliminating the need to call specific procedures by name. In pattern- directed

invocation, described in Article VI. C3, the tests-and-branches form of program

control is replaced by associating each procedure with a pattern and then, at

decision points, matching them all against the current situation or goal to

determine which to execute next.

These techniques can relieve the AI programmer of a great burden: Modu-
larization of programs is much easier to accomplish because the programmer

does not have to specify which calls what, or what access path is taken to get

to an item in the database. Of course, a price must be paid—the overhead of

running the pattern matcher.

Typically, a pattern is a structure with variables embedded in it, and it

matches another structure if it could be made identical to that structure by

replacing its variables with some values. Occurrences of the same variable

must be replaced by the same value. For example, (A ?X C <-X) will match

(A B C B) but not (A B C D) , because once the variable ?X has been bound to

B in the match, it cannot then be bound to D. The power (and overhead) of

a pattern-matching facility is partly related to the types of pattern variables

that can be handled. Here are some common pattern-variable types, expressed

in terms of matching patterns in lists:

1. An "open" variable (?X) matches to any element of a list, and binds X

to that element.

2. A "closed" variable («-X) must have already been bound, as in the

example above, and matches only the value already bound to X.

3. A "restricted" variable may have arbitrary restrictions placed on it.

These restrictions are procedurally attached to the variable in some way,

58

C4 Pattern Matching 59

for example, as a predicate (Boolean function) that must be TRUE in

order for the variable to match.

4. Segment variables match to a sublist of any length, rather than to an

element. Open and closed segment variables are denoted ??X and «-«-X,

respectively.

To avoid confusion, the different kinds of pattern variables will always be

written ?X, «-X, and so on, ignoring the varying notations of the different AI

programming languages.

Some examples may clarify these ideas. Suppose we want to match the

form

iCA B (C A) B)

against the following patterns:

Pattern Match Bindings

?X yes X = (A B (C A) B)

(?X <-X (C A) B) no

(?X B (C <-X) B) yes X = A

(?X ?Y (C A) B) yes X = A, Y = B

(?X ?X (C A) B) illegal pattern

(A B ?Z B) yes Z = (C A)

(??X) yes X = (A B (C A) B)

(??X (<-<-X) B) no

(??X («-«-Y) B) yes X = (A B) , Y = (C A)

(A ??Z) yes Z = (B (C A) B)

(B ??Z) no

Typically, patterns are matched against forms that contain no variables. Some
systems, notably QLISP, allow for patterns to be matched against patterns.

LISP

As was the case in control-structure facilities, basic LISP has no pattern-

matching constructs. But, again, LISP does lend itself to implementing such

mechanisms, and it is appropriate to say a little about this.

Patterns typically take the form of nested structures, standing for a

mathematical formula, an assertion, or some kind of structured object, for

instance. These can all be uniformly represented in list structure in LISP,

as described in Article VI.B. Uniformity is a big advantage in that it allows

the same pattern-matching algorithm to be used for these different kinds

of objects. Pattern matching on nested structures is inherently a recursive

process, since the same matching engine is applied to each nested level; thus,

the central role of recursion in LISP is also helpful.

60 Programming Languages for AI Research VI

PLANNER

The big innovation in PLANNER was simply its more extensive use of

pattern matching compared to previous programming languages. Access to

the PLANNER database is exclusively by pattern-directed retrieval. Thus, the

goal pattern

(?X SOCRATES)

will match to a database assertion

(MORTAL SOCRATES)

and X will be bound to MORTAL.

As another application of pattern matching, PLANNER functions

(i.e., theorems) are always called through pattern-directed invocation. Conse-

quent theorems have an attached pattern that is matched to the current goal

and, if the match succeeds, the theorem is invoked. For example,

(CONSE (MORTAL ?Y) (GOAL (HUMAN <-Y))) .

With this consequent theorem, the goal (?X SOCRATES) , meaning roughly Tell

me something about Socrates, will match to the theorem's pattern (MORTAL ?Y)

,

meaning / can tell you when things are mortal, with the upshot that the theo-

rem establishes a subgoal (HUMAN SOCRATES). If it succeeds in proving this

goal, it returns (MORTAL SOCRATES)

.

Similarly, antecedent and erasing theorems (Article VI. C3) have attached

patterns, but these are matched against assertions that are being added to

or deleted from the database, rather than against goals. The same pattern-

matching method is used in all cases.

There is nothing particularly interesting about the implementation of

PLANNER'S pattern matcher. The implementors of MICRO-PLANNER delib-

erately chose the simplest scheme that would be adequate for their needs. The

matching is only one level deep—(?X (?Y Plato)) is not a valid PLANNER pat-

tern. (Full PLANNER, as opposed to the actually implemented sublanguage

MICRO-PLANNER, specified general tree matching, which is the same as

multilevel list matching.) For an extensive example of how PLANNER'S
pattern-matching facility is used, see Article IV.F4 (in Vol. i) on SHRDLU.

CONNIVER

CONNIVER uses pattern matching for the same purposes PLANNER
does, but it allows functions to be invoked directly (imperatively) as well as

through pattern-directed invocation. The pattern matcher is more powerful

than that of PLANNER. For one thing, it handles multilevel patterns like

(?X (?Y Plato)), which matches (MORTAL (TEACHER-OF Plato)). There is no

C4 Pattern Matching 61

restriction on the level of nesting. Second, while PLANNER and CONNIVER
patterns are LISP list structures, CONNIVER, in fact, allows patterns to take

the more general form of s-expressions (see Article VLB). For example, the pat-

tern (PLUS . ?X) will match to (PLUS 12 3 4), binding X to the list tail,

(12 3 4).

CONNIVER's pattern matcher can be applied independently to analyze

the structure of data using the MATCH statement. For example, the function

call

(MATCH ((FATHER-OF ?WH0) . ?WHAT) ((FATHER-OF FRED) WHISTLES DIXIE))

,

which contains the pattern and the data to which it is to be matched, binds

?WH0 to FRED and ?WHAT to (WHISTLES DIXIE)

.

So far, all the patterns we have shown contain just two kinds of objects:

variables that must match something and constants like FATHER-OF and PLUS.

CONNIVER adds flexibility by allowing variables that are assigned some con-

stant value before the match is done; the effect is as if the variable were

replaced by its value before the match begins.

QLISP

QLISP has by far the most powerful pattern-matching facility of the

languages covered here. There are three contributing factors:

1. The special QLISP data types, BAG, CLASS, TUPLE, and VECTOR, used

in patterns and data;

2. Segment variables;

3. A powerful unification algorithm.

Recall, from one of the examples of CONNIVER's pattern matching, that the

pattern (PLUS . ?X) will match to the form (PLUS 12 3 4), binding X

to the list tail (1 2 3 4) . Unfortunately, no such pattern will also match to

(PLUS 1 2 3 4) or (PLUS 4 3 2 10), even though that might be convenient.

LISP list structure forces a spurious ordering of the arguments. In QLISP, one

can rewrite the pattern as

(PLUS (BAG ??X))
,

where ??X is a segment variable. A segment variable matches to any number of

items, rather than a single one. Furthermore, the order of the items following

BAG is irrelevant (see Article VI.C2). Hence, this pattern will match to any of

the following objects:

(PLUS (BAG 12 3 4)) X = (BAG 1234)
(PLUS (BAG 10 2 3 4)) X = (BAG 1234)
(PLUS (BAG 4 3 2 10)) X = (BAG 4321)
(PLUS (BAG 0)) X = (BAG) .

62 Programming Languages for AI Research VI

The so-called QLAMBDA functions in QLISP have a pattern instead of

an argument list, much like consequent theorems in PLANNER. The QLISP

programmer can exploit the power of QLISP pattern matching to express

computations very concisely, as in these examples:

PlusZero: (QLAMBDA (PLUS (BAG ??X)) (PLUS (BAG $$X)))

PlusMinus: (QLAMBDA (PLUS (BAG ??X ?Y (MINUS ?Y))) (PLUS (BAG $$X)))

BothSets : (QLAMBDA

(TUPLE (CLASS ?X ??0THERS) (CLASS ?X ??YETOTHERS)) $$X)

.

PLUSZERO, if its pattern matches, has found a zero in the list of numbers to

be added and will return the PLUS without the zero. PLUSMINUS finds an

expression and its negative in the arguments and cancels them. BOTHSETS
finds an element common to two sets (called classes in QLISP) and returns

that element.

PLANNER and CONNIVER use pattern matching only in the contexts

of pattern-directed retrieval and pattern-directed invocation. The QLISP

programmer can call the pattern matcher directly, as well as use it implicitly

in retrieval and invocation.

In most pattern-matching applications, only the pattern contains vari-

ables; it is matched to a constant object. QLISP's unification algorithm gen-

eralizes this to a "merge," or unification, of two patterns, both containing

variables. The patterns unify if there is some substitution of values for vari-

ables such that the patterns become identical. For example, the pattern (A ?X)

unifies with (?Y B) under the binding X = B, Y = A. QLISP uses a unification

algorithm extended to handle its special data types and segment variables.

Most commonly, one of the patterns contains no variables and unification

reduces it to a standard match, but in some tasks, notably theorem proving

(Chap. XII, in Vol. Ill), it is necessary to match against objects, like mathe-

matical formulas, which themselves contain variables. (See Kahn, 1981, for a

more complete discussion of unification.)

SAIL

In SAIL, pattern matching is used only in database retrieval. The major

language construct for retrieval in SAIL is the FOREACH statement. Patterns

are composed from four types of expressions:

1. Associative triples such as X (g) Y = GREEN and MOTHER (g) ADRIAN = Z;

2. Restricted variables, using any Boolean function as the predicate;

3. Expressions of the form X £ A, where A is a set;

4. Matching procedures, which are essentially generators.

C4 Pattern Matching 63

These interact in a manner best shown by example:

FOREACH X, Y SUCH THAT X IN AnimalSet AND Gregarious (X) AND

Desert (Y) AND Range (g) X = Y DO PRINT (X);

The conjunctive conditions in the FOREACH statement are processed left to

right. In this example, a set-membership pattern is leftmost, so the system

chooses some X in the set AnimalSet. Then X is tested to determine whether it

satisfies the predicate GREGARIOUS (just a Boolean function). If GREGARIOUS
returns FALSE, another X in AnimalSet is chosen, but if it returns TRUE, the

process continues: The matching procedure DESERT generates a Y and the

database is checked to determine whether Range ®XeY. (If not, another

DESERT is generated by the matching procedure.) X-Y pairs that meet all

the conditions are passed on to the action part of the FOREACH statement

(following the DO), which in this case consists merely of printing X. The net

effect of this FOREACH, then, is to print out all gregarious animals that live

in a desert.

In general, a FOREACH statement can include any number of variables and

can have any number of conjoined conditions. The ordering of the conditions is

critical for efficiency; for instance, if we had put the triple Range (g) X = Y first

in our example, the FOREACH statement would first find all appropriate triples

in the associative database and then try each X-Y pair on the other conditions.

(A matching procedure, when its variable is already bound, behaves like a

Boolean function.) If the database includes a large amount of information

concerning the ranges of animals, this would be highly inefficient. (Note

that consequent theorems in PLANNER have a similar property, namely, that

the order in which subgoals are listed can drastically affect the number of

alternatives examined.)

POP-2

The basic POP-2 programming language does not have pattern match-

ing. As with POP-2 's control-structure features (Article VI.C3), the pattern-

matching facilities are provided by various library packages that implement

facilities similar to those in PLANNER, CONNIVER, and SAIL.

FUZZY

As in PLANNER and CONNIVER, a FUZZY variable is assigned a value

through pattern matching. For example,

(MATCH (?X ??Y) ((A B) CD))

64 Programming Languages for AI Research VI

binds the FUZZY variable !X to (A B) and !Y to (C D). A greater selection of

functions than in PLANNER and CONNIVER is available for restricting the

structure of the pattern or the set of items that can match successfully; for

example,

(*R ?0BJECT (FETCH (RED ! OBJECT)))

will only match an object that is known to be red.

Summary

Once again, in the chronological sequence PLANNER, CONNIVER, QLISP,

we see a general increase in sophistication of pattern matching and the range

of its applications. PLANNER patterns are used implicitly to fetch assertions

from the database and to choose a function (theorem) to invoke, but they

are limited in their structure and cannot be used explicitly to analyze the

structure of data items. QLISP patterns are, by comparison, very general,

and much of the language's power depends on them. They serve as a major

method for analyzing data, not just in the sense of extracting parts, but of

performing quite complicated tests and searches as well.

Not surprisingly, pattern matching is expensive. In almost any particular

case, the pattern-match algorithm will be more general than is really required,

implying that replacing it with ad hoc code would yield a speedup. When the

pattern contains segment variables (as in QLISP), the slowdown is especially

severe. In this connection, it is interesting to note that QLISP is termed

by its designers (Sacerdoti et al., 1976) a "language for the interactive devel-

opment of complex systems" with the explicit intention that once a QLISP

program works, the user can convert it to pure INTERLISP. This can even

be accomplished in stages in the QLISP environment, because QLISP and

INTERLISP can be freely mixed.

Some pattern-matching capabilities are not offered in any AI programming

language. For one thing, all current languages do exact structural matches. A
very desirable feature would be "best match" capability: Instead of matching

exactly or failing, the matcher would do the best it could and return infor-

mation on the points it could not find a match on (see Bobrow and Winograd,

1977, for speculations along this line).

C5. Programming Environment

THE PURPOSE of a programming environment is to help the programmer in

all phases of program development, from initial writing of the code through

modification, debugging, assembling of modules, and documentation—not

necessarily in that order. The principal limitation is feasibility. As will

become apparent, designing and implementing the programming environment

can easily be as much work as implementing the language itself.

Some AI programming languages have given rise to outstanding environ-

mental facilities. In part, this is due to the character of AI researchers them-

selves, who include some of the world's consummate "hackers." Furthermore,

the language implementors are in close contact with the language users—they

are often the same people. It is also true that the programs these researchers

have developed are particularly complex and difficult to manage.

AI programs tend to have certain characteristics that greatly influence the

practice of programming. Most obviously, they are big. As with other large

programs, designers and programmers usually try to break the system down

into several discrete "modules" that can be written and tested separately. It

often happens in AI programs that the modules will be heavily interdependent,

no matter how the breakdown of the task is done; the programmer then has no

choice but to write each module with the necessary flexibility for interactions.

Finally, since the development of an AI program is usually a research effort, the

program tends to be always in a state of flux, subject to frequent modification

and occasional major restructuring. In other words, in the course of his (or

her) research, an AI programmer may produce dozens or even hundreds of

variations of his system, looking for the effects of changes in both design and

implementation.

One programming style frequently used in AI projects emphasizes incre-

mental development, module by module. Each new module is added to what

already exists, and the expanded configuration is tested to see how it behaves

with the new module added. During incremental development, not-yet-written

modules may be simulated by a person interacting with the program. In other

cases, the system will run with only some of its modules (see, e.g., Article V.C1,

in Vol. I).

Another programming style, "structured growth," is described in Sande-

wall (1978):

An initial program with a pure and simple structure is written, tested, and

then allowed to grow by increasing the ambition of its modules. The pro-

cess continues recursively as each module is rewritten. The principle applies

... to the flexibility of the data handled by the program, the sophistication

65

66 Programming Languages for AI Research VI

of deduction, the number and versatility of the services provided by the

system, etc. (p. 60)

Sandewall notes that the classical structured-programming method of stepwise

refinement is not often used in Artificial Intelligence.

To sum up briefly, AI programmers must impose some workable organiza-

tion upon a large set of interacting modules, one that is flexible enough to

allow constant modification, correction, and growth of the system. The sup-

port provided by a good programming environment is essential.

In looking further at the question of why AI languages tend to have highly

developed environments, it is also significant that the programming-support

system of a language often resembles an AI system in its own right. It may
rely on a large database describing the program and consist of several modules

(editor, debugger, etc.) that interact strongly. Consider, then, the advantages

of developing environment facilities in an AI language, presumably the one

being supported.

Although one's wish list of programming-support features might be end-

less, the following list includes the most important ones:

1. An interactive language, that is, one in which statements can be typed in

as commands and are executed immediately. Compiler-based languages

are generally not interactive.

2. A good editor, if possible, one that can deal with a program according

to its structure as a program (not just as text composed of characters).

3. Interactive debugging facilities, that is, breaks, backtraces, and facilities

for examining and changing program variables.

4. Input/output routines. The most common input/output actions should be

specially supported by standard system input/output functions, so that

the programmer is not burdened with such details.

In the following discussion of the environments of individual languages, keep

these basic features in mind—not all of these languages have all the basic

features, and some go well beyond them.

LISP

Basic LISP lends itself quite well to various environment facilities. All

dialects of basic LISP have some environment features:

1. LISP is an interpreted language. This means that LISP is used naturally

in an interactive mode, which is itself a very important environment

feature. And since the support programs are also written in LISP, they

will be interactive. Interpreted languages are also easier to debug, since it

is the source program that is actually executed, rather than the relatively

opaque object program that results from compiling the source code.

C5 Programming Environment 67

2. The simple syntax of LISP programs and the standard representation of

programs in list structures have been pointed to as important features of

LISP for AI programs that involve the creation, inspection, and manipula-

tion of other programs. These features can be exploited by editing and

debugging routines, which, of course, must themselves manipulate pro-

cedures.

3. The flexibility of function calling in LISP makes it easy for environment

programs to call each other. For example, the debugger could call the

editor to insert or remove breakpoint statements.

4. LISP has an elementary database facility—property lists and association

lists—that is useful for storing information about user programs.

Almost any LISP system includes some debugging facilities and a scheme

for printing LISP programs with indentions for easier reading. (Because of

the rather difficult-to-read form of LISP functions in the usual embedded

list format with parentheses, a "pretty printing" facility is an important

programming aid.) The major LISP dialects, MACLISP and INTERLISP, are

certainly among the most highly developed programming environments ever

created.

INTERLISP

Although there are important differences in philosophy and performance

between MACLISP and INTERLISP, in practice, the two languages offer very

similar programming environments. For one thing, as was the case with the

development of the languages themselves, features that prove useful in one

system are copied over to the other. We discuss the major support facilities

of INTERLISP here; some of the differences between these two major dialects

were mentioned in Article VI.B.

The name INTERLISP stands for "Interactive LISP" and refers to a LISP

programming system that has been developing steadily for over 10 years,

both in language features and in programming-support facilities (see Masinter,

1981). The major environment features are mentioned here. INTERLISP is a

"residential" system: The facilities reside in core and can be called without

the user leaving LISP. Another important general point is that the facilities

are well integrated with each other (although, on occasion, this integration

can lead to unpredictable interactions and consequent difficulties; Sandewall,

1978, p. 51).

The INTERLISP editor operates directly on the list structure of programs

and data. It is itself a LISP function, or, more precisely, an assemblage of

functions. Thus, the user can define composite editor commands as macros

or even define editing macros that call arbitrary LISP programs. Conversely,

INTERLISP programs themselves can call the editor and give it commands.

68 Programming Languages for AI Research VI

INTERLISP's debugging package offers the standard facilities for breaking

and tracing functions. Upon an error break, a new read-evaluate-print loop

is entered, in which the user can ask for a backtrace or evaluate any LISP

statement (including statements to examine or change variables). An extensive

input/output file package is provided that assists in the difficult task of

keeping track of the many functions and modules in a typical LISP program.

In particular, the file package keeps track of which functions are being used,

possibly read in from several of the programmer's disk files, and automatically

updates the file copy of the code when the programmer edits a function in

core.

The "Programmer's Assistant" monitors and records all user inputs and

retains a history of the computation. For instance, the user can ask the

Assistant to repeat a command or undo the effect of one. The intended

impression is that of an attentive assistant who carefully watches what the

programmer is doing and can take over some of the repetitious tasks when

asked. The DWIM (Do What I Mean) facility attempts to figure out what

the programmer really meant to say when he typed in an uninterpretable

command; for instance, DWIM corrects spelling errors.

CLISP (Conversational LISP) is a set of convenient surface syntax con-

structs that are translated into ordinary LISP. It includes various abbrevia-

tions, a record package, a pattern-match compiler, algebraic notation, and

other things. (CLISP is actually implemented through the error-catching

mechanism of INTERLISP: Any input that cannot be recognized as LISP is

analyzed to see if it is valid CLISP before the system indicates that an error

has been made.)

PLANNER and CONNIVER

PLANNER and CONNIVER are interpreters written in MACLISP and

have access to some of the MACLISP programming-support facilities. Neither

system has been fully implemented or used extensively, so relatively little work

has gone into additional support facilities.

One novel programming-support mechanism implemented in PLANNER
concerns the style of tracing a program's execution. Tracing involves going

back through the steps of a computation (function calls in LISP), usually

from some error break. PLANNER offers a trace-as-you-go facility: By saying

(THTRACE (object)), the programmer can request a trace of a particular

function, a goal, all goals, or various other "objects"; then, as his program

runs, the system prints out information every time his object is activated.

Considering that PLANNER'S control structure results in an extensive tree of

goals and actions, it does make sense to trace the whole tree as it develops,

rather than backtrack from one particular node—which would reveal only one

branch of the tree.

C5 Programming Environment 69

QLISP

QLISP is embedded in INTERLISP, and care was taken to preserve the

extensive INTERLISP environment while extending the language with QLISP

constructs. QLISP, like the INTERLISP package CLISP, is implemented by

means of the error-catching mechanism: When the interpreter comes to a

QLISP construct, it translates it into INTERLISP and executes that. It also

stores the translated version, so that retranslation is not needed. In programs,

LISP and QLISP can be freely mixed. QLISP is thus a surface extension of

INTERLISP, whereas PLANNER and CONNIYER were distinct language sys-

tems built on top of MACLISP. Implementation of QLISP constructs through

the error mechanism implies, by the way, that execution of pure LISP con-

structs is not slowed down at all by the presence of QLISP.

Some difficulties arose in trying to treat QLISP contructs as if they were on

a par with INTERLISP constructs. For instance, because they are translated

into INTERLISP before being executed, QLISP functions would not show up on

a trace or backtrace. A special QTRACE facility had to be added to get around

this problem. And some "unfortunate interactions" resulted from the clever

adaptation of some of the INTERLISP support facilities to implement certain

QLISP language features. For instance, the CLISP pattern-matching feature

becomes unusable because QLISP uses it for its own pattern matching. The
QLISP manual (Wilber, 1976) contains many warnings about how to avoid

running into these painful effects. For the most part, though, INTERLISP
environment features carry over directly to QLISP.

QLISP also offers a standard function, NEWSTATEMENT, that allows the

user to define surface syntax and an execution routine for some new statement.

This extensibility feature is employed typically to "provide alternative control

structures for invoking the standard QLISP statements, or to provide special

syntax for user-defined QLAMBDA functions" (Sacerdoti et al., 1976, p. 13).

SAIL

SAIL was designed with both real-time robotics applications and the

PDP-10 computer in mind. For this reason, SAIL emphasizes convenient access

to the operating system from within user programs. The language itself

has many standard functions compiled as monitor calls to the operating sys-

tem. The run-time environment includes especially convenient input/output

facilities, such as interrupt handling. Provision is also made for linking SAIL

programs to hand-coded assembly-language algorithms (for efficiency).

Sfnce SAIL is a compiler-based language and is not interactive, the expe-

rience of writing and debugging SAIL programs is considerably different from

the other AI programming languages we have discussed. Programs are written

separately, with whatever text editor is convenient, and then compiled into

machine code. Unlike the other languages in which each (small) function

70 Programming Languages for AI Research VI

is written separately, SAIL programs are block structured and usually will

have many procedures nested inside the main program. Testing of individual

procedures (functions) is more difficult than in LISP because they usually

cannot be run in isolation. Some of these drawbacks have been overcome by

the interactive debugging system, BAIL, which has been added to the SAIL

programming environment (Reiser, 1976).

POP-2

POP-2, although again not an interpreted language, has an incremental

compiler that allows an interactive style of programming similar to that

of LISP. The programmer can type in any statement and have it executed

immediately, or he can define functions and edit them. POP-2 functions tend

to be even smaller than LISP functions.

POP-2, as mentioned before, relies on library packages for its extended

data, control, and pattern-matching features. This allows the core language

to remain quite small. The packages, however, cannot be integrated as tightly

as the features in INTERLISP, which in turn is a very large running program.

The POP-2 editor (which, incidentally, is neither especially powerful nor

oriented to POP-2 syntax) does reside in core permanently. Some of the avail-

able packages include facilities for tracing and debugging, timing of individual

functions, automatic documentation of the various packages, and special

routines for debugging stack errors (the POP-2 stack, remember, is explicitly

manipulable by the program).

Summary

The programming environment is the least Al-specific of the four aspects

of AI programming languages discussed. At the same time, it is an area

that AI languages have pioneered. The key word is interaction. In the

environments we have examined, we can distinguish several different kinds

of features that facilitate interactive programming. The most important,

of course, is for the programming language itself to be interactive. In an

interactive language, programs are built up of small modules (procedures,

functions) that are each tested immediately after they are typed in, rather

than after the entire program is completed and run through a compiler. This

kind of interaction facilitates bug detection and correction.

The Programmer's Assistant feature of INTERLISP exemplifies another

kind of interaction—at the meta-level, in a sense. User commands to the

Assistant refer not to LISP objects but to the user's manipulations of LISP

objects. For example, the Assistant may be told to repeat an action or show

the recent history of user commands.
For smooth interaction it is important that the various components of an

environment be well integrated with each other. INTERLISP is the only one

C5 Programming Environment 71

of the languages covered that (by and large) accomplishes this integration.

Almost any component can be called from within almost any other. In

the other languages, components generally can be called only from the top

level. INTERLISP also provides a concept of structural editing that many
programmers find to be an extremely useful tool—the editor commands are

specially designed for manipulating list structures.

The next general advance in AI programming environments will be facili-

tated by the special-purpose LISP machines now becoming available commer-

cially. In these single-user work stations, the programmer has a powerful

computational tool that is designed for LISP programming and that can be a

highly integrated system—from the disk to the graphics display.

D. DEPENDENCIES AND ASSUMPTIONS

THIS ARTICLE outlines a technique for recording the inferential steps taken

by a reasoning program, using dependency records to link conclusions with

the reasons behind them. One important requirement on the design of intel-

ligent programs is that they be responsibly humble about their conclusions

and actions; that is, they should be able to explain their conclusions and

actions in terms of the information supplied by their informants. This ability

to defer responsibility for conclusions to their sources is crucial in the transfer

of expertise from an expert to a program, for the expert must be able to assign

credit or blame for unexpected conclusions and actions to forgotten, miss-

ing, or erroneous knowledge-base elements or procedures (see Article VII. B).

Similarly, such restraint is crucial in any learning done by the program, for

the program must be able to analyze the reasons for its own successes and

failures (see Chap. XIV, in Vol. III).

These considerations alone are enough to suggest that intelligent programs

should record information about their inferences, so that they can refer to

these records during credit or blame assignment. In fact, several other con-

siderations also suggest keeping these dependency records, namely, the control

of program actions, the adoption and abandonment of assumptions, and the

recovery of improperly abandoned conclusions.

Recorded dependencies aid in controlling the actions of a program,

since credit assignment is important in search as well as in transfer of exper-

tise and learning. One standard search technique that can be augmented in

this manner is chronological backtracking, in which a space of hypothetical

situations is being searched. An error or inconsistency encountered in one of

these situations signals for backtracking—all actions and assumptions after

the most recent choice point are retracted and the next alternative at that

point is examined (see Chap. II, in Vol. I, and the discussion of PLANNER in

Article VI.C3).

In situations in which the temporal order of previous choices is not of

primary importance, however, chronological backtracking is needlessly ineffi-

cient. Instead, by examining a trace of the actions and assumptions at each

successive situation, the source of the problem may be identified and the next

alternative chosen in this light, avoiding searches through numerous irrelevant

combinations of assumptions and actions. For example, in a chess-playing

program that examines several alternative moves a few ply ahead, a threat

discovered while considering one move could be an important constraint in

deciding which alternative moves to explore (see Article II.C5c, in Vol. i).

In addition to their credit-assignment applications, recorded dependencies

can also be used to maintain the set of currently active database elements.

72

D Dependencies and Assumptions 73

There have been three other techniques used for this purpose, each of which

has its problems:

1. Manual changes to the database, whenever a new assumption is made or

action is taken, are the most straightforward way of keeping track of

the current state of things. However, the job of keeping track of all the

ramifications of the updates—new conclusions that can be drawn, old

conclusions that are no longer valid, and so forth—gets to be a major

problem in any reasonably sized knowledge base.

2. Context mechanisms, as supplied in several of the AI programming lan-

guages described in Article VI. C2, shared the problems of chronological

backtracking (in which they played an important role). In particular, the

context mechanisms of these languages needlessly discarded information

discovered in an abandoned search.

3. Change-triggered procedures, like the antecedent theorems in PLANNER
(Article VI. C3), automatically perform some knowledge-base maintenance

function when the programmer specifies some change. This approach

had a problem common to all procedural-knowledge representations, namely,

that all of the triggers had to be carefully tailored as a set to avoid

unintended infinite loops of adding and erasing database entries.

By allowing a global, static perspective on the actions of the program's infer-

ence procedures, explicit tracking of dependencies allows coherent treatment

both of new inferences and of assumptions made on the basis of incomplete

information. The techniques described below make it possible to adopt an

assumption when necessary on the basis of incomplete information, to subse-

quently abandon the conclusions drawn from the assumption should it later

be abandoned, and to recover the previously abandoned conclusions if the

assumption is reinstated.

History

Dependency records were first employed, in robot problem-solving pro-

grams, to help clean up the consequential database entries following robot

actions or failures. The effects of actions were typically represented in

ADD/DELETE lists. Fikes (1975) kept track of derivations, so that all conse-

quences of a database entry could be erased when that entry was deleted by

order of a delete list (see Article II.D5, in Vol. I, on STRIPS). Hayes (1975) kept

track of the dependence of each planning decision on other such decisions, so

that all consequential decisions could be abandoned when some plan-execution

error or independent worldly change invalidated the preconditions of a deci-

sion about some plan step.

The role of dependencies was then broadened by Stallman and Sussman

(1977), who in the context of electronic circuit analysis employed dependencies

in explanations of conclusions, in abandoning and retrieving consequences of

74 Programming Languages for AI Research VI

abandoned or reinstated assumptions, and in dependency- directed (nonchrono-

logical) backtracking. London (1978) developed similar techniques for use in

robot planning, improved to conduct incremental revisions of conclusions.

Building on the work of Stallman and Sussman, Doyle (1979) introduced

assumptions as dependency records of nonmonotonic inferences, such as

THNOT in PLANNER (see Article XII.E, in Vol. Ill, on nondeductive reason-

ing and nonmonotonic logic), and identified the role of such assumptions

in dependency-directed backtracking. Doyle (1980) also illustrated the use

of dependencies in explicitly guiding program actions through a process of

decision-making based on dialectical argumentation. The survey and bibliog-

raphy by Doyle and London (1980) should be consulted for descriptions of

other papers concerned with these techniques.

Recording and Maintaining Dependencies

The fundamental data structures involved in dependency records are

nodes and justifications. Nodes label database entries, inference rules, proce-

dures, and so forth, for use in justifications. Justifications, in turn, represent

inference steps from combinations of nodes to another node (more properly,

from the referents of combinations of nodes to the referent of another node).

The simplest sort of justification is a list of antecedent nodes. For example,

suppose a program has the following entries in its knowledge base:

Node-1

Node-2

Node-3

The patient has a cold

If the patient has a cold, he sneezes

If A, and A implies B, then B,

where Node-1 and Node-2 are facts and Node-3 is an inference rule. The
program might then infer a new statement, The patient sneezes, labeled

Node-4, and record the list (Node-1 Node-2 Node-3) as a justification of Node-4.

The currently active set of nodes can be defined in terms of the current

set of justifications. A node is currently active if it has a valid justification,

where a justification is valid if each of the nodes it mentions is currently

active. Newly created nodes are thus inactive. Empty-list justifications are

always valid, and the nodes they justify are called premises and are always

active. Premises form a base from which all other currently active nodes may
be explained in terms of valid justifications.

The currently active set of nodes controls the program actions. For

example, instead of using procedures that are triggered when a database entry

is added or erased, a program might use procedures that are triggered upon the

inactive-to-active or active-to-inactive transitions of a node. While nothing

prevents the justification of one node in terms of currently inactive nodes, the

normal use is to draw conclusions from currently active nodes.

The currently active set of nodes is updated whenever justifications are

added or erased by a revision procedure, which we will call RP. This use of

D Dependencies and Assumptions 75

RP is sometimes referred to in the literature as truth maintenance, dependency-

network maintenance, or belief revision. If a justification J for node N is

added, RP checks to see if each node in J is active. If so, N is made active, and,

recursively, all inactive nodes with justifications mentioning TV are reexamined

to see if they, too, can be made active. If a valid justification for N is erased, a

list is made of N together with all the active nodes depending on N via other

valid justifications. Each of these nodes is made inactive. Then, each node on

the list is reexamined to see if it can be made active. This deactivation and

reexamination is used to avoid making nodes active on the basis of circular

arguments.

Erasing justifications is a bad idea for several reasons, however, not the

least of which is that it needlessly discards valuable information about past

inferences and adoption of premises (other reasons are discussed by Doyle,

1979, 1980). To avoid erasures, nonmonotonic justifications are used to create

assumptions. A nonmonotonic justification is a pair (A, I) of lists of nodes

and is valid only if each node in A is active and each node in / is inactive.

For example, the justification of the statement The patient has normal

digestion, labeled Node-5, might rely on the fact that there is no reason to

believe he has abnormal digestion (another fact, represented by, say, Node-6:

The patient has abnormal digestion). The justification for Node-5 would be

represented by the form (() , (Node-6)). As long as there is no known justifi-

cation for Node-6, Node-5 would be active. These justifications are called non-

monotonic because the set of active nodes—the facts that are believed to be

true at any one time—can shrink upon the addition of a new justification.

Nonmonotonic justifications allow the effect of defeating justifications without

losing information. For example, if some indication of abnormal digestion were

found, Node-6 could be activated, causing Node-5 to be deactivated, without

changing in any way the form of its justification.

Although the extension of RP to handling nonmonotonic justifications

may appear to be a simple task, the surprising subtlety of the many problems

involved makes this extension a nest of traps for the unwary. Two key reasons

for the delicacy of this matter are that inactive nodes have consequences and

that ambiguities of revision must be settled by RP. On the first point, the very

fact that a node is inactive may be used in the nonmonotonic justification

of another node, as in our digestion example. Hence, changing a node from

inactive to active may invalidate justifications, making inactive the nodes they

support, and vice versa.

As for ambiguities, suppose, for example, that Node-7 has the justification

(() , (Node-8)) and Node-8 has the justification (() , (Node-7)); that is, they

are mutually exclusive nodes. If RP must choose one of Node-7 and Node-8 to

be active, great care is required, since other nodes, possibly including other

assumptions and contradictory nodes, may depend on the choice. RP must

be able to sift through the global ramifications of such local ambiguities (see

Doyle, 1979).

76 Programming Languages for AI Research VI

Assumptions enter dependency-directed backtracking by filling the role of

choice points in chronological backtracking. For each active node, RP main-

tains a distinguished, noncircular explanation by picking one valid justification

as the supporting justification. Thus, an assumption is properly an active node

whose supporting justification is nonmonotonic. To reject a node, that is, to

make it inactive, the program just traces through its supporting justification

and chooses some underlying assumption as the culprit. This assumption

is then defeated by creating a new node that is used to activate one of the

inactive nodes mentioned in its supporting justification.

For example, let us suppose that Node-9 has the supporting justification

((), (Node-10 Node-11)). This can be thought of as saying: Make Node-9

active first, and if that fails try Node-10 or Node-11. Backtracking might add

the justification (() , (Node-11)) for Node-10, thereby defeating the assump-

tion Node-9 and setting up Node-11 as the next alternative. As this example

shows, assumptions may be defeated without discarding justifications, thereby

avoiding loss of information about past assumptions. In other words, the set of

justifications always grows monotonically, while giving rise to a nonmonotoni-

cally changing set of active database entries.

Discussion

Many unanswered questions make the technique of dependencies and

assumptions an active area of investigation in AI. One such question concerns

the mechanisms that RP should use to resolve the ambiguities when several

possible revisions present themselves. A second question is how the existing

RP algorithms might be improved, since each has certain deficiencies. A
third question, then, is how systems should be organized so that dependency

information can be conveniently recorded and used (see, e.g., the proposals

made by de Kleer et al., 1979).

In spite of these unanswered questions, the technique of tracking depen-

dencies and assumptions is important because the solution of complex prob-

lems often demands making simplifying or heuristic assumptions, either about

the problem itself or about the way to proceed in solving it. Later, these

assumptions can be reasoned about in several ways. One way is to correct the

assumptions leading to inconsistencies or to fruitless paths of investigation.

Other ways are to extend the solution of the simplified problem to that of the

complex original problem, to compare the importance of alternate collections

of assumptions, and to index abstract solutions to problems.

References

See Doyle (1979, 1980) and de Kleer et al. (1979); also, the bibliography

by Doyle and London (1980).

Chapter VII

Applications-oriented AI Research:

Science

CHAPTER VII: APPLICATIONS-ORIENTED

AI RESEARCH: SCIENCE

A. Overview / 79

B. TEIRESIAS / 87

C. Applications in Chemistry / 102

1. Chemical Analysis / 102

2. The DENDRAL Programs / 106

a. Heuristic DENDRAL / 106

b. CONGEN and Its Extensions /111
c. Meta-DENDRAL / 116

3. CRYSALIS / 124

4- Applications in Organic Synthesis / 134

D. Other Scientific Applications / 143

1. MACSYMA / U3
2. The SRI Computer-based Consultant / 150

3. PROSPECTOR / 155

4- Artificial Intelligence in Database Management / 163

A. OVERVIEW

OVER the past decade, many of the fundamental AI techniques described

in the previous chapters on search, knowledge representation, and natural-

language processing have been applied in the form of expert systems, that

is, computer systems that can help solve complex, real-world problems in

specific scientific, engineering, and medical specialties. These systems are most

strongly characterized by their use of large bodies of domain knowledge—facts

and procedures, gleaned from human experts, that have proved useful for

solving typical problems in their domain. Expert-systems research promises

to lead to AI applications of great economic and social impact. But far

from being solely concerned with applying AI problem-solving techniques, the

research described in this and the following two chapters has often addressed

fundamental questions concerning the nature of knowledge, both in terms of

formal representational systems and as an essentially social phenomenon

—

knowledge as something that must be shared and transferred among men and

machines.

Evolution of Expert Systems

AI research in the 1960s identified and explored several general-purpose

problem-solving techniques. This work introduced and refined the concept of

heuristic search (see Chap. II, in Vol. I) as an important model of problem

solving. Many of the AI systems developed during this period, like GPS, the

Logic Theorist, REF-ARF, QA4, and PLANNER (all described elsewhere in

the Handbook), dealt with problems in simple, constrained domains such as

chess, textbook problems, robot planning, blocks-world manipulations, and

puzzles like "Tower of Hanoi" and "Missionaries and Cannibals." But by the

mid-1960s, some researchers in the DENDRAL project at Stanford and the

MACSYMA project at M.I.T. had begun work on the first expert systems

—

organic chemical analysis in the case of DENDRAL and symbolic integration

and formula simplification in MACSYMA.
These systems were designed to manipulate and explore symbolically

expressed problems that were known to be difficult for human researchers to

solve. The problems were characterized by the increasing number of solution

possibilities that had to be examined as the problem specifications grew in

complexity—the larger the size of the problem specification (e.g., the size of

the molecule or the complexity of the expression to be integrated), the more

difficult it was for human researchers to discover solutions or be confident

that all valid solutions had been found. This combinatorial explosion in the

79

80 Applications-oriented AI Research: Science VII

solution search space often outstripped the abilities of human researchers. The
capability of AI systems to deal with the larger solution spaces is important

in that it extends the types of problems that can be solved with the same

conceptual tools.

More recently, several other factors have motivated research on expert-

systems development. Most notably, expert systems promise to be quite

profitable because they can help solve hard problems that require the best

(most expensive) human expertise. (See, e.g., Articles VII.C4 and VII.D3 on

systems that may help design chemical-synthesis techniques and explore for

mineral deposits.) In some domains, like medical diagnosis, the fact that the

exhaustive nature of problem solving in expert systems ensures that remote

possibilities are not overlooked is important. And often the very codification of

expertise in suitable form for an expert system is an illuminating and valuable

part of the expert-systems development. (This systematic reorganization of

what is known can lead, e.g., to new insights into the structure of the domain

or to new ideas about how to teach it.)

In a domain like medicine (and unlike symbolic integration) where the

nature of the problem is not sufficiently understood to completely specify

the search space, large amounts of domain-specific knowledge have to be

represented and reasoned with. Thus, while heuristic-search management

is still a major concern in the construction of any expert system, efficient

implementation and automated maintenance of large knowledge bases must

also be addressed. A particularly important design issue is devising effective

means for acquiring such large amounts of knowledge from the human experts,

who insist on "talking about" what they do rather than "dumping" what they

know, as computers do.

The issue of acquiring knowledge from human experts is now seen as a

part of the general problem of transfer of expertise. Since humans are both

the source and the eventual users of expertise, current concerns in expert-

systems design center on considerations of how humans talk about what they

know. For an expert system to be truly useful, it should be able to learn what

human experts know, so that it can perform as well as they do, understand

the points of departure among the views of human experts who disagree, keep

its knowledge up to date as human experts do (by reading, asking questions,

and learning from experience), and present its reasoning to its human users

in much the way that human experts would (justifying, clarifying, explaining,

and even tutoring). These issues in the transfer of expertise can be seen as a

microcosm of many of the central concerns of Artificial Intelligence.

Representing Expertise

Specialists are distinguished from laymen and general practitioners in a

technical domain by their vast task-specific knowledge, acquired from their

training, their subsequent readings, and especially their experience of many

A Overview 81

hundreds of cases in the course of their practice. Whether car mechanics or

neurosurgeons, experts can solve problems that others cannot, because they

know things that nonexperts do not. Sometimes this knowledge is in the form

of specific facts about the domain that have, over the years, been committed to

memory, and sometimes the expertise appears as hunches, "educated guesses"

about the way to proceed in problem solving.

Representing and using the various types of knowledge that characterize

expertise constitute one principal focus of expert-systems research. Among
the things that might be useful for an expert system to know about are:

1. Facts about the domain: "The shin bone is connected to the ankle bone"

or, more typical of human experts, "The automatic choke on '77 Chevys

often gets stuck on cold mornings";

2. Hard-and-fast rules or procedures: "Always unplug the set before you

stick a screwdriver into the back"

;

3. Problem situations and what might be good things to try to do when
you are in them (heuristics): "If it won't start but you are getting a

spark, check the fuel line";

4. Global strategies: differential diagnosis;

5. A "theory" of the domain: a causal explanation of how an internal-

combustion engine works.

All of the knowledge-representation schemes described in Chapter III (in Vol. i)

have been used in expert systems; in fact, much original work on knowledge

representation has been done in the context of expert-systems design.

Note that much of the knowledge that characterizes human expertise is

hunchlike, in the sense that it does not constitute definite consequences of

actions or certainty of conclusions. Reasoning with such knowledge has been

the key idea that made expert systems possible and constitutes the main

problem in developing their power further. In particular, inexact reasoning,

using hunches or heuristics to guide and focus what would otherwise be a

search of an impossibly large space (see Articles II.C3 and II.C4, in Vol. i),

has resulted in systems with human-level problem-solving abilities. Indeed,

these systems have at times proved superior to the human experts, primarily

because they consider a much larger set of possible solutions (as much as

several orders of magnitude larger) and do not miss unlikely or unexpected

possibilities, once these have been noted as worthy of consideration by the

expert who built the knowledge base.

Transfer of Expertise

Solving real-world problems at human-expert levels of performance is only

the beginning of expert-systems design. Most of the applications systems

described in this chapter can be viewed as consultants that formulate opinions

82 Applications-oriented AI Research: Science VII

and give advice to their users. The tasks these consultants are designed

to perform require the application of facts and relationships known only by

specialists. The current systems emphasize the cognitive abilities that support

interaction with the user during problem solving, such as the ability to explain

lines of reasoning or to acquire new domain knowledge interactively.

Typically, such a system will be considered "intelligent" if it meets the

following criteria: (a) The system gives correct answers or useful advice,

and (b) the concepts and reasoning processes it uses to solve the problem

resemble those that the user might employ. This last concern has led to the

design of systems that can explain their reasoning about a case, maintain

a focused dialogue with a user when pursuing relevant facts and inferences

about his (or her) case, and employ knowledge at the conceptual level of

the user when solving and explaining both the problem and the system's

solution. Successfully addressing these primarily human- engineering concerns

has required many advances in AL These abilities and developments are

detailed for each system in the following articles (see especially Article VII. B).

Explanation and the opacity of knowledge. As mentioned pre-

viously, a major design issue for some of these systems, for the consultants

in particular, is whether the system needs to explain its reasoning to a user.

This capability is implemented primarily to convince users that the system's

reasoning is appropriate and that its conclusions about a case are reasonable.

Sometimes the problem-solving expertise of the system is in a form that

is not at all similar to the expertise that a human expert would apply to

obtain the solution. For example, in the case of the DENDRAL programs, the

generator of chemical-structure candidates employs a procedure for exhaus-

tively producing possible structures based on various graph-theoretic notions

that organic chemists who use the system are unlikely to know or care about.

Thus, a major portion of the DENDRAL expertise resides in a procedure that is

conceptually opaque to the typical user. The generator was developed because

it was discovered that the method used by chemists to find solutions for these

problems is, in fact, incomplete, while the method used by the DENDRAL
program has been mathematically proved to be complete. A similar situation

exists in the MACSYMA system, which uses the Risch algorithm for evaluat-

ing various types of integrals. While mathematically correct, the algorithm

is rarely employed by human mathematicians because of its complexity. The
correctness and continuing success of these programs serve as their primary

form of explanation: The user community is thereby convinced that the per-

forming system is both acceptable and usable.

In contrast, consultation systems like MYCIN and PROSPECTOR have

been designed to represent and explain the reasoning process of the system

in a manner that is understandable to the knowledgeable user. These sys-

tems require a representational formalism capable of supporting the reason-

ing and explanation abilities that would closely approximate the conceptual

framework of the expert and the user. Since most of these scientific and

A Overview 83

technical domains have a well-defined set of concepts that their practitioners

use consistently, the systems' designers have capitalized on this consistency

and have designed the programs to accept and reason with knowledge using

these concepts.

Assuming that a system has an explanation facility, the system designer

faces another issue: Should the system reason and apply the expertise in

a manner that resembles the methods of human experts? In MYCIN, for

example, no claim is made by the designers that the simple backward-chaining

reasoning methodology has any resemblance to the methods actually employed

by human physicians in diagnosing infectious diseases. Although the medical

concepts employed by the system are familiar to most physicians, the method

of inferring the infections and causal organisms, while understandable by

physicians, bears little resemblance to their normal diagnostic reasoning. By
contrast, the PIP and INTERNIST systems emphasize the similarities of their

diagnostic procedures to those of physicians.

Knowledge acquisition. During the development of the knowledge

base, experts are unlikely to present all of the relevant facts and relationships

for expert performance in the domain. Being human, experts tend to forget

or to simplify details about their knowledge, requiring the system to augment

its knowledge at a later time. Since the knowledge imparted to the system

is largely empirical and the domains are themselves developing rapidly, it is

necessary for the system to make these changes easily and in an incremental or

modular fashion. Thus, most of the recent applications systems have empha-

sized representation schemes that allow for the incremental construction of

the knowledge base.

Most researchers have approached incremental construction by means of

production-rule knowledge representation. Each rule, and rule set, represents

a "chunk" of domain expertise that is communicable to the user and that can

be added to or deleted from the system's knowledge base with relatively con-

strained changes in the system's behavior (see Article III.C4 and the discussion

of modularity in knowledge representation in Article III.A, in Vol. I). Thus, the

system can be improved by modifying the knowledge base with new rule sets

that deal with new subdomains. Furthermore, the production-rule formalism

can directly accommodate the knowledge of the domain experts in the form

that they most often communicate it—for example, "In this situation I suspect

this problem and perform these tests."

The Status of Applications Research

The major domains of expertise that have been developed as applica-

tions systems include the diagnosis and treatment of various diseases (see

Chap. VIII), the design of computer assistants for both the analytic and the

synthetic aspects of organic chemistry (Sec. VII. C), interactive tutoring systems

in education (Chap. DC), and assistants for performing advanced mathematics

84 Applications-oriented AI Research: Science VII

(Article VII. Dl). A number of other notable applications have been developed,

including applications of AI to database information-retrieval problems (see

Article VII.D4) and a geological prospecting assistant (Article VII.D3).

Among the rapidly growing host of applications-oriented systems are

SACON, a system for advising structural engineers in the use of a large,

finite-element analysis program for modeling various mechanical structures

(Bennett et al., 1978); PUFF, a system for diagnosing a patient with pulmonary

dysfunctions (Feigenbaum, 1977); and HEADMED, a system for diagnosing

and treating psychiatric patients (Heiser, Brooks, and Ballard, 1978). More

recent are McDermott's (1981) Rl expert on computer-system configurations

and Stefik's (1980) work on an aid in designing experiments in molecular

genetics (see also Article XV.D2, in Vol. Ill, on MOLGEN). Current research

in this area includes extensions of the expert-system paradigm to computer-

based assistants for computer-system failure diagnosis, aids for VLSI circuit

design, more sophisticated database-query systems, and systems that can act

as tutors in their areas of expertise (see Article DC.C6).

One important development in current research on expert systems is

the emergence in recent years of "expert-systems-building
,,

systems, which

facilitate the construction of expert systems in any domain. For example, the

EMYCIN system (van Melle, 1980) consists of the basic control structure of

MYCIN, but with MYCIN'S infectious-disease knowledge base removed. With

another knowledge base substituted in the same production-rule format as

MYCIN'S, this "Empty MYCIN" system retains the capability of interacting

with the user during a case, to explain its reasoning, and to answer questions

about a case in the new domain. EMYCIN has been used successfully to

develop the applications in the treatment of pulmonary dysfunction, in struc-

tural analysis, and in the psychiatric diagnosis mentioned earlier. Several

other expert-systems-building systems are being developed, including IRIS

(see Article VIII.B6), AGE (Nii and Aiello, 1979), OPS (Forgy and McDermott,

1977), and ROSIE (Fain et al., 1981; Hayes-Roth et al., 1981). Systems such

as these, which attempt to facilitate the construction of expert systems, are

an important area of current research.

Another primary research activity in the near future will be the develop-

ment of better facilities for acquiring the domain concepts and the empirical

knowledge that expert systems must have. Feigenbaum (1977) suggests that

the painful process of knowledge engineering, which involves domain experts

and computer scientists working together to design and construct the domain

knowledge base, is the principal bottleneck in the development of expert sys-

tems. Efficient interfaces for acquiring this domain-specific knowledge, along

the interactive transfer-of-expertise lines explored in TEIRESLAS (Article VII.B)

or the automatic theory-formation methods used by the Meta-DENDRAL sys-

tem (Article VII.C2c), need to be developed before significantly larger expert

systems can be constructed.

A Overview 85

The size of current systems is typically given in terms of some convenient

measure of the domain-specific knowledge contained by the system. For

example, the MYCIN system has approximately 450 rules and a similar number

of clinical parameters with which it diagnoses and prescribes treatments for

patients with bacteremia, cystitis, and meningitis. The SYNCHEM system

has approximately 390 transforms for constructing plausible organic-synthesis

routes. The amount of expert knowledge contained in a system has been

primarily a function of the level of involvement and effort of the human expert.

These systems have the potential for supporting larger knowledge bases, but

there has been no attempt yet to construct more comprehensive systems. At

present, only selected subdomains are actually represented.

It is clear that researchers in AJ and computer science will have to develop

new techniques for handling the truly large-scale knowledge bases of the

future. A step in this direction has been taken with the development of

techniques for representing knowledge about knowledge, or meta- knowledge

(see Article III.A, in Vol. I, and Article VII. B). This domain-specific knowledge

provides a means for determining the consistency and appropriateness of

various knowledge sources used by the system. Current research is examining

the representation and application of meta-knowledge as a way to organize

large amounts of domain knowledge so that it is used effectively by the

program while remaining comprehensible to the human user and expert.

The Applications Chapters

Chapters VII, VIII, and DC describe research in expert-systems technology.

The present chapter, with articles discussing some design issues in the con-

text of the TEIRESIAS system and the important applications in analytic and

synthetic chemistry, also presents an article about an expert system in math-

ematics, MACSYMA, and some articles on scientific-applications research that

did not fit in anywhere else, including the geology consultant PROSPECTOR.
Chapter VIII describes the research on medical applications, and, finally, Chap-

ter DC discusses AI applications to tutoring systems, principally the work on

what is called Intelligent Computer-assisted Instruction (ICAI).

Each article on an individual system will attempt to include:

1. A description of the problem domain (e.g., chemistry, infectious disease),

the particular task the applications system was designed to perform

(e.g., elucidate chemical structures, diagnose and recommend treatment

for a patient with an infectious disease), and the major motivations for

the system's design, both for AI and for the task domain;

2. A description of the task-specific knowledge used by the system to per-

form the problem-solving task (e.g., knowledge about probable bond

breaks for a compound in a mass spectrometer, knowledge about pos-

sible infections and their causal organisms);

86 Applications-oriented AI Research: Science VII

3. A description of the particular AI methods employed to represent this

knowledge and a description of how the represented knowledge is used

to reason about a particular case, sometimes including an annotated

sample interaction between a user and the system;

4. An indication of the current level of expertise of the system and an

indication of its present status and possible future development.

Throughout these articles, emphasis is placed on illuminating the major AI

issues involved in the design of these systems.

References

Duda and Gaschnig (1981) present an excellent popular review of expert-

systems technology. The forthcoming book edited by Hayes-Roth, Waterman,

and Lenat is a thorough and up-to-date discussion of the issues and status

of expert-systems research. The book edited by Waterman and Hayes-Roth

(1979) is an earlier presentation of many of these issues. Feigenbaum (1977)

gives a short review of expert-systems research, as does the textbook by

Winston (1977). Also of interest is a special issue of the Journal of Artificial

Intelligence (Sridharan, 1978) on AI applications in science and medicine.

B. TEIRESIAS

TEIRESIAS is a system that assists in entering and updating the large knowl-

edge bases used in expert systems. Although TEIRESIAS is not itself an

application of AI to some domain, it deals with many important issues in

expert-systems design that are relevant to all of the programs described

in this section of the Handbook. The system was developed by Randall

Davis as part of his doctoral research with the MYCIN project at Stanford

University, and this article assumes some familiarity with MYCIN'S rule-based

knowledge-representation scheme and its backward- chaining control structure

(see Article VIII.Bi). However, the ideas and techniques that TEIRESIAS uses

are not necessarily limited to MYCIN'S domain of infectious diseases or to its

production-rule formalism.

Knowledge-based Programs

As discussed in Article VILA, systems that attain expert-level performance

in problem-solving tasks derive their power from a large store of task-specific

knowledge. As a result, the creation and management of large knowledge

bases and the development of techniques for the informed use of knowledge

are now central problems of AJ research. TEIRESIAS was written to explore

some of the issues involved in these problems.

Most expert programs embody the knowledge of one or more experts in a

field (e.g., infectious diseases) and are constructed in consultation with these

experts. Typically, the computer scientist mediates between the experts and

the program he (or she) is building to model their expertise. This is a difficult

and time-consuming task, because the computer scientist must learn the basics

of the field in order to ask good questions about what the program is supposed

to do. TEIRESIAS 's goal is to reduce the role of the human intermediary

in this task of knowledge acquisition, by assisting in the construction and

modification of the system's knowledge base.

The human expert communicates, via TEIRESIAS, with the performance

program (e.g., MYCIN), so that he can discover, with TEIRESIAS's help,

what the performance program is doing and why. TEIRESIAS offers facilities

for modifying or adding to the knowledge base to correct errors: Through

TEIRESIAS, the human expert can "educate" the program just as he would

tutor a human novice who makes mistakes. Ideas about how this "debugging"

process is best carried out are at the core of TEIRESIAS's success. As discussed

in Chapter XIV (in Vol. Ill), TEIRESIAS can be viewed as a learning program,

since it incorporates advice from the human expert. The expert, however,

87

88 Applications-oriented AI Research: Science VII

does much of the work, since he must state the advice in terms that the

system understands (fully operational) and then must evaluate the system's

performance and assign credit or blame to individual rules. (See especially

Article XIV.C on learning by taking advice.)

TEIRESIAS recognizes the inexact, experiential character of the knowledge

that is often required for knowledge-based systems and (as examples below

will illustrate) offers the expert some assistance in formulating new "chunks of

knowledge" of this sort. The system also provides a mechanism for embody-

ing strategic information about how to proceed in problem solving (e.g., diag-

nosis in MYCIN). Meta-rules (also discussed below) help direct the use of

object-level rules in the knowledge base and provide a mechanism for encoding

problem-solving strategies.

Interactive Transfer of Expertise

It is an established result that an expert knows more about a field than

he realizes or is capable of articulating completely. Thus, asking him a broad

question like "Tell me everything you know about staph infections" will yield

only a fraction of his knowledge on the subject. TEIRESLAS's approach is to

present the expert with some errors made by an already established, but still

incomplete, knowledge-based program and to ask a focused question: "What

do you know that the program doesn't know that makes your expert diagnosis

different in this case?"

This interaction is called transfer of expertise: TEIRESIAS incorporates

into the performance program the capabilities of the human expert. It does not

attempt to derive new information on its own but, instead, tries to "listen" as

attentively and intelligently as possible, to help the expert augment or modify

the knowledge base.

Interactive transfer of expertise between an expert and an expert program

begins when the expert identifies an error in the performance of the program

and invokes TEIRESIAS to help track down and correct the error. Errors are

manifest as program responses that the expert would not have made or as lines

of reasoning that the expert finds odd, superfluous, or otherwise inappropriate.

The first kind of error might be, for example, a wrong conclusion about the

identity of a bacterium. The second kind of error occurs when the performance

program asks, during a consultation, a question that, in the expert's opinion,

does nothing to resolve the identity of the bacterium.

Both kinds of errors are assumed, by TEIRESIAS, to be indicative of a

deficit, or "bug," in the performance program's knowledge base. Transfer

of expertise begins when TEIRESIAS is called upon to correct the deficit.

TEIRESIAS fixes bugs in the knowledge base by:

1. Stopping the performance program when the human expert identifies an

B TEIRESIAS 89

2. Working backwards through the steps in the performance program that

led to the error, until the bug is found;

3. Helping the expert fix the bug by adding or modifying knowledge.

To identify faulty reasoning steps in the performance program, the expert

can use the WHY and HOW commands to ask TEIRESIAS to back up through

previous steps, explaining why they were taken. Of course, the same explan-

atory abilities can also be employed when there is no bug, to help the user

follow the system's line of reasoning. Since many large performance programs

carry out very complex inferences that are essentially hidden from the person

using the program, this is a valuable facility.

Meta- level Knowledge

One of the principal problems of AI is the question of appropriate rep-

resentation and use of knowledge about the world (see Chap. Ill, in Vol. I).

Numerous techniques have been employed to represent domain knowledge in

various applications programs. A central theme of the research on TEIRESIAS

is exploring the use of meta-know ledge. Meta-level knowledge is simply the

representation in the program of knowledge about the program itself—about

how much it knows and how it reasons. This knowledge is represented in

the same formalism as the domain knowledge, yielding a program containing

object-level representations that describe the external world and meta-level

representations that describe the internal world of the program, its self-

knowledge.

Meta-level knowledge takes different forms as it has been explored in AI

and psychology (Barr, 1979), but it can be summed up as "knowing about

what you know." In general, it allows the system both to use its knowledge

directly and to examine it, abstract it, and direct its application. The attempt

to construct capabilities for explanation, knowledge acquisition, and strategic

reasoning in TEIRESIAS led directly to the incorporation of explicit meta-

level knowledge. (The representation and importance of meta-knowledge are

discussed in more depth in Article IILA, in Vol. I.)

Explanation

There are two important classes of situations in which expert systems

should be able to explain their behavior and results. For the user of the

system who needs clarification or reassurance about the system's output, the

explanation can contribute to the transparency, and thus the acceptance,

of the system. The second major need for explanation is in the debugging

process described above, where a human expert, in order to locate some error

in the knowledge base, makes use of the system's explanations of why it

has done what it has done. The first of these applications of explanation

90 Applications-oriented AI Research: Science VII

has been explored in the question-answering facility of the MYCIN system;

the explanation capability in TEIRESIAS has explored both uses but has

concentrated on the latter.

The techniques in TEIRESIAS for generating explanations are based on

two assumptions about the performance program being examined, namely,

(a) that a recapitulation of program actions can be an effective explanation,

as long as the correct level of detail is chosen, and (b) that there is some

shared framework for viewing the program's actions that will make them

comprehensible to the user. In the MYCIN-like expert systems that employ

production-rule knowledge bases, these assumptions are valid, but it is easy

to imagine expert systems in which one or both are violated. For example, the

first assumption simplifies the explanation task considerably, since it means

that the solution requires only the ability to record and play back a history

of events. This assumption rules out, in particular, any need to simplify

those events. However, it is not obvious, for instance, that an appropriate

level of detail can always be found. Furthermore, this approach of recapitula-

tion, which often offers an easily understood explanation in programs that

reason symbolically, might not apply to expert systems that perform primarily

numeric computations.

A simple recapitulation will be an effective explanation only if the level

of descriptive detail is constrained. It must be detailed enough that the oper-

ations the system cites are comprehensible; the conceptual level must be high

enough that the operations are meaningful to the observer, with unnecessary

detail suppressed; and it must be complete enough that the operations cited

are sufficient to account for all behavior.

The second assumption concerns the user's comprehension of the expert

system's activity, which depends on the fundamental inference mechanism of

the program and the level at which it is examined. Consider a program that

does medical diagnosis using a statistical approach based on Bayes's theorem.

It is difficult to imagine what explanation of its actions the program could

give if it were queried about computed probabilities. No matter what level

of detail is chosen, such a program's actions are not (nor were they intended

to be) a model of the reasoning process typically employed by physicians.

Although they may be an effective way for the computer to solve diagnosis

problems, there is no easy way to interpret these actions in terms that will

make them comprehensible to humans unacquainted with the program (see

the discussion of the opacity of reasoning in Article VILA).

Thus, the absence of mechanisms for simplifying or reinterpreting com-

putation means that TEIRESIAS 's approach is basically a first-order solution

to the general problem of explanation. However, in the context of a MYCIN-
like expert system, for which TEIRESIAS was designed, the simple AND/OR
goal-tree control structure offers a basis for explanations that typically needs

little additional clarification. (The operation of TEIRESIAS's explanation

facility is illustrated in the lengthy sample protocol at the end of this article.)

B TEIRESIAS 91

The invocation of a rule is taken as the fundamental action of the system.

This action, within the framework of the goal tree, accounts for enough of

the system's operation to make a recapitulation of such actions an acceptable

explanation.

In terms of the constraints noted earlier, TEIRESIAS's explanations are

sufficiently detailed—the actions performed by a rule in making a conclusion,

for instance, correspond closely enough to the normal connotation of that

word—that no more detailed explanation is necessary. The explanation is still

at a sufficiently high conceptual level that the operations are meaningful, and

the explanation is sufficiently complete. There are no other mechanisms or

sources of information that the observer needs to know in order to understand

how the program reached its conclusions. See Swartout (1981) for a discussion

of the explanation capabilities of expert systems in the context of the Digitalis

Therapy Advisor (Article VIII.B5).

Knowledge Acquisition: Rule Models and Schemas

When the expert has identified a deficit in the knowledge base of the

performance program, TEIRESIAS questions the expert in order to correct

the deficit. This process relies heavily on meta-level knowledge about the

performance program, encoded in rule models and schemas. In other words,

TEIRESIAS uses these data structures to represent knowledge about what the

performance program knows.

The meta-level knowledge about objects in the domain includes both

structural and organizational information and is specified in data-structure

schemas. Acquisition of knowledge about new objects takes place as a process

of instantiating a schema—creating the required structural components to

build the new data structure and then attending to its interrelations with

other data structures. By making inquiries in a simple form of English about

the values of the schema's components, this knowledge-acquisition process is

made to appear to the expert as a natural, high-level inquiry about the new
concept. The process is more complex, of course, but the key component is

the system's description of its own representation.

TEIRESIAS's rule models are empirical generalizations of subsets of rules,

indicating commonalities among the rules in that subset. For example, in

MYCIN there is a rule model for the subset of rules that conclude affirmatively

about organism category, indicating that most such rules mention the concepts

of culture site and infection type in their premise. Another rule model notes

that those rules that mention site and infection type in the premise also tend

to mention the portal of entry of the organism.

The knowledge about the contents of the domain rules represented in the

rule models is used by TEIRESIAS to build expectations about the dialogue.

These expectations are helpful in translating the English statements into the

performance program's internal representation and in identifying information

92 Applications-oriented AI Research: Science VII

missing from the expert's entry. An example of TEIRESIAS's use of rule

models in its knowledge-acquisition dialogue is given in the sample protocol

below.

Meta-rules and Performance Strategies

In performance programs with sufficiently small knowledge bases (like

MYCIN'S), exhaustive invocation of the relevant parts of the knowledge base

during a consultation is still computationally feasible. However, with the

inevitable construction of larger knowledge bases, exhaustive invocation will

become unrealistic. In anticipation of this, meta-rules are implemented in

TEIRESIAS as a means of encoding strategies that can direct the program's

actions more selectively than exhaustive invocation can. The following meta-

rule is from MYCIN'S infectious-disease domain:

META-RULE 001

IF (1) the infection is a pelvic-abscess, and

(2) there are rules that mention in their

premise Enterobacteriaceae, and

(3) there are rules that mention in their

premise gram positive rods,

THEN There is suggestive evidence (.4) that the rules

dealing with Enterobacteriaceae should be evoked

before those dealing with gram positive rods.

This rule suggests that, since enterobacteria are commonly associated with

a pelvic abscess, it is a good idea to try rules about them first, before the

less likely rules mentioning gram positive rods. Note that this meta-rule does

not refer to specific object-level rules. Instead, it specifies certain attributes

of the rules it refers to, for example, that they mention in their premise

Enterobacteriaceae.

An Example: TEIRESIAS in the Context of MYCIN

We now illustrate TEIRESIAS's operation in affiliation with the MYCIN
system (see Article VIII.Bi), paying particular attention to the explanation and

knowledge-acquisition facilities of TEIRESIAS. MYCIN is intended to provide

a physician with advice about the diagnosis and drug therapy for bacterial

infections. The user interacts with TEIRESIAS, which in turn communicates

with the MYCIN system, although the user is unaware of more than one pro-

gram being involved. The system asks questions about the patient, the infec-

tion, the cultures grown from specimens from the patient, and any organisms

B TEIRESIAS 93

(bacteria) growing in the culture. (Typically, of course, the exact identity of

the organism is not yet known.)

MYCIN'S knowledge base is composed of rules that specify a situation

(involving information about the patient, culture, and organism) and the

conclusions that can be drawn in that situation. For example, to conclude

whether a patient suffers from a bacterium in the Enterobacteriaceae category,

MYCIN invokes rule 95:

RULE 095

IF The site of the culture is blood, and

the gram stain is positive, and

the portal of entry is gastrointestinal tract, and

[A-the abdomen is the locus of infection, or

B-the pelvis is the locus of infection]

THEN There is strongly suggestive evidence that

Enterobacteriaceae is the class of organisms

for which therapy should cover.

MYCIN asks questions of the physician to determine which rules are applicable

in the current case—that is, to determine the "situation." To determine if the

organism is of type Enterobacteriaceae, MYCIN would inquire whether each

clause in the IF-part of rule 95 were true.

The procedure of working backward from the conclusion to the situa-

tion that would make the conclusion true is called backward chaining and

is MYCIN'S fundamental reasoning mechanism. Backward chaining can go

several levels deep, meaning that the clauses in a situation that must be true

(for the conclusion to be true) might themselves be conclusions of other rules.

For example, a condition on the identification of Enterobacteriaceae is that

the infection be localized in the abdomen or the pelvis; but this condition is

itself a conclusion, and it is only true if its conditions (that the culture from

these places is recent and is therapeutically significant) are true. Furthermore,

the condition of therapeutic significance has its own conditions, and so on.

Here is a protocol showing MYCIN'S basic style of interaction (the physician's

responses are prefixed by **):

Patient 281

1) Patient's name

** Albert Hall

2) Sex:

** Male

94 Applications-oriented AI Research: Science VII

3) Age:

** 34

4) Have you been able to obtain positive microbiological

information about a possible infection of Albert Hall?

** Yes

Infection 1

5) What is the infection?

** Primary-Bacteremia

6) Please state when signs and symptoms of infection-1

first appeared:

** 15-Dec-80 12:00

Culture 1

7) From what site was the specimen for culture-1 taken?

** Blood

8) Please give the date and time when this blood culture was

obtained:

** 16-Dec-80 12:00

The first significant organism from this blood culture will be

referred to as:

Organism-

1

9) Enter the identity of organism-1

* * Unknown

10) Is organism-1 a rod, or coccus (etc.):

** Rod

11) The gram-stain of organism-1:

** Gram negative

12) Did organism-1 grow in the aerobic bottle?

** Yes

13) Did organism-1 grow in the anaerobic bottle?

** Yes

TEIRESIAS 95

My therapy recommendations will be based on the following

probable infection (s) and potential causative organism (s)

:

INFECTION- 1 is PRIMARY-BACTEREMIA

<Item-l> E.COLI [ORGANISM-1]

<Item-2> PSEUDOMONAS-AERUGINOSA [ORGANISM-1]

In sum, MYCIN constructs a goal tree (see Article II.B2, in Vol. i) of questions

that must be resolved in the course of the consultation to conclude the identity

of a bacterium. When it cannot resolve a question by inference from what it

already knows, it asks the respondent to provide an answer. Each node of the

goal tree has subnodes that result from the application of a rule, as shown in

Figure B-l.

Explanation: HOW and WHY. Suppose that during a consultation

with MYCIN the clinician wants an explanation of the reasoning behind some

question that MYCIN has asked. The explanation given by TEIRESIAS in

response to the physician's question, WHY, involves backing up the goal tree

to the previous node and presenting the rule used to derive the subnode from

its ancestor. (Again, the physician's responses are prefixed by **.)

Enterobacteriaceae

Rule 095

Site = Gram= Portal = Locus

=

Blood Positive G. I. Tract Abdomen or

Pelvis

Rule 021

Recent Culture Therapeutically

Significant

Rule 054

Sterile Significant Non-
Method of Number of sterile

Collection Organisms Site

Figure B-l. A MYCIN goal tree.

96 Applications-oriented AI Research: Science VII

First, MYCIN'S question:

What is the suspected portal of entry of organism-1 into this

sterile site?

The physician requests an explanation.

** WHY

Then TEIRESIAS proceeds to explain it's "reasoning."

[I.e., why is it important to determine the suspected portal

of entry of organism-1 into this sterile site?]

[3.0] ... in order to find out about an organism or class of

organisms for which therapy should cover.

It has already been established that

[3.1] The site of the culture is blood

[3.2] The stain of the organism is gram positive

Therefore if:

[3.3] The portal of entry of the organism is G.I.

[3.4] [Abdomen is the locus of infection, or

Pelvis is the locus of infection]

Then

There is strongly suggestive evidence (.9) that

Enterobacteriaceae is the class of organisms

for which therapy should cover.

[Rule 095]

In contrast to WHY, which spells out "higher" nodes in the goal tree, the HOW
command asks TEIRESIAS to explain the nodes lower down the tree that have

been or will be expanded. For example, in the following exchange, the expert

asks how MYCIN will determine whether the abdomen or the pelvis is the

locus of infection:

** HOW [3.4]

Note: [3.4] is the prefix of the statement of interest in the exchange above.

[I.e., how were you determining that the Abdomen is the locus

of infection, or that the Pelvis is the locus of infection?]

[4.0] At that point Rule 021 was being used.

If the doctor now wants to see rule 21, he asks TEIRESIAS to explain HOW
it was used, referring to the prefix [4.0] of the statement in which it was

mentioned:

B TEIRESIAS 97

** HOW [4.0]

[I.e., how was Rule 021 used?]

[5.0] It has already been established that

[5.1] the culture is recent.

Therefore if

:

[5.2] There is therapeutically significant disease

associated with the occurrence of this organism

Then

It is definite (1.0) that the site of the culture

is the locus of infection in the patient.

The explanation facilities of TEIRESIAS involve climbing up and down

MYCIN'S goal tree, explaining why questions are asked and how they are

answered. If MYCIN makes a misdiagnosis, these same facilities are used to

back up through the rules that achieved the diagnosis until the expert has

found the faulty one or determined that one is missing. TEIRESIAS is then

used to expedite the alteration or construction of rules by the expert. (See

Article DC.C8 for a discussion of how a similar explanation facility is used in

the tutorial system EXCHECK.)
Knowledge acquisition. TEIRESIAS can help an expert formulate rules

in English because it has expectations about what rules "look like." These

expectations are stored internally as rule models that are formed automati-

cally by examining all the rules in the knowledge base. TEIRESIAS knows, for

example, that there is a class of rules that have as their conclusions the prob-

able identity of a bacterium and that these rules typically have as conditions

(a) the site of the culture, (b) the stain of the culture, and (c) the probable

portal of entry of the bacteria. These rule models help TEIRESIAS translate

English versions of new rules into a machine representation acceptable to

MYCIN.
To illustrate TEIRESIAS 's debugging and correction facilities, we will con-

tinue with the consultation shown earlier. Suppose that after MYCIN presents

the expert with its diagnosis, TEIRESIAS steps in and checks whether the

expert agrees (the physician's response is indicated by **):

My therapy recommendation will be based on the following

probable infection (s) and potential causative organism (s)

:

INFECTION-1 is PRIMARY BACTEREMIA

<Item-l> E.COLI [0RGANISM-1]

<Item-2> PSEUDOMONAS-AERUGINOSA [ORGANISM- 1]

Now TEIRESIAS steps in.

98 Applications-oriented AI Research: Science VII

Are all these identities correct?

** No.

Are there any identities missing?

** Yes.

Which ones?

** KLEBSIELLA-PNEUMONIAE, PROTEUS-NON-MIRABILIS

Are there any identities which shouldn't have appeared?

** Yes.

Which one(s)?

** PSUEDOMONAS-AERUGINOSA

Do you want to

1] track down the problem yourself, or

2] allow me to guide the debugging, or

3] ignore it for now and fix it another time.

Type 1, 2, or 3.

** 2.

If the expert had typed 1, he would have used the HOW and WHY com-

mands to debug the problem, as discussed above.

We'll start with PSEUDOMONAS-AERUGINOSA first:

TEIRESIAS starts debugging by trying to find out why an inappropriate

diagnosis occurred. Frequently, solving one problem will make others "go

away" as well.

The following rules were used in deducing that the identity of

organism-1 is PSEUDOMONAS-AERUGINOSA:

RULE 184

Since

[1.1] The category of organism-1 is not known

[1.2] The gram stain of organism-1 is gram negative

[1.3] The morphology of organism-1 is rod

[1.4] the aerobicity of organism-1 is facultative

There is weakly suggestive evidence (.3) that the identity

of organism-1 is PSEUDOMONAS-AERUGINOSA.

Is this rule correct?

Note that this rule, which resulted in the wrong conclusion, is not neces-

sarily an incorrect rule. It might be (and in fact is) the case that it was

incorrectly invoked because one or more of its conditions are true when

they should be false.

B TEIRESIAS 99

** Yes.

Should its premise have failed for this case?

** Yes.

Which clause of the premise should have failed?

** Clause 1.

The expert believes that MYCIN should have known the category of

ORGANISM-1. MYCIN failed to establish the category, causing rule 184

to be used.

Should it have been possible to conclude a category?

** Yes.

Which one?

** Enterobacteriaceae.

There were no rules successfully invoked in the attempt to

deduce that the category of organism-1 is Enterobacteriaceae.

The following (potentially applicable) rules were NOT executed

because the marked [++] clause failed:

RULE 116

If

1) The identity of organism-1 is not known

++ 2) The gram stain of organism-1 is not known

3) The morphology of organism-1 is not known

4) The site of culture-1 is CSF

5) The infection is meningitis

6) The age of Albert Hall is less than or

equal to 2 months

Then there is weakly suggestive evidence (.33) that the

category of organism-1 is Enterobacteriaceae

RULE 050

If

1) The morphology of organism-1 is rod

2) The gram stain of organism-1 is gramneg

3) The aerobicity of organism-1 is facul

++ 4) The infection with organism-1 was acquired

while the patient was hospitalized

Then there is suggestive evidence (.7) that the category of

organism-1 is Enterobacteriaceae.

Are all these rules correct?

** Yes.

100 Applications-oriented AI Research: Science VII

Should any of them have been successfully invoked?

** No.

This would be the case if one of the marked premises was false because it

was "stepped on" by yet another rule farther back in the chain.

Is there a rule missing?

** Yes.

Would you like to give me such a rule now?

** Yes.

Good . .

.

The expert then proposes another rule to TEIRESIAS:

If:

1 ** THE PATIENT'S INFECTION IS PRIMARY-BACTEREMIA

2 ** THE SITE IS ONE OF THE STERILE SITES

Then:

** THERE IS EVIDENCE (.8) THAT THE CATEGORY IS

ENTEROBACTERIACEAE

TEIRESIAS parses this rule into its internal representation and then

translates it back into English, so that the expert can check it. We pick

up the dialogue after the expert has agreed on the parse. TEIRESIAS is

applying its rule model.

I hate to criticize, Dr. Davis, but did you know that most

rules about what the category of an organism might be,

that mention

the site of a culture

the infection

Also mention -

[A] the portal of entry of the organism

Shall I try to write a clause to account for [A]

?

** Yes.

Here we see one of the utilities of the rule model. TEIRESIAS prompts

the expert to add a bit of knowledge that is typically found in rules like

these and offers to fix the rule itself. This completion is accomplished by

looking at other rules that fit the same rule model, to find the most likely

portal- of- entry clause.

How about -

[A] The portal of entry is gastrointestinal. OK?

** Yes.

B TEIRESIAS 101

TEIRESIAS then does some finishing up: checking the complete rule with the

expert for final approval and asking the expert to write a brief description

(for bookkeeping purposes) of why the rule was needed. Finally, it runs the

consultation again internally, using the responses from the early part of the

dialogue, which it has stored. It turns out that adding the rule above did, in

fact, correct the other problems with the first consultation, and this time the

diagnosis is satisfactory to the expert.

Summary: TEIRESIAS and Expert Systems

TEIRESIAS aids a human expert in monitoring the performance of a

knowledge-based system. When the human expert spots an error in the

program's performance, in either the program's conclusions or its line of

reasoning, TEIRESIAS assists in finding the source of the error in the database

by explaining the program's conclusions—retracing the reasoning steps until

the faulty (or missing) rule is identified. At this point, TEIRESIAS assists

in knowledge acquisition, modifying faulty rules or adding new rules to the

database. Meta-level knowledge about the kinds of rules and concepts in

the database is applied to build expectations in TEIRESIAS 's model-based

understanding process. Meta-level knowledge is also used to encode problem-

solving strategies, in particular, to order the invocation of rules so that those

that are most likely to be useful (given the current knowledge of the program)

are tried first.

References

The principal reference on TEIRESIAS is the doctoral dissertation by

Davis (1976). Applications of meta-knowledge in expert systems are discussed

in Davis and Buchanan (1977). See also Davis (1977, 1978, 1980).

C. APPLICATIONS IN CHEMISTRY

CI. Chemical Analysis

COMPUTER PROGRAMS have been developed as aids in almost every aspect

of chemistry As evidenced by recent articles in two journals devoted to uses of

computers for chemical problems, Computers and Chemistry and Journal of

Chemical Information and Computer Science, most of the computer programs

have focused on numeric problems of data acquisition, data reduction, complex

electronic-energy calculations, and the like. By contrast, AI methods have

found application in two major classes of nonnumeric chemical-reasoning

problems: (a) determining the molecular structure of an unknown organic

compound—that is, the analysis or structure-determination problem; and

(b) planning a sequence of reactions in order to synthesize organic chemical

compounds—the synthesis problem.

Structure Elucidation

The elucidation of molecular structures is fundamental to the application

of chemical knowledge to important problems in biology and medicine. Some
of the areas in which chemists are actively interested include: (a) identification

of naturally occurring chemical compounds isolated from terrestrial or marine

organisms; (b) verification of the identity of new synthetic materials; (c) iden-

tification of drugs and their metabolites in clinical studies; and (d) detection

of metabolic disorders of genetic, developmental, toxic, or infectious origins

through the identification of organic constituents excreted in abnormal quan-

tities in human body fluids.

In many circumstances, especially in the areas of interest mentioned above,

the powerful analytic techniques of x-ray crystallography and x-ray fine-

structure analysis may not be applicable (see Article VII. C3), and chemists

must resort to structure elucidation from data obtained by various other

methods. Foremost among them historically is mass spectrometry (discussed

in detail below). If a chemist wants to determine the molecular structure of

an unknown chemical compound, he (or she) first isolates a pure sample of

the compound. Two questions must then be answered:

1. What are the atoms in the compound?

2. How are the atoms arranged (joined together) in a three-dimensional

structure?

102

CI Chemical Analysis 103

It is relatively simple to determine the constituents of the molecule, but

the enormous number of possible three-dimensional arrangements makes the

second question especially difficult to answer. It is this problem that is

addressed by the structure-elucidation programs. If the unknown substance

is a crystal, or can be crystallized, x-ray crystallography can be used to

determine the exact locations and connections of atoms in space.

If x-ray crystallography and x-ray fine-structure analysis techniques can-

not be applied, the chemist must take a more complicated approach to struc-

ture elucidation. No other tests are available to tell the chemist the exact

molecule; at best, he can use tests that help him discover small, connected

clusters of atoms, called molecular fragments, which are either present or

absent in the compound. Therefore, although the chemist may not know the

structure of the molecule, he can identify some of its subparts. From the frag-

ments identified as present in the compound and those known to be absent,

the chemist can derive a set of constraints. A constraint can be thought of

as a piece of a graph that must either occur or not occur in the final graph

representation of the molecule. This is how constraints are represented in the

structure-elucidation programs we discuss.

From the known constraints for a given molecule under investigation, it

is often possible to produce the graphs of all molecules that comply with

those constraints. An algorithm was developed by Joshua Lederberg (1964b)

to generate all possible acyclic (unringed) molecular structures from a set of

atoms; Brown and Masinter (1974) developed an algorithm that worked for

cyclic structures as well. Thus, it is now theoretically possible to generate

every possible molecular structure containing known subparts, but it is often

prohibitively expensive (computationally) to do so. However, the exhaustive

generation algorithms can often be constrained to enumerate a relatively small

set of candidate molecular structures, one of which is the unknown molecule.

If the number of atoms in an unknown molecule is relatively small, and the

number of known constraints is large, a chemist can figure out the molecular

structure by hand. However, the manual approach has been significantly

augmented by computer programs developed in the DENDRAL project at

Stanford University. These programs do not generate all the possible molec-

ular structures and then discard structures according to the constraints. The
computation required for the initial generation would be prohibitive. Instead,

they use the constraints to ensure that only a small subset of the theoretically

possible structures is ever actually generated.

Structure Elucidation with Constraints from Mass Spectrometry

Structure-elucidation programs are designed to help organic chemists

determine the molecular structure of unknown compounds. Experimental

data about the unknown compounds may be gathered by many different

analytic techniques, including mass spectrometry (MS), nuclear magnetic

104 Applications-oriented AI Research: Science VII

resonance spectroscopy (NMR), infrared spectroscopy (IR), ultraviolet spec-

troscopy (UV), and "wet chemistry" analysis. The first method mentioned,

mass spectrometry, is still a new and developing technique. It is particularly

useful when the quantity of the sample to be identified is very small, for mass

spectrometry requires only micrograms of a sample.

A mass spectrometer bombards the chemical sample with electrons, caus-

ing fragmentations and rearrangements of the molecules. Charged fragments

are collected by mass. The data from the instrument, recorded in a histogram

known as a mass spectrum, show the masses of charged fragments plotted

against the relative abundance of the fragments at a given mass. Although

the mass spectrum for each molecule may be nearly unique, it is still a difficult

task to infer the molecular structure from the 100-300 data points in the mass

spectrum. Partly, this is because a spectrum contains "noise peaks" and over-

lapping peaks originating from many parts of the molecule, but, what is more

critical, the theory of mass spectrometry is not complete.

Throughout Section C, the following terms will be used to describe the

actions of molecules in the mass spectrometer:

Fragmentation—the breaking of a connected graph (molecule) into fragments

by breaking one or more edges (bonds) within the graph.

Atom migration—the detachment of nodes (atoms) from one fragment and

their reattachment to other fragments. This process alters the mass of all

of the fragments.

Mass spectral process—a fragmentation followed by zero or more atom

migrations.

Other analytic techniques are commonly used in conjunction with, or

instead of, mass spectrometry. There are some rudimentary capabilities in

structure-elucidation programs for interpreting proton NMR and Carbon 13

(13C) NMR spectra. For the most part, however, interpretation of other

spectroscopic and chemical data has been left to the chemist. The programs

still need to provide a means for integrating the chemist's partial knowledge

into the generation of structural alternatives.

Organization of the Chemistry- applications Section

The following five articles cover the most important research in applying

AI to problems in chemistry. The first three articles describe the original

DENDRAL system, the subsequent work on the CONGEN generator program,

and the Meta-DENDRAL program, which attempts to formulate automatically

rules of mass spectrometry from examples of actual molecule-spectrum pairs.

Article VII.C3 describes the CRYSALIS system, which works in the domain

of x-ray crystallographic analysis and has an interesting, blackboard-style AI

architecture. Finally, Article VII.C4 describes three research systems, LHASA,

Cl Chemical Analysis 105

SECS, and SYNCHEM, all in the area of synthetic chemistry. Here, the goal

is not to figure out the structure of an unknown molecule, but rather to find

a technique for actually synthesizing a known substance in the laboratory.

C2. The DENDRAL Programs

C2a. Heuristic DENDRAL

THE HEURISTIC DENDRAL program finds the relatively small set of pos-

sible molecular structures of known constituent atoms that could account for

the given spectroscopic analysis of an unknown molecule. In 1964, Joshua

Lederberg developed the DENDRAL algorithm, which, given a set of con-

stituent atoms, enumerates all possible acyclic (unringed) molecular structures

that could be formed. This algorithm allowed an exhaustive approach to

structure elucidation—the problem of specifying how a complex molecule is

formed from its component atoms. In 1965, the DENDRAL project began at

Stanford University, with one intent to show that algorithmic programs that

produce results exhaustively but at enormous expense could be augmented by

some of the heuristic knowledge of experts to produce much the same results

with a fraction of the effort.

The Heuristic DENDRAL program achieved this objective by augmenting

the use of the DENDRAL structure-enumeration algorithm with data from

mass-spectrographic analysis of the unknown molecule and a set of rules used

by expert chemists to infer constraints on molecular structures from such

data. Pressing expert chemists to formulate rules about mass spectrometry,

however, proved to be an arduous process—the theory of mass spectrometry

was incomplete and the rules about it were inexact and difficult for experts

to explicate. Therefore, in 1970, the Meta-DENDRAL project addressed the

problem of automatically inferring these rules of mass spectrometry from

examples of molecular structures that had been properly analyzed by humans

(see Article VTI.C2c).

In 1976, the CONGEN program became the center of attention in the

DENDRAL project. The limitations of the DENDRAL algorithm were such

that Heuristic DENDRAL could generate only acyclic structures: ketones, alco-

hols, ethers, thiols, thioethers, and amines. CONGEN replaced Lederberg's

original acyclic structure generator with a generator that did not have the

acyclic limitation. CONGEN has been used as a stand-alone system by research

chemists and is discussed in Article VII.C2b.

DENDRAL has three functional parts, namely, PLAN, GENERATE, and

TEST:

1. PLAN. Planning in this context means redefining the problem in terms

that reduce the effort of the problem solver—for example, the prob-

lem of finding all possible combinations of a set of atoms is redefined

106

C2a Heuristic DENDRAL 107

to the problem of finding all such combinations consistent with con-

straints derived from mass spectrometry. Automatic inference of these

constraints is the planning part of Heuristic DENDRAL. The constraints

are listed in two parts: molecular fragments (clusters of atoms) that must

be in the final molecular structure and fragments that must not appear

in the final structure.

2. GENERATE. Within PLAN's constraints, the DENDRAL algorithm gen-

erates only those structures that do not include forbidden subparts or

exclude mandatory subparts. The generator was originally derived from

Lederberg's algorithm. When CONGEN was implemented as a stand-

alone system, these constraints were provided by the chemists using the

program, not by the planning part.

3. TEST. This last part of the program ranks the resulting list of candidate

structures by simulating their behavior in a mass spectrometer. The
structures resulting in simulated spectra closest to the empirical one are

ranked highest.

Heuristic DENDRAL thus has two sets of rules that encode the mass-

spectrometry knowledge: (a) rules applied during planning that interpret

mass-spectral data and infer molecular fragments and (b) rules applied during

testing that simulate the action of the mass spectrometer on the structure

or structures proposed by CONGEN and that predict peaks that should be

observed in the spectrum of the molecule.

Planning: Inferring Constraints from the Mass Spectrum

The Heuristic DENDRAL program is given the mass spectrum and the

atomic constituents of a molecule. From the latter it can infer the molecular

weight, M, of the molecule. Many of the rules for interpreting mass spectra

include M, for example, the following rule (see Fig. C2a-1):

If the spectrum for the molecule has two peaks at masses

x\ and X2 such that

a. x\ + X2 = M+ 28, and

b. x\ — 28 is a high peak, and

c. X2 — 28 is a high peak, and

d. at least one of x\ or X2 is high,

Then the molecule contains a ketone group.

This piece of knowledge about mass spectrometry allows Heuristic DENDRAL
to constrain its structure-generating algorithm to produce molecules with a

ketone group as a mandatory constituent. Many rules like this one significantly

constrain the number of molecules generated by the structure generator.

For example, given the spectrum for a molecule containing 8 carbons, 16

hydrogens, and 1 oxygen, the constraint-generating program can eliminate

108 Applications-oriented AI Research: Science VII

Ri

I

Ri(xi)

0=C fragments into 0=C
i

R2 R2

Ri

and/or 0=C
I

R2 (x2)

Intensity

e/m

Figure C2a-1. Mass spectrum data.

from consideration (i.e., place on a list of forbidden structures called BADLIST)

all possible structures except those containing ethyl ketone 3, which reduces

the number of generated molecular structures from the topologically possible

790 to a constrained set of three (called the GOODLIST).

The Generator

The algorithm for generating molecular structures is complicated and has

no AI content; we discuss it only in general terms and refer the reader to

Buchanan, Sutherland, and Feigenbaum (1969) for a more detailed presenta-

tion. Article VII.C2b discusses the more recently developed CONGEN generator.

There are several design characteristics of the generator that are related

to the enormous number of molecules combinatorially possible in an analysis

problem. First, the generator must be proved to be complete—it must be

able to generate all topologically possible molecular structures. It should

also be nonredundant; that is, it should generate each structure only once.

Redundancy was a problem for structures with rings, because Lederberg's

algorithm treated symmetrically identical candidate molecules as unique struc-

tures. A third characteristic is that the generator should be flexible enough

to be focused by constraints from the planning part—it should not blindly

generate all possible structures, but only those meeting the constraints. If

GOODLIST and BADLIST are empty, it should generate all isomers (structural

variants) of the given composition.

Some simple checks are made by the generator. The composition should

be compatible with the constraints inferred from the spectrum, and the struc-

tures generated should have only the types and amounts of atoms specified in

C2a Heuristic DENDRAL 109

the composition. Finally, the generator should not produce a structure known

to be unstable.

The structure generator essentially "grows" molecules, starting with a

small fragment of the molecule and adding pieces of the composition to it.

At any point in the growing process, there are numerous atoms or molecular

fragments that can be added to the growing structure, and there are many
places where these parts can be attached. But generally the constraints offered

by GOODLIST and BADLIST limit the number of possible structures that might

be grown at any point in the process.

The Testing and Ranking Routines

The programs MSPRUNE and MSRANK (Varkony, Carhart, and Smith,

1977) employ a large body of knowledge about the process of molecular

fragmentation in a mass spectrometer to make testable predictions from each

plausible candidate molecule. Predicted data are compared to the data from

the unknown compound, and some candidates are thrown out (by MSPRUNE)
while others are ranked (by MSRANK).

MSPRUNE works with (a) a list of candidate structures from the structure

generator and (b) the mass spectrum of the unknown molecule. It uses

a fairly simple model of mass spectrometry (encoded in rules) to predict

commonly expected fragmentations for each candidate structure. Predictions

that deviate greatly from the observed spectrum are considered prima facie

evidence of incorrectness, and the corresponding structures are pruned from

the list. MSRANK then uses more subtle rules of mass spectrometry to rank

the remaining structures according to the number of predicted peaks found

(and not found) in the observed data, weighted by measures of importance of

the processes producing those peaks.

Research Results

The Heuristic DENDRAL project, from 1968 to the present, and including

CONGEN, has produced a number of results of significance to chemists. The
work has shown that it is possible for a computer program to equal the

performance of experts in some very specialized areas of science. Published

papers on the program's analysis of aliphatic ketones, amines, ethers, alcohols,

thiols, and thioethers (Duffield et al., 1969; Schroll et al., 1969; Buchs et al.,

1970) make the point that although the program does not know more than

an expert (and, in fact, knows far less), it performs well on the structure-

elucidation task because of its systematic search through the space of possible

molecular structures and its systematic use of what it does know to constrain

the list of possibilities.

A paper on the program's analysis of estrogenic steroids notes that

the program can solve structure-elucidation problems for complex organic

110 Applications-oriented AI Research: Science VII

molecules (Smith et al., 1972). Another paper, on the analysis of mass spectra

of mixtures of estrogenic steroids (without prior purification), establishes the

program's ability to do better than experts on some problems (Smith et al.,

1973). With mixtures, the program succeeds where people fail; the task of

correlating data points with each possible fragmentation of each possible com-

ponent of the mixture is too difficult for humans to do. Several articles based

on results from CONGEN demonstrate its power and utility for solving prob-

lems of medical and biochemical importance (Smith, 1975; Smith and Carhart,

1976; Buchanan, 1976; Mitchell and Schwenzer, 1978; Varkony, Carhart, and

Smith, 1977).

DENDRAL programs have been used in determining the structures of the

following kinds of molecules:

1. terpenoid natural products from plant and marine animal sources,

2. marine sterols,

3. organic acids in human urine and other body fluids,

4. photochemical rearrangement products,

5. impurities in manufactured chemicals,

6. conjugates of pesticides with sugars and amino acids,

7. antibiotics,

8. metabolites of microorganisms, and

9. insect hormones and pheromones.

CONGEN (discussed in the next article) has also been applied to published

structure-elucidation problems by students in organic chemistry classes to

check the accuracy and completeness of published solutions. In several cases,

the program found structures that were plausible alternatives to the published

structures (based on problem constraints that appeared in the article). This

kind of information served as a valuable check on conclusions drawn from

experimental data.

References

See Lindsay et al. (1980) for a thorough and current treatment of the

DENDRAL programs. Buchanan and Feigenbaum (1978) is a shorter descrip-

tion of the programs. Also see Buchanan, Sutherland, and Feigenbaum (1969,

1970) and Lederberg (1964b).

C2b. CONGEN and Its Extensions

CONGEN (for CONstrained GENerator) is a program that was designed in

1976 to replace the old DENDRAL generator of acyclic (unringed) structures.

It has proved to be a powerful stand-alone program to assist the chemist in

determining the molecular structure of unknown compounds. The purpose

of CONGEN was twofold: (a) to allow the user to specify interactively cer-

tain types of structural information determined from any of several sources

(e.g., spectroscopy, chemical degradation, isolation) and (b) to generate an

exhaustive and nonredundant list of structures consistent with this informa-

tion. Unlike the original Heuristic DENDRAL program, it does not infer con-

straints from mass spectra but allows the chemist to specify them. Another

difference between CONGEN and Heuristic DENDRAL is that the newer pro-

gram can generate cyclic as well as acyclic molecular structures. The genera-

tion is a stepwise process, and the program allows interaction at every stage

so that, based on partial results, the chemist may be reminded of additional

information he (or she) can specify, thus limiting further the number of struc-

tural possibilities.

CONGEN breaks down the problem statement given by the chemist in

several different ways; for example, (a) hydrogen atoms are omitted until

the final steps of processing, (b) parts of the graph containing no cycles are

generated separately from cyclic parts (and combined at the end), (c) cycles

containing only unlabeled nodes are generated before the nodes are labeled

with the names of chemical atoms (e.g., carbon or nitrogen), and (d) cycles

containing only three-connected nodes (e.g., nitrogen or tertiary carbon) are

generated before two-connected nodes (e.g., oxygen or secondary carbon) are

mapped onto the edges. At each step, several constraints may be applied to

limit the number of emerging chemical graphs (Carhart et al., 1975).

There are two algorithms at the heart of CONGEN whose validity in

producing nonredundant structures has been mathematically proved (Brown

and Masinter, 1974; Masinter et al., 1974) and whose computer implemen-

tation has been well tested. Combined, they are designed to determine all

topologically unique ways of assembling a given set of atoms, each with an

associated valence, into molecular structures. The atoms may be chemi-

cal atoms with standard chemical valences, or they may be names repre-

senting molecular fragments (superatoms) of any desired complexity, where

the valence corresponds to the total number of bonding sites available within

the superatom. The algorithms can be thought of as performing problem

reduction and reconstruction, or subproblem recomposition, on molecular struc-

tures.

The first, partitioning, algorithm breaks down the problem of finding a

complete molecular structure into subproblems, for example, to determine

111

112 Applications-oriented AI Research: Science VII

the structures of the ringed and unringed components of the molecule. The
second, embedding, algorithm combines the substructures, found by partition-

ing, into complete molecular structures. Clearly, because of the combinatorics

involved, neither partitioning nor reconstruction can be unconstrained. There

are simply too many possible subproblems to solve, and each of them may
have many solutions. Consequently, combining subproblem solutions exhaus-

tively is not feasible. In both algorithms, constraints are brought to bear to

limit the size of the problem. There are three types of these constraints:

1. Graph theoretic. Symmetric structures are not considered unique.

2. Syntactic. Structures are constrained by the valences of the constituent

atoms. For example,

c
I

C—O—

c

is impossible because oxygen is bivalent; that is, it has only two bonding

sites.

3. Semantic. The chemist provides additional information about the mole-

cule that will help to determine its structure.

Substantial work has gone into modifying the two basic procedures, par-

ticularly the structure-generation algorithm, allowing it to accept a variety

of other structural information (constraints) and using it to prune the list

of structural possibilities. Current capabilities include specification of good

and bad substructural features, good and bad ring sizes, proton distributions,

and connectivities of isoprene units (Carhart and Smith, 1976). Usually the

chemist has additional information (if only some general rules about chemical

stability), of which the program has little knowledge but which the chemist

can use to limit the number of structural possibilities. For example, the

chemist may know that the chemical procedures for isolating the compound
would change organic acids to esters; thus, the program would not need to

consider structures with unchanged acid groups. In CONGEN, the chemist is

given the facilities to impart this knowledge interactively to the program.

To make CONGEN easy for research chemists to use, the program has

an interactive "front end." This interface contains EDITSTRUC, an interac-

tive structure editor; DRAW, a teletype-oriented structure-display program;

and the CONGEN "executive" program, which ties together the individual

subprograms and assists the user in various tasks such as defining superatoms

(small groups of connected atoms) and substructures, creating and editing

lists of constraints or superatoms, and saving and restoring superatoms, con-

straints, and structures. Recently, CONGEN was rewritten to search depth

first, so that examples could be produced right from the beginning of the

computation. This often allows the chemist to see that a particular problem

has been poorly or incorrectly constrained and to stop the computation early.

C2b CONGEN and Its Extensions 113

The current system is running on the SUMEX computing facility at Stan-

ford University and is available nationwide over the TYMNET network. It

has recently been completely rewritten in the BCPL programming language

to run on various other machines.

Limitations and Extensions

Although there are now computer programs, including CONGEN, that

assist chemists in constructing structural isomers from information about

partial structures, the programs have one serious, common limitation. Each

program must use nonoverlapping structural fragments as building blocks.

This limitation leads to at least two important problems. First, the chemist

using such a program must select nonoverlapping partial structures; otherwise,

an incomplete set of structures will result. This procedure, done manually,

is time-consuming and prone to error. Second, as a consequence of the first

step, problems are solved less efficiently by the programs because a detailed

environment of fewer atoms has been specified (to ensure that there are no

overlaps).

The GOODLIST INTERPRETER is a first attempt to remove this limitation

by simulating the manual procedure that the chemist follows to arrive at a

set of nonoverlapping constraints. It is designed to make more efficient use of

information about required structural features (GOODLIST plus superatoms)

of an unknown compound. Some early successes have demonstrated that

new problems are brought within the realm of solution by the GOODLIST
INTERPRETER that are impossible in CONGEN alone, due to the constraints

on computational resources.

Stereochemistry

One of the most important new additions to CONGEN deals with the

problem of enumerating all the stereoisomers of a given compound.

The mathematical problem of enumerating stereoisomers was solved by

James Nourse. Considerations of symmetry as embodied in the mathematical

theory of groups were critical to the solution. Coupled with the stereoisomer

generator, and given an empirical formula and some constraints, CONGEN
can generate all the stereoisomers that are possible solutions to the unknown
target molecule to be elucidated.

While this approach to the enumeration of stereoisomers involves very

few, if any, AI techniques, it solves a problem that human beings find very

difficult to solve. Chemists usually learn to solve this problem through visual

intuition. The mathematics involved is deep enough so that many chemists

will not have the patience to learn enough about the algorithm to apply its

insights in enumerating stereoisomers. One of the central problems for AI

work in chemistry now is how to use this new facility in structure elucidation.

114 Applications-oriented AI Research: Science VII

EXAMINE

Often in the course of a structure-elucidation problem, a large number

of candidate structures, perhaps a hundred or more, are generated, and

additional constraints must be derived, either from further data analysis or

from new experiments. The EXAMINE function, written by Neil Gray, works

from within CONGEN to survey, classify, display, or discard structures. This

function is very useful to the chemist who is searching for features common
to a large number of the structures or for features that are unique to certain

structures. The insights gained from EXAMINE can be used in planning new
experiments or in further data analysis. In pursuit of these objectives, the

chemist can define functional groups and other structural features or can work

with a predefined library of them. The EXAMINE function is then called, and

it examines the list of candidate structures for the presence or absence of

these features.

For example, the chemist can ask EXAMINE to look for all structures with

exactly one labile proton. (A labile proton is a hydrogen atom attached to a

nitrogen atom or to an oxygen atom.) The chemist can represent this structure

in EXAMINE as an exclusive-OR statement: exactly one hydrogen attached to

an oxygen atom in the structure OR (exclusive) exactly one hydrogen attached

to a nitrogen atom in the structure. The user can then request EXAMINE to

draw those structures that have this characteristic and those that do not,

to produce summary statistics on its frequency of occurrence, or to discard

those structures with or without it. While CONGEN is always able to discard

or prune away structures that do not satisfy certain constraints, EXAMINE
provides the interactive ability to develop Boolean combinations of constraints

for pruning, substructure search, or subsequent classification.

REACT

Before spectroscopy became a major tool of the structural chemist, all

structure elucidation had to be done by means of reaction chemistry, which

is still a major tool in solving structures. REACT is an interactive program

written by Tomas Varkony, Dennis Smith, and Carl Djerassi (1978). Although

it is a close relative to the synthetic programs described in Article VII.C4, its

purpose is to aid chemists in the structure-elucidation task rather than in

finding new synthetic routes.

To show how REACT works to reduce the number of candidate structures

found by CONGEN, consider the following example. A dehydration reaction

can be expressed as a production rule of the form: "If you see the pattern

C—C—O, convert it to the pattern C=C." We now suppose that a dehy-

dration reaction was applied to the unknown in question and yielded three

distinct structures, because the pattern C—C—O occurred in the molecule in

three different places. This information can be used to eliminate structures

C2b CONGEN and Its Extensions 115

from those under consideration. The structure list generated by CONGEN is

passed to REACT, the dehydration reaction is defined by the user and then

applied to all the candidate structures, and those that do not yield exactly

three products can be eliminated from consideration as candidate structures.

Although REACT does not contain stereochemical, conformational, or

electronic information (the electronegativities of its atoms and groups), it

still performs reliably in its structure-elucidation function. Reactions used

for structure determination tend to have high yield, to be reliable, and to

involve simple separations. The reactions operate under a wide variety of

conditions and usually involve rather simple changes to the unknown molecule.

Thus, the perception routines do not need the sophisticated stereochemical,

conformational, and electronic information of the organic-synthesis programs

discussed above.

Summary

Research in the DENDRAL project has followed two themes: to build

a performance program for analysis of molecular structures and to explore

some problems of scientific inference with AI methods. The performance of

Heuristic DENDRAL has been evaluated in the same way as that of a research

chemist—by publications. In addition, CONGEN is used daily by chemists to

help solve structure-elucidation problems.

Because of the combinatoric size of analysis problems, exhaustive problem-

solving methods were not an option, and much thought was given to what

knowledge enabled chemists to solve these problems. DENDRAL was one

of the first programs to demonstrate the power of encoding domain-specific,

heuristic expertise and was therefore one of the first projects to recognize

knowledge acquisition as a major problem in AI (Buchanan, Sutherland, and

Feigenbaum, 1969; Davis, 1976). The next article (VII.C2c) discusses automatic

inference of rules as one solution to the problem of knowledge acquisition.

References

In addition to the DENDRAL references in the previous article, the follow-

ing may be of interest: Brown, Masinter, and Hjelmeland (1974), Brown and

Masinter (1974), Carhart et al. (1975), Carhart and Smith (1976), Masinter

et al. (1974), Sheikh et al. (1970), and Smith and Carhart (1978).

C2c. Meta-DENDRAL

THE domain-specific rules that constitute DENDRAL's knowledge about mass

spectrometry were derived from consultation with experts in that field. Since

the consultation process is time-consuming, two alternatives to handcrafting

knowledge bases have been explored. One is interactive transfer of exper-

tise, as described in Article VII.B. The other is automatic theory formation.

Meta-DENDRAL is a program of the latter type. The rule-formation task

that Meta-DENDRAL performs is similar to grammatical inference, sequence

extrapolation, and concept formation and is classified in AI as learning (see

Chap. XIV, in Vol. III). Programs that perform these tasks can all be thought

of as "induction" programs, because they formulate general rules (or concepts,

or patterns) from examples.

Meta-DENDRAL, is designed to infer theories (rule sets) for the Heuristic

DENDRAL program (Article VII. C2a), which represents knowledge about mass

spectrometry as production rules. Automatic rule formation was chosen as

a paradigm for Meta-DENDRAL for two general reasons. First, this design

poses interesting epistemological questions, and, second, as mentioned before,

it is an arduous task to derive rules from human consultants, especially when
the task domain has only a small number of experts (as is the case in mass

spectrometry).

Representation of Knowledge About Mass Spectrometry

In DENDRAL, knowledge about the fragmentation processes in a mass

spectrometer is represented in the form of production rules. Each rule specifies

a bond fragmentation in a particular context in a molecule. These rules are

used by DENDRAL during its TEST phase to predict mass-spectral data points,

given a certain molecular structure. For example, one simple rule is:

Rl. N—C—C—C -> N—C * C—C .

Rules are interpreted for each molecule in the following way:

1. Find all places in the molecule that match the subgraph expressed by

the left-hand side of the rule.

2. For each match, break the molecule at the bond marked with an asterisk

in the right-hand side of the rule and save the fragment associated with

the atoms to the left of the asterisk.

3. Record the mass of all saved fragments.

Note that no migration of atoms between fragments is predicted by rule Rl.

116

C2c Meta-DENDRAL 117

The language of processes (right-hand sides of rules) is relatively simple:

One or more bonds from the left-hand side may break, and zero, one, or more

atoms may migrate between fragments. The interpretation of rule Rl in the

example above is straightforward: If a molecule contains a nitrogen atom and

three carbon atoms bonded as N—C—C—C, then it will fragment in the mass

spectrometer between the middle two carbon atoms, and the N—C fragment

will be recorded in the spectrometer as a peak at the point in the spectrum

corresponding to the molecular weight of this fragment.

Formation of Mass-spectral Rules

The task of Meta-DENDRAL is to infer rules, like Rl above, from empiri-

cal data. Meta-DENDRAL is provided with descriptions of the structures of

a related set of molecules, and with the set of peaks produced by the frag-

mentation of each molecule in the mass spectrometer. From these data it

infers a small and fairly general set of mass-spectral rules to account for the

fragmentations of the molecules and the corresponding spectral peaks.

Training instances. In order to learn rules, the Meta-DENDRAL pro-

gram is presented with many examples of actual input-output pairs from

the mass spectrometer. Each pair represents a molecular graph structure,

together with a single data point from the mass spectrum for that structure.

The rules to be learned constitute a representation of the relevant fragmenta-

tions in the mass spectrometer. Typically, the program starts with a training

set of 6-10 related molecules and their associated spectra, each containing

50-150 data points—peaks marking the masses of recorded fragments (and

the relative abundance of fragments at those masses).

In a large molecule, rule Rl may apply more than once. For example, the

spectrum of CH3—CH2—CH2—NH—CH2—CH2—CH2—CH3 will contain

data points at masses 72 and 86 corresponding to the two fragments derived

from the application of this rule:

CH3—CH2—CH2—NH—CH2

and

CH2—NH—CH2—CH2—CH2—CH3 .

For a number or reasons, data points are not associated uniquely with a

single fragmentation and atom-migration process (rule). For example, a single

process may occur more than once in a molecule (as above), or more than one

process may produce identical fragments, producing peaks at the same mass

points in the spectra.

118 Applications-oriented AI Research: Science VII

Spectral Data Points and Mass-spectral Processes:

Statistical and Semantically Constrained Associations

Purely statistical learning programs (Jurs, 1974) find associations indi-

cated by the data without judging the meaningfulness of these associations.

This feature can be advantageous; at times, investigators' biases inhibit their

seeing important associations. But it is a disadvantage when the number of

associations is so large that the meaningful ones, unmarked, get lost in the

crowd.

In contrast to statistical approaches, Meta-DENDRAL utilizes a semantic

model of the domain. This model has been included for two important reasons.

First, it provides guidance for the rule-formation program in a space of rules

that is much too large to search exhaustively and in a domain in which input

data are often ambiguous. Second, it provides a check for the meaningfulness

of associations produced by the program in a domain in which the trivial or

meaningless associations far outnumber the important ones.

Semantic model of the domain. The base-level, or zero-order, theory

of mass spectrometry states that every subset of bonds within a molecule may
break and that the resulting fragments, plus or minus migrating atoms, will

all be recorded. This zero-order model of mass spectrometry is not specific

enough to constrain effectively the rule search. Therefore, some general

guidelines have been imposed on it, the so-called half- order theory.

The half-order theory asserts that bonds will break and atoms will migrate

to produce data points. This theory orders the break-and-migrate process

according to the following constraints:

Constraints on fragmentations:

1. Double bonds and triple bonds do not break.

2. No aromatic bonds break.

3. Only fragments larger than two carbon atoms show up in the

data.

4. Two bonds to the same carbon atom cannot break together.

5. No more than three bonds break in any one fragmentation.

6. No more than two complete fragmentations occur in one process.

7. At most two rings fragment in a multiple-step process.

Constraints on atom migration:

1. At most two hydrogen atoms can migrate after a fragmentation.

2. At most one H2O unit is lost after any fragmentation.

3. At most one CO unit is lost after any fragmentation.

One of the most helpful features of this model is its flexibility: Any of the

parameters can be easily changed by a chemist to fit his model of the process;

any of these assumptions can be removed and, as discussed in the following

C2c Meta-DENDRAL 119

section, additional statements substituted or added. This power to guide rule

formation results in the program's discovering only rules within a well-known

framework; on the other hand, it also results automatically in rules that are

meaningful to the domain.

A chemist will often know more about the mass spectrometry of a class of

molecules than is embodied in the half-order theory. It is important, then, to

be able to augment the program's model by specifying class-specific knowledge

to the program. This capability provides a way of forming new rules in the

context of additional intuitions or biases about mass spectrometry. A chemist

can thus see the most interesting rules (as defined by the augmentations)

before the other rules. For example, one might be interested in rules that

mention at least one nitrogen atom before one looks at the numerous (and

generally less interesting) rules that mention only carbon and hydrogen sub-

structures.

Learning strategy. The Meta-DENDRAL program is based on a gen-

erator of production rules that uses predetermined syntax operating under

the constraints of a semantic world model. The operation of Meta-DENDRAL
can be summarized as follows.

Input. Recall that Meta-DENDRAL is not a structure-elucidation program

but infers rules of mass spectrometry, which associate molecular

structures and their mass spectra. Thus, the input to the program is

a. the structure of each of a set of related molecules,

b. the spectral data points (peaks) for each of the molecules, and

c. the half-order theory (or some semantic theory to constrain the

generation of rules).

Step 1: INTSUM. For each molecule, explain each peak in its spectrum by

finding one or more fragmentation process that would account for the peak.

The number of plausible fragmentation processes is limited by

a. considering only the fragmentations that are allowed by the

half-order theory (e.g., no spectral peak can be explained by

a fragmentation process that involves breaking a double bond)

and

b. considering only fragmentations that produce fragments with

a molecular weight corresponding to the weight represented by

the peak. (Recall that each peak in a mass spectrum represents

a number of molecular fragments of a given mass.)

For example, if the total weight of the molecule under inspection is M,

and the spectrum has a large peak associated with a molecular weight of

M — 47 mass units, then the only fragmentation processes considered as

explanations for this point would be those that produce a fragment with a

molecular weight ofM — 47. The tens, or hundreds, of other processes that

produce fragmentations consistent with the half-order theory, like cleaving

off a hydrogen atom, are not even considered. After each data point in the

120 Applications-oriented AI Research: Science VII

spectrum for each molecule has been explained by a plausible fragmentation

process, the list of processes is summarized, since the same fragmentation

processes will often be found to account for many spectral data points. The
final product of INTSUM is a list of fragmentation processes with the total

evidence for each such process.

Step 2: RULEGEN. The rules provided by INTSUM each account for a single

fragmentation process in the context of a single molecule. As such, they are

not general. The problem with general rules, on the other hand, is that a

single one may subsume several of INTSUM's very specific fragmentations,

but also fragmentations not represented in the set produced by INTSUM.
That is, a general rule may correctly explain many data points in mass

spectra (positive evidence) but may also predict points that do not occur in

any of the spectra (negative evidence). The purpose of RULEGEN is to find

a set of rules that are more general than those of INTSUM, using positive

evidence as a criterion of success. Negative evidence introduced by these

rules is handled by a later step, called RULEMOD.

RULEGEN works by "growing" a tree of fragmentation rules, starting with

one that is overly general and adding features to it so that it becomes more

constrained. The rule that RULEGEN starts with is X * X, that is, the bond

between any atoms will break, and the mass of fragment X will be recorded

in the mass spectrometer as a peak. Obviously, every fragmentation rule

is a specialization of this one, and it is too general to be interesting. But

by specifying values for four features—the identity of X , the number of

nonhydrogen neighbors of X, the number of hydrogen neighbors of X, and

the number of doubly bonded neighbors of X—the general rule X *X can

be grown into something more interesting.

Step 3: RULEMOD. RULEGEN can generate rules that predict nonexistent

data points in the mass-spectral data. This negative evidence is the cost of

the coarse method used by RULEGEN for finding general rules. RULEMOD
"tidies up" the rules produced by RULEGEN by merging rules, eliminating

redundancies, and making rules more specific or more general. In addition,

if a rule has been used successfully for a time, but an instance is found in

which it is inappropriate, RULEMOD can modify the rule accordingly.

Output. The output of Meta-DENDRAL is a set of mass-spectral fragmen-

tation rules that are specialized enough to be interesting, but general enough

to be efficient and nonredundant.

The Meta-DENDRAL Program

The program itself is organized as a series of plan-generate-test steps,

as found in many AI systems (Feigenbaum, Buchanan, and Lederberg, 1971).

After scanning a set of several hundred molecular structure/spectral data-

point pairs, the program searches the space of fragmentation rules for plausible

explanations and then modifies its rules on the basis of detailed testing. When
rules generated from a training set are added to the model and another block

C2c Meta-DENDRAL 121

of data is examined, the rule set is extended and modified further to explain

the new data. The program iteratively modifies rules formed from the initial

training set (adding to them), but it is currently unable to "undo" rules.

Integrating subsequent data. A requirement for any practical learning

program is the ability to integrate newly acquired data into an evolving knowl-

edge base. New data may dictate that new rules be added to the knowledge

base or that existing rules be modified or eliminated. Rules may be added

to the rule base by running RULEGEN on the new data and then running

RULEMOD on the combined set of new and previously generated rules.

When an existing rule is modified, it is important to maintain the integrity

of the modified rule over past training instances. Consider the following

example: A new training instance is acquired and, after questions of credit

assignment are resolved, it is decided that rule R was incorrectly "triggered"

by some situation S. The left-hand side of rule R must be modified so that it

no longer matches S. In general, there would be many changes possible to R
that would kill the match to S, but some are better than others. The correct

changes to R are those that do not alter past correct applications of R. Of

course, there is no way of knowing which of the possible changes to R will

turn out to be correct for future data, and once a change is selected, there is

still the possibility of backtracking at some future point.

Mitchell (1977) developed a method for representing all versions of the

left-hand side of a rule that are consistent with the observed data for all

iterations thus far. This representation is referred to as the version space of

the rule. By examining the version space of R, one can answer the question

"Which of the recommended changes to R will preserve its performance on

past instances?" The answer is, simply, "Any changes that yield a version

of the rule contained in the version space." Using version spaces avoids the

problem of selecting a single unretractable modification to R and therefore

eliminates the need for backtracking. For example, all the elements of the

version space that match some negative instance S are eliminated. Similarly,

when new data are encountered in which a situation S' is found to correctly

trigger R, only those elements of the version space that match S' are retained

(see Article XTV.D3a, in Vol. Ill, for a complete discussion).

Results

One measure of the proficiency of Meta-DENDRAL is the ability of a

DENDRAL program using the learned rules to predict correct spectra of new
molecules. One of the DENDRAL performance programs ranks a list of plau-

sible hypotheses (candidate molecules) according to the similarity of their

predictions (predicted spectra) to observed data. The rank of the correct

hypothesis (i.e., the molecule actually associated with the observed spectrum)

provides a quantitative measure of the "discriminatory power" of the rule set.

122 Applications-oriented AI Research: Science VII

The Meta-DENDRAL program has successfully rediscovered known, pub-

lished rules of mass spectrometry for two classes of molecules. What is more

important, it has discovered new rules for three closely related families of

structures for which rules had not previously been reported. These are the

mono-, di-, and tri-keto androstanes, which share the common structural

skeleton shown in Figure C2c-1.

Meta-DENDRAL 's rules for these classes have been published in the chem-

istry literature (Buchanan et al., 1976). Evaluations of all five sets of rules are

discussed in that publication. This work demonstrates the utility of Meta-

DENDRAL for rule formation in mass spectrometry for classes of structures.

The most recent application of Meta-DENDRAL has been to a second

spectroscopic technique

—

ISC-nuclear magnetic resonance (13C-NMR) spec-

troscopy (Mitchell and Schwenzer, 1978). This version provides the oppor-

tunity to direct the induction machinery of Meta-DENDRAL under a model

of 13C-NMR spectroscopy. It generates rules that associate the resonance

frequency of a carbon atom in a magnetic field with the local structural

environment of the atom. Note that for 13C-NMR spectroscopy there is

no requirement for a half-order theory, since there is no equivalent to the

fragmentation processes that occur in mass spectroscopy. Each data point

is assigned to a unique atom in the molecule prior to the Meta-DENDRAL
run. Thus, there is no analogue of the INTSUM phase required by the mass-

spectroscopy version. Instead, an assigned spectrum (atoms to data points) is

given directly to RULEGEN.

The 13C-NMR rules have been generated and applied in a candidate-

molecule-ranking program similar to the one described above. Also, 13C-NMR
rules formulated by the program for two classes of structures have been

successfully applied to identify the spectra of additional molecules (of the same

classes, but outside the set of training data used in generating the rules). The

HO

Figure C2c-1. Structural skeleton for three classes of androstanes.

C2c Meta-DENDRAL 123

rule-based molecule-ranking program performs at the level of a well-educated

chemist in both the mass-spectral and the 13C-NMR domains.

References

See Lindsay et al. (1980) for a thorough and current treatment of the

DENDRAL programs, including Meta-DENDRAL. The thesis by Mitchell

(1978) is the principal source on this system. Article XIY.D4b in the chap-

ter on learning and inductive reasoning (in Vol. Ill) is a description of Meta-

DENDRAL as a learning program.

C3. CRYSALIS

THE CRYSALIS system is an attempt to apply AI methodology to the task

domain of protein crystallography. Although the computer has been an essen-

tial tool in x-ray crystallography research for many years, nearly all its

applications have been in data collection, data reduction, Fourier analysis,

graphics, and other essentially numerical tasks (Feigenbaum, Engelmore, and

Johnson, 1977). Those aspects of molecular-structure inference that require

symbolic reasoning or that use a significant amount of judgmental knowledge

have traditionally been performed manually. A prime example is the task of

electron- density-map interpretation.

In the course of deriving a protein structure, the crystallographer gener-

ates an electron density map, a three-dimensional description of the electron

density distribution of a molecule. Due to the resolution imposed by the

experimental conditions, the electron density map is an indistinct image of

the structure and does not reveal the positions of individual atoms. The
crystallographer must interpret the map in light of auxiliary data and general

principles of protein chemistry in order to derive a complete description of the

molecular structure. The goal of the CRYSALIS system is to integrate these

diverse sources of knowledge and data to try to match the crystallographer's

level of performance in electron-density-map interpretation. Automation of

this task would shorten the time taken for protein-structure determination

by several weeks, to months, and would fill in a major gap in the construction

of a fully automated system for protein crystallography.

Description of the Problem

When crystallographers refer to an electron density map, they usually

have in mind some pictorial representation of the electron density defined

over a certain region of space. The most common representation is a three-

dimensional contour map, constructed by stacking layers of conventional two-

dimensional contour maps drawn on transparent sheets. By carefully studying

the map, the experienced protein crystallographer can find features that allow

him (or her) to infer approximate atomic locations, molecular boundaries,

groups of atoms, the backbone of the polymer, and so on. After several weeks

(or months), he has built a model of the molecular structure that conforms

to the electron density map and is also consistent with his knowledge of

protein chemistry, stereochemical constraints, and other available chemical

and physical data (e.g., the amino acid sequence). Figure C3-la shows a

portion of a protein structure and Figure C3-lb shows the associated electron

density map from which it was inferred.

124

C3 CRYSALIS 125

Figure C3-1. (a) A portion of the molecular structure of lysozyme; (b) a

view of the electron density at 2.8 A of an a-helix in lysozyme,

corresponding to the structure in (a) (Snape, 1974).

The automation of this task would require a computational system that

could generate its own structural hypotheses, as well as display and verify

them. This capability requires: (a) a representation of the electron density

function suitable for machine interpretation, (b) a substantial chemical and

stereochemical knowledge base, (c) a wide assortment of model-building algo-

rithms and heuristics, (d) a collection of rules and associated procedures for

using this knowledge to make inferences from the experimental data, and (e) a

problem-solving strategy for applying these knowledge sources effectively, so

that the appropriate procedures are executed at the times that they are most

productive.

Protein crystallographers who build models move continually across a

large field of basic facts, special features of the data, and implications of

the partial model already built, looking for any and all opportunities to add

another piece to their structure. There are several desiderata to working

126 Applications-oriented AI Research: Science VII

in this "opportunistic" mode of hypothesis formation: (a) The inference-

generating rules and the strategies for their deployment should be separate,

(b) the rules should be separate from the mechanics of the program in which

they are embedded, and (c) the representation of the hypothesis space should

be compatible with the kinds of hypothesis-generating rules available. The
modularity of such a system would allow users to add or change rules for

manipulating the database, as well as to investigate different solution strategies

without having to make major modifications to the system.

The CRYSALIS Architecture: The Blackboard

A problem-solving paradigm that meets the above specifications, to a

large degree, is the blackboard architecture of HEARSAY-II (see Article V.C1,

in Vol. I), specifically with respect to the issues of knowledge integration and

focus of attention. In HEARSAY-II, an "iterative guess-building" process takes

place: A number of different knowledge sources (facts, algorithms, heuristics)

cooperate when working on various descriptions of the hypothesis. To use

the knowledge sources efficiently, a global database—the blackboard—is con-

structed that contains the currently active hypothesis elements at all levels of

description. The decision to activate a particular knowledge source depends

on the current state of the solution and on which available knowledge source

is most likely to make further progress. The control is, to a large extent,

determined by what has just been learned: A small change in the state of the

blackboard may provide the preconditions to instantiate further knowledge

sources (an illustration of this process in the context of electron-density-map

interpretation is given below).

Figure C3-2 shows the types of data and hypotheses that are found in

CRYSALIS. As in HEARSAY-II, the hypotheses are represented in a hier-

archical data structure. In our case, the different information levels can

be partitioned into three distinctly different "panels," but the concept of a

globally accessible space of hypotheses is essentially the same for both systems.

This figure also illustrates how knowledge sources (only a small subset is

shown) play the same role as in HEARSAY-II: adding, changing, or testing

hypothesis elements on the blackboard. Further explanation of these diagrams

is given in Engelmore and Nii (1977). The processes of generating or modifying

hypotheses and of invoking knowledge sources are nearly identical to those for

the AGE system (Nii and Aiello, 1978).

Representation of Knowledge in CRYSALIS

As mentioned above, there are many diverse sources of information in

protein-structure inference. The problem of representing all the knowledge in

a form that allows its cooperative and efficient use in the search for plausible

hypotheses is of central concern to the developers of CRYSALIS. The system

C3 CRYSALIS 127

Knowledge Sources

1. Peak finder

2. Heavy atom hypothesizer

3. Heavy atom verifier

4. Cofactor hypothesizer

5. Cofactor verifier

6. Cofactor location verifier

DENSITY PLANE

Figure C3-2. Panels of the CRYSALIS blackboard and examples of the

application of knowledge sources.

128 Applications-oriented AI Research: Science VII

as currently developed draws upon many concepts that have emerged in the

design of other large knowledge-based systems—for example, production rules

and blackboards. Following is a description of how these concepts have been

adapted.

Knowledge consists of facts, algorithms, and heuristics (rules of good

guessing). The facts required for protein-structure inference are general physi-

cal, chemical, stereochemical, and crystallographic constraints. Typical fac-

tual knowledge stored in the system includes the physical properties of the

elements commonly found in proteins, the molecular structure and chemical

properties of the 20 amino acids, and the bond lengths and the symmetry

properties of various crystal structures. These facts are encoded as tables or

as property lists attached to specific structural entities.

Algorithms and heuristics comprise both the formal and the informal

knowledge that generates or verifies hypothesis elements. The representation

of this kind of knowledge in CRYSALIS follows two general principles:

1. Identifiable areas of knowledge are decomposed into elementary units, in

which each unit increments the hypothesis when specified preconditions

are met.

2. The elementary units are represented as situation- action rules.

To illustrate:

IF the name of the current-residue is GLU, and

the shape of the subgraph is forked, and

the length of the subgraph is between 40 and 75, and

the number of associated peaks of the subgraph is

greater than 1

THEN conclude that the subgraph is matched, and

generate a new superatom on the blackboard,

with the following properties

:

Type is side-chain

Belongs to current-residue

Data-link to subgraph with certainty factor 500.

Note that several actions may be performed for a given situation. Not shown

here, but present in the LISP implementation of these rules, is a position in

the rule for variable bindings, to avoid repetitious calculation of parameters

appearing in several situation-action clauses. Also note that at least one of

the actions of each rule is to place a token on an event list. In the actual

implementation, the syntax of the "action" clause is represented as a single

function. An example follows:

Syntax: ((inference type) (element being changed) (att-value pairs))

Example: (SUBGRAPH . MATCHED (GENSUPATOM) ((TYPE SIDECHAIN)

(BEL0NGST0 CURRENT. RESIDUE) (DATALINK (SUBGRAPH . 500)))

)

C3 CRYSALIS 129

In this example, an event. SUBGRAPH.MATCHED, will be generated and queued

on the event list. The event list is used by the interpreter (discussed below) to

determine what to do next, that is, which set of knowledge sources to invoke

after the current event has been processed.

Event- driven Control

The CRYSALIS system uses an event- driven control structure. In this

scheme, the current state of the hypothesis space determines what to do next.

The monitor continually refers to a list of current events—the event list—that

triggers the knowledge sources most likely to make further headway. As a

knowledge source makes a change in the current hypothesis, it also places an

item on the event list to signify the type of change made. Thus, as events are

drawn from the event list for processing, new events are added, so that under

normal conditions the monitor always has a means for choosing its next move.

The normal iterative cycle of problem solving uses the event list to trigger

knowledge sources, which create or change hypothesis elements and place

new events on the event lists. The system's behavior is opportunistic: It is

guided primarily by what has been most recently discovered, rather than by

the requirement to satisfy subgoals. An event-driven control structure was

chosen partly to be efficient in selecting appropriate knowledge sources and

partly to conform wTith the opportunistic structure-modeling process normally

employed by protein crystallographers.

Rules

The formal and informal procedures that comprise the knowledge sources

are expressed as rules, as discussed above. These rules are collected into sets,

each set being judged appropriate to use when particular kinds of events occur.

The events generally reflect the level at which the inference is being made,

which in turn reflects the model's level of detail. The correspondence between

event classes and rule sets is established by another set of rules, the task rules.

The task rules are used to decide which knowledge source or sequence of

knowledge sources to call in order to perform one of the typical tasks in

building the structure—for example, tracing the protein backbone between

two anchor points. The decision is based on the state of the blackboard

and the items on the event list. The task rules thus form a second layer of

rules that directs the system's choice of knowledge sources for a given event,

reflecting the system's knowledge of what it knows.

Once a task either is completed or fails, the system looks to a higher

level of control to determine what to do next. At this higher level—the

strategy level—the structure-building process can either try to solve the cur-

rent subproblem by another method or shift attention to another region of

the structure. Strategy-level decisions are also expressed as rules and make

130 Applications-oriented AI Research: Science VII

use of the current state of the blackboard and event list. One such strategy

rule is:

IF the initialization task is complete, and

the locations of two or more atoms are known

(called toeholds) , and

these toeholds are separated by less than six

residues in the amino acid sequence, and

none of the intervening residues is identified

from the data,

THEN select the two-point chain-tracing task and focus

on the sub-sequence bounded by the toeholds

.

The part of the monitor that interprets and obeys the event rules may
be likened to a middle-level project manager who knows which specialists

to call in as new, partial solutions to a particular problem are discovered.

Continuing the analogy, the middle-level manager occasionally gets stuck and

needs help from higher level management. As mentioned earlier, some high-

level decision (such as merging two or more events to produce a new event or

shifting attention to another part of the blackboard) is required. This level

of decision making is embodied in a set of strategy rules, which are used to

direct the top-level flow of control.

We thus have a completely rule-based control structure that employs

three distinct levels of rules (or knowledge): the specialists, commonly called

the knowledge sources; the task rules, representing knowledge about the

capabilities of the specialists; and the strategy rules, which know when to

use all available knowledge to solve the problem. Although this pyramidal

structure of rules and meta-rules could continue indefinitely, the flexibility of

knowledge deployment offered by our three-tiered system appears sufficient

for this problem-solving system. Similar ideas in a simpler context have been

explored by Davis (1976) in his TEIRESIAS system (see Article VII.B).

System Performance—An Example

To give some indication of the system's current level of performance, we
present a typescript in which a typical hypothesis-formation task is completed.

The example is the subproblem of extending the model from an "island of

certainty," or anchor point, by using the crytallographic data to determine

where to extend the model in space and by using the amino acid sequence to

generate expectations of features that ought to be present in that region.

The knowledge sources invoked in this example use an abstraction of

the density map called a subgraph. A subgraph is a collection of segments

obtained from a skeletonized density map, which, one hopes, matches an

identifiable substructure in the protein—for example, a sidechain. The amino

acid sequence assumed here is METhionine, LYSine, LYSine, TYRosine, and

C3 CRYSALIS 131

so forth (the example uses data from the protein Rubredoxin). The example

starts after passing control to a knowledge source called ANCHOR.TOEHOLD.
The toehold of interest in this case is the sulphur atom in the methionine

sidechain. This toehold is just a point in space and must be connected to the

skeleton.

INFERENCE: EVENT- 1 BY RULE 1 IN RULESET ANCHOR . TOEHOLD

EVENT NAME: TOEHOLD . ANCHORED

CURRENT HYPOTHESIS ELEMENT: SA2

NEW PROPERTIES: ((TYPE SIDECHAIN) (BELONGSTO (MET .1))

(SEGS (((1 SEG240) .100) ((1 SEG238) .100))) (MEMBERS (A3)))

The ANCHOR.TOEHOLD knowledge source has found subgraphs of the

skeleton, but its limited knowledge cannot assign much certainty to the

inference. The "real" matching of skeleton parts with expected residue is

accomplished by MATCH.SDCHN. This knowledge source uses the shape of

the subgraph, its length, the number of peaks associated with the candidate

subgraph, and their heights. If a certainty factor (CF) of 500 or more is

assigned, the sidechain is considered to be located (CFs have a range of —1000

to 1000, with the CF combining function the same as that used by MYCIN;
see Article VIII.Bl).

INFERENCE: EVENT-2 BY RULE 3 IN RULESET MATCH. SDCHN

EVENT NAME: TOEHOLD

CURRENT HYPOTHESIS ELEMENT: SA3

NEW PROPERTIES: (SEGS (((1 SEG238) .823) ((1 SEG240) .555)))

If a sidechain is found, the trace tries to find the alpha carbon location by

finding a peak of a certain type near the root of the sidechain. The knowledge

source used to propose an alpha carbon position is called POSSIBLE.CALPHA.

The system assumes that the location of this peak is a more accurate guide

than the skeleton for locating this class of atom.

INFERENCE: EVENT-3 BY RULE 5 IN RULESET POSSIBLE. CALPHA

EVENT NAME: CALPHA
CURRENT HYPOTHESIS ELEMENT: A4

NEW PROPERTIES: ((TYPE C) (NAME CA) (BELONGSTO (MET .1))

(D. PEAKS ((PK076 .500))))

Once the toehold has been anchored, this trace becomes essentially a

generate-and-test search, heavily constrained by the sequence. The basic

control cycle for the trace is, first, propose a sidechain and match it; next,

propose a peptide and match that; and, finally, loop until a match fails.

Sometimes the carbonyl group present in each peptide will appear as a small

sidechain. If this happens, the proposed peptide will extend only from the last

sidechain up to this pseudo sidechain, and the peptide will fail to match. This

failure prompts the system to try matching the "sidechain" as a carbonyl.

132 Applications-oriented AI Research: Science VII

Success of this match would mean that only half of the peptide has been

found; the system can then propose a larger peptide, which contains the old

one, and proceed as before.

INFERENCE: EVENT-4 BY RULE 4 IN RULESET MATCH . PEPTIDE

EVENT NAME: PEPTIDE

CURRENT HYPOTHESIS ELEMENT: SA4

NEW PROPERTIES: ((TYPE PEPTIDE) (BELONGSTO (MET .1))

(SEGS (((SEG6 SEG8) .84))) (PEAKS (PK076 PK078)))

INFERENCE: EVENT-5 BY RULE 5 IN RULESET MATCH . CARBONYL . SC

EVENT NAME: CARBONYL . FOUND

CURRENT HYPOTHESIS ELEMENT: A5

NEW PROPERTIES: ((TYPE CO) (NAME CARBONYL)

(BELONGSTO (MET .1))

(SEGS (((1 SEG5) .581))) (PEAKS (PK036))

)

INFERENCE: EVENT-6 BY RULE 4 IN RULESET MATCH . PEPTIDE

EVENT NAME: PEPTIDE

CURRENT HYPOTHESIS ELEMENT: SA4

NEW PROPERTIES: ((SEGS (((SEG6 SEG8 SEGIO) .420)))

(PEAKS (PK076 PK078 PK036)))

INFERENCE: EVENT-7 BY RULE 7 IN RULESET MATCH. SDCHN

EVENT NAME: SIDECHAIN

CURRENT HYPOTHESIS ELEMENT: SA6

NEW PROPERTIES: ((TYPE SIDECHAIN) (BELONGSTO (LYS .2))

(SEGS (((1 SEG242) .527))))

INFERENCE: EVENT-8 BY RULE 5 IN RULESET POSSIBLE. CALPHA

EVENT NAME: CALPHA

CURRENT HYPOTHESIS ELEMENT: A6

NEW PROPERTIES: ((TYPE C) (NAME CA) (BELONGSTO (LYS .2))

(D. PEAKS ((PK078 .500))))

INFERENCE: EVENT-9 BY RULE 4 IN RULESET MATCH . PEPTIDE

EVENT NAME: PEPTIDE

CURRENT HYPOTHESIS ELEMENT: SA6

NEW PROPERTIES: ((TYPE PEPTIDE) (BELONGSTO (LYS .2))

(SEGS (((SEG232 SEG16) .600))) (PEAKS (PK017 PK125)))

(Three more events, similar to the preceding ones, have been omitted.)

INFERENCE: EVENT- 13 BY RULE 6 IN RULESET MATCH. SDCHN

EVENT NAME: SIDECHAIN

CURRENT HYPOTHESIS ELEMENT: SA9

NEW PROPERTIES: ((TYPE SIDECHAIN) (BELONGSTO (TYR .4))

(SEGS (((6 SEG212 SEG40 SEG36 SEG35 SEG228) .502))))

C3 CRYSALIS 133

The matching cycle terminates in one of two ways. If the skeleton becomes

so overconnected that the access function cannot propose the next subgraph

(sidechain or peptide), the trace fails; or if the certainty of a match is too low

and there are no rules to save the situation, the trace fails. Upon termination,

one final knowledge source is called to link together hypothesis elements

belonging to the same residue, creating an organizing "backbone."

INFERENCE: EVENT- 14 BY RULE 3 IN RULESET TRACE . CLEANUP

EVENT NAME: LINK-CA-TO-PEPTIDE

CURRENT HYPOTHESIS ELEMENT: SA4

NEW PROPERTIES: ((MEMBERS (A4))

)

(Two more events like the preceding one are omitted here.)

INFERENCE: EVENT-17 BY RULE 7 IN RULESET TRACE . CLEANUP

EVENT NAME: BACKBONE

CURRENT HYPOTHESIS ELEMENT: ST1

NEW PROPERTIES: ((TYPE BACKBONE) (CF 511) (DIRECTION 1)

(RANGE (1 .4)) (MEMBERS (SA1 SA2 SA3 SA4 SA5 SA6 SA7 NIL)))

Summary

At the present time, CRYSALIS is capable of performing only a small

portion of the total task of interpreting electron density maps. The devel-

opment and implementation of all the knowledge sources required for the

complete task is a long-term effort. CRYSALIS currently contains a rela-

tively small knowledge base that permits the interpretation of portions of

high-quality, high-resolution (2.0 Angstroms or better) electron density maps.

The system is expected to evolve toward an extensive knowledge-based prob-

lem solver capable of complete interpretation of medium-quality, medium-

resolution (2.0 to 2.5 A) electron density maps. Although CRYSALIS is not

yet worthy of serious attention by the protein-crystallographic community,

its defects lie primarily in its relatively meager knowledge base and not in

its design. As new knowledge sources are added to the system, its level of

performance is expected to rise to the point where it will be a significant aid

in the determination of new protein structures.

References

See Engelmore and Terry (1978, 1979), Engelmore and Nii (1977), and

Feigenbaum, Engelmore, and Johnson (1977).

C4. Applications in Organic Synthesis

THE SYNTHESIS of organic compounds is central to the creation of new

chemical products and to the development of more efficient processes for

manufacturing old products. However, the synthesis process for a particular

product is typically expensive to run and hard to design. Hence, there is great

interest among both academic and industrial chemists in new tools for finding

synthetic routes.

A synthesis problem begins with the structural description of a compound
that someone wants synthesized, often because the compound has useful

properties (e.g., a drug or a vitamin). Synthesis can also help confirm a pos-

tulated structure for an unknown compound, since the synthesized compound
and the unknown compound will, if identical, produce identical test results.

Chemists use the computer and AI techniques to explore systematically

the synthesis tree and to help organize the immense body of available knowl-

edge about chemical reactions. This approach of exhaustively exploring the

interesting branches of the synthesis tree was called the logic-centered ap-

proach by E. Corey and W. T. Wipke (1969), who first explored computer-

aided organic synthesis. Interesting branches are those most likely to produce

the desired result. "Interesting'
1

is an extremely difficult concept to define

and to cast into an algorithm; therefore, for now, the search for interesting

branches must be guided interactively by the chemist. Some of the relevant

considerations are the efficiency of a reaction, the cost of materials, and the

difficulty of meeting the experimental conditions that support a reaction.

The chemist represents the target structure graphically and relates it to

simpler chemicals via known chemical reactions. He (or she) relates those to

still simpler ones, until he reaches a set of commands, comparable to starting

materials that are readily available from chemical supply houses or that can be

easily synthesized in a few steps in the laboratory. A plan for synthesizing the

compound, called a synthetic route, may involve dozens of separate reactions.

If the molecule is at all complicated, there is an immense number of distinct

synthesis routes. For example, a simple steroid composed of about 20 atoms

has over 10 18 possible direct routes.

Synthesis routes can be viewed in terms of an AND/OR tree (discussed in

Article II.C4, in Vol. i). The tree descends from the goal node, representing the

target molecule, to the terminal nodes, equivalent to the starting materials.

The branches connecting the nodes are chemical reactions. Since a synthesis

plan involves combining compounds in reactions, the AND-links of the tree are

present in any one synthesis route; alternative ways of making a compound
anywhere within the plan are represented by OR-nodes.

134

C4 Applications in Organic Synthesis 135

The Three Major AI Synthesis-research Programs:

LHASA, SECS, and SYNCHEM

There are three major programs in computer-aided organic synthesis. The

earliest is LHASA (Logic and Heuristics Applied to Synthetic Analysis), which

was written by Corey and Wipke at Harvard and is maintained at Harvard by

Corey and his research group. SECS (Simulation and Evaluation of Chemical

Synthesis) is an outgrowth of LHASA and was written by Wipke and main-

tained by him and his research group at the University of California at Santa

Cruz. It extended the LHASA paradigm by the inclusion of stereochemical

and conformational information into all aspects of the computer program.

The third major program is SYNCHEM (SYNthetic CHEMistry), written and

maintained by H. L. Gelernter and his research group at the State University

of New York at Stony Brook. The main features of these three programs are

summarized in Table C4-1.

Since SECS was designed to extend the methods in LHASA, much of the

discussion of SECS applies to both programs. Of the three, only SECS is

demonstrably transportable to computers other than the one on which it was

developed.

Two Approaches

A major distinction between SECS (and LHASA) and SYNCHEM is that

SECS is oriented toward high performance while SYNCHEM is oriented more

toward AI issues involving search. Because of this, and because chemists'

intuitions about interesting pathways are hard to define, SECS relies on a

Table C4-1

Chemical Synthesis Programs

Program
Principal

designer
Main features

LHASA E. J. Corey Large procedural knowledge base of

transforms; interactive; high performance.

SECS W. T. Wipke Separate knowledge base of many transforms

with special interactive language for defining

new ones (ALCHEM); interactive graphics;

high performance.

SYNCHEM H. Gelernter Motivated by AI search problems; evaluation

during search done by the program, not by

a chemist.

136 Applications-oriented AI Research: Science VII

chemist's interacting with the program. SYNCHEM, on the other hand,

searches the space of possible synthetic routes without interactive guidance

from a chemist. In operational terms, the main difference is whether the

evaluation function for the search procedure is explicitly given to the program

and used without guidance from the chemist (as in SYNCHEM) or it is not

explicitly given to the program (as in SECS and LHASA). In the following,

these are called the noninteractive and interactive approaches, respectively.

SECS can be reconfigured to run noninteractively, although with the chemist's

guidance the system tends to give better results.

The Chemical Knowledge Base

The primary item of knowledge in chemical synthesis is the chemical

reaction—a rule describing a situation in which a change can occur (to a

molecular structure) plus a description of that change. For example, the

reaction shown in Figure C4-1 describes a change to a molecule containing the

substructure 0=C—C—C=0 in the presence of the reagent oxalyl chloride.

To design a synthesis route from starting materials to target molecule,

knowledge of reactions can be used in either of two ways:

1. Forward direction: Apply known reactions to starting materials, then to

the products of those reactions, to the products of products, and so

forth, until the target is reached. The combinatorics of this approach

make it impossible in practice, because there are thousands of possible

starting compounds and only one target.

2. Reverse direction: Starting with the target molecule, determine which

reactions might produce it. Then look for ways to make the precursors,

the precursors of precursors, and so forth, until the starting materials

are reached. Storing the reactions in the reverse direction makes it easier

to search the tree of possible pathways.

All three programs have a large knowledge base of reverse chemical reac-

tions called transforms—production rules of the condition-action form (see

Article III.C4, in Vol. i). The left-hand side of each rule represents a substruc-

ture pattern to be matched in the target structure (or intermediate structure)

and the right-hand side is a description of precursors that will produce the

goal structure under specified reaction conditions. Each of the three projects

has dealt with the problems of constructing a knowledge base in very different

ways. (Fig. C4-2 shows the representation in the SECS knowledge base for

0=C—C—C=0 + Oxalyl Chloride 0=C—C=C—CL

Figure C4-1. Graphical representation of a chemical reaction.

C4 Applications in Organic Synthesis 137

the reverse reaction of the one shown in Fig. C4-1, plus all the associated

information.)

1. The LHASA knowledge base is a set of procedures. Although it contains

very sophisticated chemistry knowledge, it is difficult to modify (see

Article III.C2, in Vol. I).

2. The SECS knowledge base contains about 400 separate transforms. New
transforms can be defined by users and entered into the knowledge base

without changes to the program. Because of its clarity, it is useful for

illustration and is discussed in detail below.

3. The SYNCHEM knowledge base is a library of reactions that can be

updated by chemists without reprogramming. Each reaction is compiled

automatically into a reverse reaction. In addition, the knowledge base

contains a large library of starting compounds that are available com-

mercially. (In a newer version, SYNCHEM2, the catalogue of starting

materials has been replaced by a set of stopping criteria for synthesis

routes.)

Each of the SECS transforms is stored external to the SECS program;

this allows the knowledge base to be tailored to a specific problem domain.

Further, the number and complexity of the transforms are not limited by the

size of core memory. A simple, flexible language, called ALCHEM, is provided

in which chemists can enter new transforms into the knowledge base.

ALCHEM embodies a model of what information is needed to describe

a reaction adequately. According to this model, a transform consists of the

following six sections:

1. Transform name;

2. Substructure key or pattern to be matched;

3. Character—used to help judge the relevance to strategic planning;

4. Scope and limitations;

5. Reaction conditions—not to be violated by the remainder of the molecule

containing the substructure key;

6. Manipulation statements—describing the graph transformations to be

performed.

This will be clarified below with an example.

In the reaction shown in Figure C4-1, one of the oxygens double-bonded

to carbon is replaced by a single bond to a chlorine. To go from a graphi-

cal representation of a synthetic reaction to the graphical representation of

a SECS transform, we reverse the left- and right-hand sides and specify addi-

tional important conditions. Using the ALCHEM language, the chemist could

interactively enter the representation of this transform as shown in

Figure C4-2.

In the manipulation statements, BREAK BOND 3 refers to the third bond

from the left in the substructure key; the double bond between the two carbons

138 Applications-oriented AI Research: Science VII

Comment: Chloroenones, 0=C—C—C=0 goes to 0=C—C=C—CL
Reagent: Oxalyl Chloride

Ref: Heathcock and Clark (1976).

Transform name: CHLOR-ENONE

Substructure key: 0=C—C=C—CL (1 = 2 — 3 = 4 — 5>

Priority: 100

Character: CHARACTER ALTERS GROUP

Scope IF ACID IS OFF PATH THEN KILL

and limitations: IF ESTER IS OFF PATH THEN KILL

IF HYDROGEN IS ALPHA TO ATOM 4 THEN

BEGIN

IF HYDROGEN IS ALPHA TO AT0M2

THEN SUBTRACT 75 FROM PRIORITY

DONE

Manipulation BREAK BOND 3

statements: DELETE ATOM 5

ADD OF ORDER 2 to ATOM 4

In the actual reaction, of course, the chlorinated compound comes from

the precursor.

Figure C4-2. ALCHEM representation of a SECS transform.

is reduced to a single bond. Similarly, DELETE ATOM 5 refers to the chlorine

atom CL, the fifth atom from the left. When the program is actually run,

a compiler called SYNCOM translates the ALCHEM statements into machine-

readable form before SECS reads the knowledge base.

A Brief Description of SECS

SECS and LHASA have been designed to divide the work between the

chemist and the computer in an optimal way. Wipke and his associates (1977)

explain their philosophy as follows:

Our performance goal for the program was that the program should be able

to help a chemist find many more good and innovative syntheses than the

chemist could working alone. Because of the complexity of the problem

domain, we felt the chemist and computer working together with each

assigned tasks for which they are best suited, and with efficient interaction

between the two, would be more effective than either working alone. Our

C4 Applications in Organic Synthesis 139

goal was not to replace the chemist, but to augment the chemist's problem

solving capabilities, (p. 174)

Graphics. To communicate with the SECS program, the chemist uses a

graphics terminal with a CRT, a minicomputer, a keyboard, and a light pen.

With the pen, the chemist draws on the screen the graphical structure of

the target molecule to be synthesized. Much work has gone into the human-

engineering aspects of the program, so that the SECS graphics routines are

designed to be as near as possible to the chemist's normal ways of thinking

in terms of the structure diagram or the molecular model. There are similar

facilities in LHASA. By convention, hydrogen atoms are suppressed. Also

by convention, only noncarbon atoms (called heteroatoms) are labeled. This

is useful, since the majority of nonhydrogen atoms in organic molecules are

carbon.

Application of a transform. Applying a transform is not simply a

matter of matching the substructure key to a molecule and, if the subgraph

fits, executing the graph-manipulation statements. The scope and limitations

determine much of the context in which the transform will be applicable.

Also, it is necessary to check three-dimensional information and electronic-

environment information (i.e., the tendency of the atoms in the molecule to be

positively or negatively charged) to make an accurate assessment of whether

a transform is applicable.

A situation commonly encountered in chemical synthesis is that there is a

functional group to be modified and a reagent available that would normally

bring about the appropriate change, but access to the functional group is

hindered (spatially) by another functional group or another portion of the

molecule, and the reagent does not have the desired effect. Without the three-

dimensional information given by the so-called model-building routines, the

program has no way of knowing that the transform cannot apply. After the

spatial modeling has been done, the program can perceive that even though

the required functional group is present, the transform cannot be applied

directly because it is inaccessible to the reagent molecules. If the transform is

very high priority, a means- ends analysis can be done to find ways of altering

the molecule, so that the given functional group is accessible.

A Brief Description of SYNCHEM

The aims of Gelernter's group on SYNCHEM are stated very clearly by

Gelernter and his associates (1977):

Extraordinarily rapid progress during the early stages of an attack on a

new problem area is a rather common occurrence in AI research; it merely

signifies that the test cases with which the system has been challenged are

below the level of difficulty where combinatorial explosion of the number of

pathways in the problem space sets in. ... It is the goal of Al research to move

140 Applications-oriented AI Research: Science VII

that threshold higher and higher on the scale of problem complexity through

the introduction of heuristics—heuristics to reduce the rate of growth of the

solution tree, heuristics to guide the development of the tree so that it will

be rich in pathways leading to satisfactory problem solutions, and heuristics

to direct the search to the "best" of these pathways, (p. 1044)

SYNCHEM is noninteractive. The molecule to be synthesized is input,

and the program uses heuristic search to look for the best synthetic route.

The program decides which node of the tree to develop further, by estimating

the "cost" of reaching the goal from that node plus the cost of reaching that

node from starting materials. One of the interesting AI issues here is that

the program's definition of cost depends on the context of the problem as

well as on static features such as efficiency of reactions, the monetary cost

of materials, and so forth. For example, costs are measured differently in an

exploratory research context than in an industrial production context.

The long-range hope of the SYNCHEM group is that the study of AI in this

domain will lead to new insights into AI and also eventually to a noninteractive

system that will be of use to chemists.

SYNCHEM2. The first version of SYNCHEM, written largely by N. S.

Sridharan, was operational between 1971 and 1974. Gelernter's SYNCHEM2
supersedes it and contains many improvements, some of which are discussed

below. SYNCHEM2 has been designed so that further changes in the represen-

tation can be made easily, with minimal reprogramming. A major drawback of

the original SYNCHEM was that it entirely neglected stereochemistry. SYN-

CHEM2 now incorporates stereochemistry into its representation of molecules

and into its transform-evaluation rules. The representation is flexible enough

to include electronic and conformational information (roughly, bond lengths,

bond angles, and other three-dimensional information). The format for speci-

fying a transform, which had been a simple fixed-field input form, was

redesigned to be similar to the ALCHEM facility in SECS.

Transforms were always applied serially in SYNCHEM, that is, to one

functional group at a time in a molecule. A new feature in SYNCHEM2, called

multiple match, allows the program to apply transforms more intelligently to

all the appropriate functional groups in a molecule. More specifically, the

new program now recognizes that multiple occurrences of a functional group,

under certain circumstances, can all be transformed by a reaction.

SYNCHEM solution evaluation. The following quotation (Gelernter

et al., 1977) illustrates the difference between organic synthesis and a more

familiar domain like theorem proving:

Unlike much of the earlier work in problem solving . . . where any formally

valid sequence of transformations from premises to goal provided an accept-

able solution, we were not to be satisfied by an indicated synthesis route

of very low yield, or one requiring difficult or inefficient separations of goal

molecules from by-products along the way, at least not before the machine

had tried and failed to find a more efficient procedure of higher yield. ... It

C4 Applications in Organic Synthesis 141

is the question of relative merit of proposed solutions under the constraints

of the problem that represents a substantial departure from most of the

work reported in the literature of artificial intelligence, (p. 1042)

The complexities of the domain are highlighted by the fate of one of

the most significant results produced by the program. SYNCHEM proposed

a synthetic route for a naturally occurring antibiotic that was at that time

under development by A. R. Rinehart's group at the University of Illinois. The

route was considered interesting enough to merit a laboratory investigation.

However, the laboratory attempt failed. One of the crucial steps in the

synthesis route could not be accomplished in the laboratory and the proposed

route had to be reluctantly abandoned. No successful routes to the molecule

have yet been found. All synthetic routes, whether proposed by a computer

program like SYNCHEM or by a person, are provisional until they can be

verified by experiment.

SYNCHEM's Search Strategy

SYNCHEM's search algorithm first expands the goal node to find all its

precursors. Next, it computes the cost of reaching the target molecule from

the precursors, taking into account the efficiency and difficulty of the reac-

tions. It also estimates the difficulty of synthesizing the precursor nodes

from the available starting materials. Subgoal selection criteria are a func-

tion both of the accumulated heuristic estimates of reaction merit and yield

along the path from subgoal to goal and of a prediction of the probable reac-

tion merit and yield along the best path from starting materials to the sub-

goal. SYNCHEM updates the merit ratings with information associated with

each intermediate structure. Merit, as mentioned above, is based on most

recent estimates of compound complexity (i.e., difficulty in synthesizing it)

and reaction-path merit (yield, cost, etc.) after each cycle of subgoal gener-

ation.

The selection of a new subgoal always begins with a new scan of the

tree from the top. Thus, the search is performed in a best-first manner: If

newly acquired information changes the ratings for subgoals, the next subgoal

selected can lie on a completely different branch of the tree. In this way, the

program will never develop an unfortunate choice (pathway down to starting

materials) before backtracking and exploring more fruitful branches.

Summary

Computer-aided chemical synthesis is a potentially powerful new tool for

both research and industrial chemists. The utility of any of the programs dis-

cussed here depends critically on the size and accuracy of their knowledge base

of organic chemical reactions. Although far from complete, the knowledge

142 Applications-oriented AI Research: Science VII

bases now contain highly detailed descriptions of numerous synthetic reac-

tions. All of the programs have convincingly demonstrated their ability to

find plausible synthetic routes for important organic materials, often in less

time than chemists working alone. The SECS program has a user community

of chemists in Europe and North America, who add new transforms as well

as use the program for synthesis planning. The effort spent on human engi-

neering for chemists has made it possible for chemists to use the program

effectively (and to want to use it) and independently of the program's design-

ers. One of the long-range hopes of chemists and computer scientists working

in computer-aided organic synthesis is that this work on knowledge bases will

lead to an improved classification of chemical reactions.

Because the heuristic-search paradigm fits the synthesis-planning prob-

lem well, Al research has had much to offer. In addition, current Al work

on knowledge-based expert systems provides concepts and tools for repre-

sentation and management of these large, ever-changing sets of chemical facts

and relations.

References

See Corey and Wipke (1969), Gelernter et al. (1977), Gund, Andose, and

Rhodes (1977), and Wipke et al. (1977).

D. OTHER SCIENTIFIC APPLICATIONS

Dl. MACSYMA

MACSYMA is a large, interactive computer system designed to assist mathe-

maticians, scientists, and engineers in solving mathematical problems. It has

a wide range of algebraic-manipulation capabilities, all working on symbolic

inputs and yielding symbolic results, as well as an extensive numerical sub-

routine library (IMSL) and plotting package. (Other mathematics-oriented AI

research projects are discussed in Articles II.D3 and II.D4, in Vol. I, and XTV.D4c,

in Vol. III.)

MACSYMA is used extensively by hundreds of researchers from govern-

ment laboratories, universities, and private companies throughout the United

States. Many of these users spend a substantial portion of every day logged in

to the system. Currently, MACSYMA runs exclusively on a Digital Equipment

Corporation KL-10 at M.I.T. and is accessed through the ARPA Network;

however, there are plans to distribute it to other sites in the near future.

MACSYMA's funding is provided almost exclusively by its user community.

The original design for MACSYMA was laid out in 1968 by Carl Engleman,

William Martin, and Joel Moses. They built on their previous experience with

the Mathlab 68 system and on the doctoral projects of Martin and Moses.

Martin had constructed an algebraic-manipulation system to solve certain

problems in applied mathematics. Moses had produced a program, called SIN,

that was able to perform indefinite integration as well as a typical graduate

student could (see Article II.D4, in Vol. i). MACSYMA had its first users in

1971 and has undergone continuous development since then, for a total of

about 45 man-years of effort.

The implementation of MACSYMA is based on the belief that the way
to produce a high-performance program for general mathematics is to build

in a large amount of knowledge. This approach to system construction is

often called knowledge-based programming (see Article VILA). MACSYMA is

an extremely large system. It can perform at least 600 distinct mathematical

operations, including differentiation, integration, solution of equations and

systems of equations, Taylor series expansions, matrix operations, vector alge-

bra, and order analysis. The current system consists of about 230,000 words

of compiled LISP code and an equal amount of code written in the MACSYMA
programming language. About half of this code was written by the staff of

the MACSYMA project; the rest was contributed by various users.

The primary goal of research on algebraic manipulation has been to

invent and analyze new mathematical algorithms and to extend previously

143

144 Applications-oriented AI Research: Science VII

known numerical algorithms to symbolic manipulation. While most of the

algorithms incorporated into MACSYMA were known to mathematicians prior

to its construction, a substantial number came about as a result of this

research. The last decade brought the discovery of new algorithms for finding

the greatest common divisors of polynomials (Brown and Traub, 1971; Moses

and Yun, 1973), factoring rational expressions (Musser, 1975; Wang and Roth-

schild, 1975), sum simplification (Gosper, 1977), symbolic integration (Moses,

1971; Norman, 1975; Risch, 1969; Rothstein, 1977; Trager, 1978), and asymp-

totic analysis (Fateman, 1976; Norman, 1975; Zippel, 1976). The nature of

this work has been largely mathematical and, although AI was instrumental

in providing the environment in which MACSYMA was created, it has made
little direct contribution since then.

Knowledge-based programming does, however, engender a number of dif-

ficulties for which AI techniques offer partial answers. Two general classes

of difficulties are discussed here: (a) user education and (b) the handling of

mathematical problems not amenable to algorithmic solution.

Nonalgorithmic Procedures in MACSYMA

One of the most pressing problems in algebraic manipulation is sim-

plification. Symbolic algorithms often generate large, unwieldy expressions

that must be simplified into smaller, more meaningful forms. (Generally,

the size of expressions is the most important criterion for simplicity, with

standard formats and particularly revealing forms taking precedence.) To

help users simplify their results, MACSYMA provides a variety of explicit

expression-transformation commands (such as expansion, factorization, and

partial fraction decomposition) and a simplifier that automatically applies

a set of mathematical rules to every new expression as it is constructed.

Examples of these rules are:

x x — x
2

sin(x + 7r/2) — cosx

log(ab) —* log a + log b

The user can, of course, define new commands and new rules.

Semantic Pattern Matching

In applying a simplification rule, MACSYMA utilizes a semantic pattern

matcher to find instances of the rule's pattern. The matcher is semantic in

that it applies knowledge about the operators and constants in an expression to

find nonsyntactic matches. For example, the pattern ax 2 + bx + c, where a, b,

and c are pattern variables free of x, will match the expressions Ax 2 + 4x + 1,

2x2 + x + 1, x 2
, and (x+1) 2

. In defining a rule, the user may specify arbitrary

Dl MACSYMA 145

conditions (in the form of procedural predicates) on the pattern variables.

For example, determining whether an expression matches the above pattern,

MACSYMA would call a user-specified function to check that any tentative

assignments for a, 6, and c are free of x. As a result, the pattern would not

match Ax 2 + 3x + sin x.

One problem with this pattern matcher is that the user cannot control

how much "semantics" the system uses in finding a match. A recently com-

pleted pattern matcher allows the user to specify a set of identities to use in

attempting to identify instances of patterns. For example, while it is often

desirable that the matcher use inverses, in some situations a user might prefer

a simpler matcher, lest the rule ab — c apply to every lone a and b, as in

b —> c/a. With the new pattern matcher, the user will be able to specify when

the inverse axioms are to be used.

Simplification by Hill Climbing

While the size of an expression is not the sole criterion for its simplicity,

it is a useful guideline. For those applications in which the user desires

the smallest possible form for an expression, MACSYMA provides a search-

oriented simplifier called SCSIMP. Given an expression and a set of rules,

SCSIMP applies each of the rules to the expression, in turn, and retains the

smallest result. If any such substitution leads to an expression smaller than

the original, the process is repeated. For example, given the identities below,

SCSIMP will convert the first expression into the last.

Given: K 2 + L2 = 1 N 2 - M 2 = 1

First expression: K 2N 2 + K 2M 2N 2 - K 2L2N 2-K 2L2M 2N 2

Intermediate: K 4M2N 2 + K 4N2 (substituting for L)

Final expression: K 4N 4 (substituting for M)

Note, however, that because SCSIMP is a hill-climbing algorithm, it is

not guaranteed to produce the smallest answer. For example, it would not

perform the simplification shown below, since the intermediate expression is

larger than the initial expression.

First expression: K 2N 2 + L2M 2

Intermediate form: K 2N 2 — K 2M 2 + M 2 (substituting for L)

Simplest form: K 2 + M 2 (substituting for N)

Due to the combinatorics involved in generating arbitrarily large intermediate

forms, this technique has not been incorporated into the current version of

SCSIMP.

146 Applications-oriented AI Research: Science VII

The Relational Database and Inference

In certain problems, the symbols in mathematical expressions have restric-

tions on their ranges or on other properties that are useful in simplification.

To allow the user to specify such properties, MACSYMA maintains a rela-

tional database of facts about symbols, stored in the form of a semantic net-

work. For example, a user can declare (with the DECLARE command) that

the symbol n is restricted to integer values, and MACSYMA can then simplify

cos((2n -f 1)/tt) to 0. Similarly, one can specify (with the ASSUME command)
that x < y, y < z, and z < x, and MACSYMA can then deduce that

x = y = z (using the CPM algorithm described below).

The database retrieval routines are supplemented by a fast but limited

inference algorithm called CPM (Genesereth, 1976), which performs taxonomic

deductions, property inheritances, set intersections, and other simple infer-

ences. For example, given the facts that x is an integer, integers are rational,

and the real numbers are partitioned into rationals and irrationals, CPM
automatically deduces that x is not an irrational. Given the fact that a

rational can be written as an integral numerator over an integral denominator,

CPM automatically deduces that x can be so written.

The CPM inference algorithm was developed to enhance the retrieval

capabilities of a high-level database system organized as a semantic network.

It is an elaboration of Grossman's work (1976) on constraint expressions

but has been carefully restricted so that it can be implemented on parallel

hardware. The algorithm is a highly compiled form of domain-independent

constraint propagation, in which constraints, represented by labels on the

nodes of the network, propagate across links to other nodes according to

the laws of logic. It can perform certain inferences much more efficiently

than their straightforward implementation in procedural problem-solving lan-

guages like CONNIVER. Fahlman (1977) has described how such a constraint-

propagation algorithm can be implemented in parallel hardware for even

greater efficiency.

Heuristic Problem Solving

MACSYMA also includes a number of specialized procedural problem-

solvers, for example, the first phase of the integration routine (Moses, 1971),

the commands for performing root contraction and logarithmic contraction,

and the inequality theorem prover.

User Education

The advantage of a large, knowledge-based system like MACSYMA over

a smaller, sparer system like REDUCE (Hearn, 1973) is that MACSYMA has

more mathematical knowledge built in. As a consequence, the users are not

Dl MACSYMA 147

forced to communicate as much mathematical knowledge to the system. The

disadvantage is that MACSYMA can be more difficult to understand and to

use. For example, users might be unaware of the capabilities available or not

know the commands, or they might get unexpected results that they cannot

explain.

To minimize these difficulties, MACSYMA offers a wide variety of on-line

user aids (Genesereth, 1977; Lewis, 1977), including a frame-oriented inter-

active primer, an information network, and a program for searching the ref-

erence manual. In addition, some of MACSYMA's commands are designed

to be able to explain their progress. For example, if the VERBOSE option is

selected, the POWERSERIES command prints out the goals and subgoals that

it generates while working on an expansion.

Even with such provisions, users occasionally encounter difficulties because

they do not know the system. Furthermore, such users are often unwilling

to learn more about MACSYMA than is necessary for solving an immediate

problem. The simplest way for such users to acquire just the information they

need is to ask a consultant for help. With the consultant's advice, they can

surmount the difficulty and solve the problems.

Consultation is a method widely used in computer centers as well as in

business, law, and medicine; furthermore, as computer technology becomes

more pervasive and computer systems become more complex, the need for

consultation grows. Unfortunately, human consultants are a scarce resource

and quite expensive. An experimental version of an automated consultant for

MACSYMA novices, called the Advisor, has recently been implemented. It

is a program with its own database and expertise, distinct from MACSYMA.
The Advisor accepts a description of a difficulty from its user and tries to

reconstruct the user's plan for solving his (or her) problem. Based on this plan

and its knowledge of MACSYMA, the Advisor then generates advice tailored

to the user's specific need. For a description of the Advisor's operation, see

Genesereth (1978).

Future Plans

In addition to the features described above, several other Al-related

capabilities are under development in MACSYMA. Two of these are men-

tioned here, namely, a new representation for algebraic expressions using

data abstractions and a knowledge-based, plan-based mathematician's (or

physicist's, or engineer's) "apprentice."

David Barton has designed a radically new scheme for representing alge-

braic expressions. MACSYMA has two major representations, the general one

that uses LISP's traditional prefix format and the rational one that uses a

canonical form for polynomials and rational functions. The rational repre-

sentation has become unwieldy over the years, as extensions to the system

have changed its specifications. For example, coefficients of polynomials were

148 Applications-oriented AI Research: Science VII

originally assumed to be integers and were later generalized to include floating-

point numbers. A new representation was desired to handle Taylor series that

contains rational-number exponents, since the former representation, while

relatively close to the rational representation, could not be retrofitted onto

the rational representation. Barton's approach alleviates these difficulties and

provides a capability for future generalization. His approach is, furthermore,

a natural one for abstract algebra.

Consider, for example, a 2 X 2 matrix whose elements are Laurent series

in y (truncated at y
2

), whose coefficients are polynomials in x, with rational

coefficients. In order to add such a 2 X 2 matrix to another 2x2 matrix,

one needs to know how to add the elements. One approach would be to

design a general addition routine that would check the types of each argu-

ment and perform the appropriate addition. This approach is similar to the

one previously taken by the rational-function representation. In a symbolic

system, and, in fact, in most applications, the type of object is intimately

related to a set of operations that can be performed on it. In the MACSYMA
context, these operations include addition, subtraction, multiplication, divi-

sion, differentiation, substitution, coefficient extraction, and computation of

greatest common denominator. Barton's approach is to attach a tree of vec-

tors to each expression. The tree corresponds to the gross structure of the

expression. For example, each subexpression, an element in the matrix, has

a vector corresponding to it. The vector's elements are in a fixed order and

contain pointers to the procedures that perform the corresponding operation

on the type of the subexpression.

Barton's approach permits expressions to be composed of arbitrarily

nested types. This is a critical requirement in an interactive symbolic sys-

tem. Preliminary tests of expressions represented in this manner indicate that

common manipulations are usually not much slower, and often even faster,

than in the former implementation. (The reason for a speed-up is that less

type-testing is needed in this approach.)

Work has also begun on the design of an apprentice for the MACSYMA
user. At present, MACSYMA is used mostly as a "symbolic calculator," with

the user directing its actions line by line and keeping track of the meaning of

each result. The goal of the apprentice is to relieve the user of much of this

bookkeeping. The approach being taken involves two components, namely,

knowledge about the user's domain and the use of a high-level, problem-

solving plan formalism.

Currently, most symbols in MACSYMA have no special meaning, and they

can take on arbitrary values. In particular problem areas, however, certain

symbols have particular interpretations and range restrictions. For example,

the symbol MASS has a very special meaning to physicists and an obvious

range restriction (nonnegative). A physicist's apprentice should know this

range restriction and be able to use it, for example, in discarding negative

roots or performing integrations. Similarly, practitioners in certain fields

Dl MACSYMA 149

like to see their expressions written in standard formats, determined by the

interpretation of the constituent symbols. For example, electrical engineers

usually prefer resistance (Rl) and capacitance (C{) expressions written as

f(R\ , R2, • • • ,Rn)- g(C\ , C2, ... ,Cn), rather than having the Rt and Cx inter-

mixed.

Another way that an apprentice could be of use in MACSYMA is by

keeping track of the user's plan for solving his problem. If the apprentice

knows the steps involved and the significance of various results, it could inform

the user of potential errors, make suggestions, and in many cases carry out

steps by itself. The apprentice can gain familiarity with the user's plan in

various ways: It may be a well-known mathematical procedure (e.g., some

standard technique for solving partial differential equations or perturbation

problems), the user may have described his intentions before beginning his

MACSYMA session, or the user may reapply some previous plan. It is expected

that this notion of a problem-solving plan will play an extremely important

role in the next generation of algebraic-manipulation systems.

References

Unfortunately, there is no good introductory reference on the structure

of MACSYMA. The reader is referred to the MACSYMA manual (Mathlab

Group, 1977) and the primer (Moses, 1975) for an introduction to its use.

D2. The SRI Computer-based Consultant

A COMPUTER-BASED CONSULTANT (CBC) is a computer system that con-

tains a body of specialized knowledge about a particular task domain and

makes that knowledge conveniently available to users working in that domain.

This article describes some research done at SRI International in the early

1970s on a computer-based consultant designed to help a novice mechanic

work with electromechanical equipment. The goal of this research is to build

a system that approximates a human consultant in its communication and

perceptual skills, as well as in its reasoning and problem-solving skills.

The consultant was designed to answer the user's spoken questions and

to monitor his (or her) progress on the task, offering advice and reminders

where necessary. To fit the needs of a particular user, it is essential that the

system be able to provide advice about the task at several levels of detail. To

determine the appropriate level of detail, the CBC must form a model of the

user, monitor his performance as he executes the task, and update internal

models to reflect the current state of the task environment.

Design of the Computer-based Consultant

The particular task of the SRI computer-based consultant is to help an

inexperienced mechanic repair and modify complex electromechanical equip-

ment. The mechanic works on a piece of equipment at a special work station

where he is provided with a headset that allows him both to talk to the sys-

tem and to receive spoken replies in English. The system has a commercial

phoneme-synthesizer for giving spoken responses to the user and a commer-

cial phrase-recognizer for understanding his speech. A television camera and

a laser range-finder provide the visual component for the system. The laser

range-finder can also work as a visual pointer, so that the system can respond

to requests such as "Show me the pressure switch" by illuminating it with the

laser beam.

Requests for information by the user are translated into an internal repre-

sentation, or model, by the natural-language and visual components of the sys-

tem. These models are used to structure communications with the mechanic

as he performs the task. For example, a question about the location of a part

("Where is the pump brace?") is answered by reference to a stored geometric

model that keeps track of the spatial relations between the parts. Other

models are necessary for the natural-language components of the system; for

instance, a discourse model is needed to understand a spoken utterance.

150

D2 The SRI Computer-based Consultant 151

Planning a Sequence of Constructions

The user of the CBC can request that it plan a sequence of assembly steps

and relate this sequence to him for execution. The CBC has a state-of-the-

art planning component for composing assembly and disassembly sequences

(see Chap. XV, in Vol. III). There are several kinds of knowledge that are

important in the planning process. First, there is the model of the equipment

itself, in this case, an air compressor, which is essentially a graph whose nodes

correspond to the parts of the compressor and whose arcs correspond to the

mechanical connection between the parts. Second, each type of connection

has associated with it a set of procedures that tells how that connection is

physically established. Third, each of these procedures may contain calls to

other procedures that elaborate how a job is done.

This hierarchy of procedural knowledge forms the basis for producing

plans that can be presented to the user at several levels of detail. The
procedural model is used by the planning program to determine the order

in which parts should be assembled. The planning program initially assumes

that the parts can be connected in any order. By checking preconditions

and the effects of performing each step, it reorders the steps in the plan to

eliminate conflicts. For example, the pump can be installed only if there is

no pulley on its shaft. The planner recognizes this fact and imposes an order

on the plan so that the pump will be installed before its pulley is placed on

the shaft. When all the conflicts have been resolved, the remaining steps of

the plan can be solved in any order. This ability—to recognize alternative

orderings in a plan—is important for a computer-based consultant: The user

may take the initiative and proceed with certain steps of the assembly on his

own, and the planner must recognize that the steps being taken are valid.

The plan is represented as a data structure called a procedural net (see

Article XV.Dl, in Vol. III). A sample net is shown in Figure D2-1. Each

node corresponds to an assembly step at some level of detail. The procedural

net is actually a hierarchy of plans, all of which accomplish the same task

but at varying levels of detail. The 2
th row in the net corresponds to a plan

specified at the i
th

level of detail. Notice that the plan splits into two paths at

level 2, indicating that the two subplans can be performed in either order. The
branching vertical lines indicate the expansion of a step into a more detailed

subplan.

The procedural net is useful for the specification of plans at the various

levels of detail required by the user. The net is also used during planning

to represent partially formed plans, so that the planning component of the

system can be restarted during execution to modify an existing plan if. for

example, new information requiring replanning is discovered as the assembly

proceeds.

152 Applications-oriented AI Research: Science VII

Level
Assemble

Air

Compressor

Level 1
Install

Motor

Level 2

Connect
Motor to

Platform

Install

Pump

Install

Motor
Pulley

Connect
Pump to

Platform

Install

Pump
Brace

Connect
Pump Pulley

to Pump

Connect
After-cooler Elbow

to Pump

Figure D2-1. A fragment of a procedural net (after Hart, 1975).

The system keeps an internal model of the connectedness of the different

components of the air compressor as it is being assembled or disassembled. It

also keeps a "graphical" model of the locations of the different components of

the air compressor. For example, the graphical model knows about the pump,

motor, pressure switch, and so forth, and the connectivity model knows about

all the visible components.

D2 The SRI Computer-based Consultant 153

Interfacing to the Real World: Vision and Dialogue

Visual processing is especially difficult in the domain of electromechanical

machinery because the components usually have only a limited range of color

and texture for a great variety of possible shapes. Shadows and highlights also

depend on the stage of the assembly process. For these reasons, an approach

has been taken that capitalizes on prior knowledge of visual appearances

and geometric relations: There is a "tool recognizer" that accepts a limited

semantic description of a tool, builds a model of the tool from this description,

and uses this model to differentiate the tool's image from those of the probable

alternatives.

There are two other visual modules, both of which rely on stored geometric

models of the equipment. The first module allows the CBC to respond to

requests of the form "Show me the X" It points to X with the laser range-

finder, which is accomplished by locating the outline of the visible surface

of X. The final module allows the user to ask, "What part is this?" while he

is pointing at the unknown part with a special wand equipped with a small

light at its tip.

The following is a portion of a dialogue between a novice mechanic (whose

input is preceded by **) and the CBC on the task "Assemble the air compres-

sor." The example is taken from Hart (1975).

Try to achieve assembled aircompressor

.

** How?

The top level plan is . . . install pump . .

.

install pumpbrace . . . install pumppulley . .

.

install belt . . . install belthousingcover . .

.

Ready for questions

.

* * Show me the pump

.

Laser beam moves to point at pump.

Ready for questions

.

** What is this?

User points with wand at tank platform.

Tank platform.

Ready for questions.

** None.

Install pump.

154 Applications-oriented AI Research: Science VII

** How?

Connect pump to platform.

** How?

Get 4 1& 1/4-inch 5/16 hexagonal bolts and 4 9/16 flat washers

and 4 size 5/16 hexagonal nuts

.

** OK.

Summary

The main goal of the research on the SRI computer-based consultant

was to create the fundamental technology needed to build such consultant

systems. Much of this technology is independent of the domain chosen and

of the details of the task environment.

Work on the electromechanical CBC described here was stopped in April

1975. Since then, a new consultant project has been under way at SRI

International extending many of the ideas from the 1975 system and add-

ing new features. The new consultant system is being used in two entirely

different domains: mineral exploration (see Article VII.D3) and agricultural pest

management. It appears that computer consultants are likely to remain both

a fruitful area for AI research and a practical means of deploying knowledge

to people working in the specific task domains.

References

See Hart (1975) and Nilsson (1975).

D3. PROSPECTOR

PROSPECTOR (Duda et al., 1978) is a computer-based consultation system

that is being developed at SRI International to assist geologists working on

certain problems in "hard-rock" mineral exploration. Like other expert sys-

tems, such as MYCIN (see Article VIII.Bl) and INTERNIST (Article VIII.B3),

PROSPECTOR attempts to represent a significant portion of the knowledge

and the reasoning processes of experts working in a specialized domain. The

intended user of this program is an exploration geologist who is in the early

stages of investigating an exploration site, or "prospect." We assume that he

(or she) has a professional understanding of geology but, nonetheless, wants

the assistance of a specialist in evaluating the findings.

In an attempt to keep the PROSPECTOR system domain-independent, a

clear separation is maintained between the geological knowledge base and the

mechanisms that employ this knowledge (although characteristics of the prob-

lem domain have certainly influenced the design of the system). Expressed

abstractly, the main function of PROSPECTOR is to match data from a par-

ticular situation against models that describe a moderately large number of

disjoint classes of situations. In PROSPECTOR'S domain, the models are for-

mal descriptions of the most important types of ore deposits, and the data are

primarily surface geological observations. The available data are assumed to

be uncertain and incomplete, so that the conclusion is expressed as a probabil-

ity or a degree of match. In addition, the program alerts the user to different

possible interpretations of the data and identifies additional observations that

would be most valuable for reaching a more definite conclusion.

A typical consultation session with PROSPECTOR begins with the user

giving the system the information about the most significant features of his

prospect: the major rock types, minerals, and alteration products. The
program matches these observations against its models and, when the user

has finished volunteering information, proceeds to ask the user for additional

information that will help confirm the best matching model. At any time

during the consultation, the user can interrupt to volunteer new information,

change previous statements, or request an evaluation.

The following edited excerpt from a PROSPECTOR session illustrates

many of these ideas. The data for the run describe a fictitious porphyry copper

deposit that has some, but not all, of the desired characteristics. We begin at

the point where the user (indicated by **) starts volunteering information to

the system.

** There is quartz monzonite

Quartz monzonite (5)

155

156 Applications-oriented AI Research: Science VII

** There is a cretaceous dike

Cretaceous dike (5)

** There is sericite and pyrite

Sericite (5) pyrite (5)

** There may be biotite

Biotite (2)

** Done

These simple assertions describe the most prominent rocks, minerals, and

alteration products in the target area. The system indicates its recognition

of each statement by echoing the statement and appending an assigned

certainty. Certainty factors range from — 5 (positive that a situation

does not hold) to 5 (positive that it does hold). All assertions made

by PROSPECTOR have associated certainty factors. The program now

enters the consequent mode of reasoning.

Presently, the models in PROSPECTOR and their scores are:

1. Komatiitic nickel sulfide deposit -- KNSD (0.0)

2. Type-A porphyry copper deposit — PCDA (0.0)

++current hypothesis++

3. Kuroko-type massive sulfide deposit -- MSD (.001999)

4. Western-states-type sandstone uranium deposit -- WSSU (0.0)

5. Mississippi-Valley-type lead/zinc deposit — MVTD (-4.8)

Which of the above would you like to rule out?

** None

The volunteered information was sufficient to rule out one of the models

but was not nearly specific enough to establish any of the others. The

choice of the second model as the current hypothesis was based not on

its certainty but on the number and types of connections between it and

the volunteered statements. To avoid a possibly fruitless investigation of

unpromising models, the system gives the user the opportunity to exclude

models of lesser interest. In this case, the user allows all of the models

to be explored, and the system begins with the current hypothesis.

I am considering the possibility of a

(Type-A porphyry copper deposit — PCDA)

in the target area.

The following questions are intended to establish the nature

of the petrotectonic setting.

1—To what degree do you believe that:

(the target area is in a continental margin mobile belt) ?

** -2

D3 PROSPECTOR 157

This is a discouraging answer for the PCDA model, and it removes a

context needed for the investigation of other properties of the continental-

margin mobile belt.

The following questions are intended to determine the nature

of the regional environment.

2—To what degree do you believe that:

(there are granitic intrusives in the region) ?

** 5

3—To what degree do you believe that:

(the region contains an abundance of small stocks) ?

8—To what degree do you believe that:

(igneous rocks in the region have porphyritic texture) ?

** Why

I am trying to establish whether some of the intrusive rocks in

your area have textures suggestive of a hypabyssal to subvolcanic

environment. Porphyry textures resulting from the rapid cooling

and crystallization of a silicate melt which contains large

mineral grains are suggestive of relatively shallow levels

of emplacement.

Like MYCIN, PROSPECTOR provides a variety of commands for such

things as requesting a summary, changing previous answers, or volun-

teering additional information. The above response to a WHY command
is not automatically generated from the rule but is merely stored text

associated with the space.

8 To what degree do you believe that:

(igneous rocks in the region have porphyritic texture) ?

** 5

My certainty in (the texture and morphology of the intrusive

system suggest a subvolcanic (hypabyssal) regional environment)

is now: 4.924

Do you want to pursue this further?

** No

At this point the system noted that the certainty for the hypothesis about

a hypabyssal environment was above 4-5, and it also noted that if the

remaining rules were answered in the most unfavorable way possible, the

certainty could not fall below 4-5. To save time, it let the user decide

whether or not to continue working on this subgoal.

158 Applications-oriented AI Research: Science VII

The questioning continues as above until it becomes necessary to consider

properties that vary within the target area. Thus, for the first time it

becomes necessary to be able to use the rules more than once, and a

communication convention must be established to distinguish different

spatial locations.

Porphyry copper deposits are often composed of characteristic

zones of alteration and mineralization. (In some cases these

can be looked upon as different stages superimposed upon one

another.) I shall call the most prominent such zone Zone 1.

Even though you may have already identified this zone as, say,

the propylitic zone or the sericitic zone, I need to consider

other possibilities as well. Thus, the following questions

are intended to determine the possibilities for Zone 1.

25—To what degree do you believe that:

(there are fresh-looking feldspars in Zone 1) ?

** -5

Questioning continues in this manner. Eventually, PROSPECTOR estab-

lishes that two zones exist in the region of interest and, after examin-

ing each in detail, it concludes that their geologic makeup supports the

hypothesis that Type-A porphyry copper exists in the region.

On a scale from -5 to 5, my certainty that (there are alteration

zones that are favorable for a Type-A porphyry copper deposit)

is now 4.833

There are two favorable factors; in order of importance:

2.3.1: 1. there is a sericitic zone in Zone 1 (4.834)

+ + establishes 2.3.1 ++

2.3.1: 2. there is a potassic zone in Zone 2 (4.499)

There are many factors that would have been unfavorable had no

favorable factor existed to override them; in order of importance:

there is a barren-core zone in Zone 1 (-5.0)

there is a potassic zone in Zone 1 (-5.0)

there is a propylitic zone in Zone 1 (-5.0)

there is a sericitic zone in Zone 2 (-5.0)

there is a propylitic zone in Zone 2 (-4.989)

there is a barren-core zone in Zone 2 (-4.495)

For which of the above do you wish to see additional information?

Knowledge Representation

The data structure for representing the geological knowledge embodied

in PROSPECTOR is called the inference network and guides the plausible

reasoning performed by the system. The nodes in this network correspond to

various assertions, such as There is pervasively biotized hornblende or There

2.3.1 3.

2.3.1 4.

2.3.1 5.

2.3.1 6.

2.3.1 7.

2.3.1 8.

D3 PROSPECTOR 159

is alteration favorable for the potassic zone of a porphyry copper deposit. In

a particular run, any assertion may be known to be true, known to be false,

or suspected to be true with some probability.

Most of the arcs in the inference network define inference rules that specify

how the probability of one assertion affects the probability of another asser-

tion. For example, the presence of pervasively biotized hornblende suggests

the potassic zone of a porphyry copper deposit, and the absence of any biotized

hornblende is very discouraging for that conclusion. These inference rules cor-

respond to the production rules used in MYCIN. The remaining arcs indicate

that an assertion is the context for another assertion, preventing conclusions

from being drawn until the right contexts are established. For example, one

should establish that hornblende has been altered to biotite before asking

about the degree of alteration.

The primary task confronting a geologist who wants to prepare a new
model for PROSPECTOR is the representation of his model as an inference net-

work. The current system contains models of five different types of deposits,

developed in cooperation with five different consulting geologists. The statis-

tics in Table D3-1 give a rough indication of the size and complexity of these

models.

To allow certain kinds of logical reasoning by the system, each assertion is

represented as a space in a partitioned semantic network (see Article III.C3, in

Vol. i). A typical space asserts the hypothetical existence of physical entities

having specific properties (such as being composed of biotite) and participating

in specific relations (such as an alteration relation). In addition, a large

taxonomic network describes important element-subset relations among the

terms mentioned, such as the fact that biotite is a mica, which in turn is a

silicate, which in turn is a mineral.

The articulation of assertions as a set of relations allows the system to

recognize subset-superset connections between pairs of assertions. For exam-

ple, the assertion There is pervasively biotized hornblende is clearly related

to the assertion There is mica; assertion of the first also asserts the second,

Table D3-1

Size of Knowledge Base of Five PROSPECTOR Models

. , . . Number of Number
Model „ .

assertions ol rules

Koroko-type massive sulfide 39 34

Mississippi-Valley-type lead/zinc 28 20

Type A porphyry copper 187 91

Komatiitic nickel sulfide 75 49

Roll-front sandstone uranium 212 133

Total 541 327

160 Applications-oriented AI Research: Science VII

and denial of the second denies the first. This kind of recognition is used

in two main ways. First, it provides important intermodel and intramodel

connections beyond those given explicitly by the inference rules. Second, it

allows the system to recognize connections between information volunteered

by the user and the coded models.

Probabilistic Reasoning

Some of the logical constraints that hold between spaces have probabilistic

implications. In particular, if A is an instance (i.e., subset) of B, then the

probability of A can never exceed the probability of B. We maintain this

constraint by automatically generating certain inference rules. For example,

if evidence E could raise the probability of A above the probability of B, we

generate a rule from E to B that will increase the probability of B sufficiently

to just satisfy the constraint. The exact procedure used here is described in

Duda et al. (1977).

The various inference rules connect to form an inference network; thus,

when the user provides some evidence, this information can change the prob-

abilities of several hypotheses, which in turn can change the probabilities of

hypotheses that depend on them. The probability formulas determine exactly

how these probability changes propagate through the inference net. (The

reader might also refer to Articles VIII.B2 and VIII.B6, on CASNET and IRIS,

for alternative methods of propagation.)

Control

PROSPECTOR is a mixed-initiative system that begins by allowing the

user to volunteer information about the prospect. This volunteered informa-

tion is currently limited to simple statements in constrained English about the

names, ages, and forms of the rocks and the types of minerals present. These

statements are parsed by LIFER, a natural-language interface facility (see

Article IV.F7, in Vol. I), and represented as partitioned semantic networks. A
network-matching program compares each of these volunteered spaces against

the spaces in the models, noting any subset, superset, or equality relations

that occur.

If a volunteered space is exactly equal to a space in a model, the probabil-

ity of the model space is updated and that change is propagated through the

inference network. If a volunteered space is a subset of a space in a model and

if it has a higher probability than the model space, once again the probability

of the model space is updated and that change is propagated through the

inference network.

Unfortunately, if the volunteered space matches a superset of a model

space (which is usually the case), no probability change can be made unless the

user expresses doubt about the situation. For example, if the user mentions

D3 PROSPECTOR 161

biotite, the probability of the space that asserts that there is pervasively

biotized hornblende is unchanged, unless the user has said that he doubts

that there is any biotite. However, it is obvious that the system may want to

follow up this observation, and the existence of the connection to the model

is recorded.

When the user has finished the initial volunteering, PROSPECTOR scores

the various models on the basis of the number and types of connections that

have occurred and selects the best matching model for further investigation.

Here, the basic control strategy is MYCIN-like backward chaining or conse-

quent reasoning. At any given time, there is a current goal space whose exis-

tence is to be determined. The initial goal space is the one that corresponds

to the best matching model. The various spaces in the models represent

either evidence that can be sought from the user (are "askable") or internal

hypotheses that are to be deduced from evidence (are "unaskable"). Naturally,

the initial goal space is always unaskable. If the current goal space has any

unestablished context spaces, they are pushed on the goal stack and one of

them becomes the new current goal.

If the current goal is askable and has not been asked before, the user is

asked about it, the effects of the answer are propagated through the inference

network, and the process is repeated. If it is unaskable, it must be either the

consequence of one or more inference rules or a logical combination of one or

more other spaces. In the former case, the rules are scored to determine their

potential effectiveness in influencing H, and the antecedent of the best scoring

rule becomes the next goal. In the latter case, a predetermined supporting

space becomes the next goal. In either case, the same procedure is repeated

until (a) the top-level goal becomes so unlikely that another top-level goal is

selected, (b) all of the askable spaces have been asked, or (c) the user interrupts

with new volunteered information.

Summary

This brief overview covers the basic knowledge-representation and infer-

ence mechanisms used in PROSPECTOR. Many aspects of the system have not

been discussed, such as the treatment of quantitative evidence, the matching

procedure, the use of graphical input, the inference-network compiler, the

explanation system, model-acquisition aids, and the test and evaluation effort.

The five models in the current system are but a fraction of what is

needed for comprehensive coverage of the prospecting domain, and even these

models have only recently reached the degree of completeness required for

doing meaningful evaluations. Limited initial tests have shown very close

agreement between the evaluations provided by the system and the evaluations

of the model designers, using data from actual deposits of the types modeled.

And, in fact, PROSPECTOR recently made a prediction about the location

of molybdenum ore at an exploration site in the state of Washington that

162 Applications-oriented AI Research: Science VII

was substantially confirmed by subsequent drilling. More information on the

system, the extent of its geological knowledge, its performance on known
deposits, and its possible applications can be found in Duda et al. (1978).

References

Duda, Gaschnig, and Hart (1979) is a brief description of PROSPECTOR.
See also Duda et al. (1977, 1978).

D4. Artificial Intelligence in Database Management

A DATABASE MANAGEMENT SYSTEM (DBMS) is a computer system that

provides for the storage and retrieval of information about some domain.

Typical examples are airline reservation systems, payroll systems, and inven-

tory systems. This article presents a simplified definition of a DBMS and

examines a number of applications of AI to database management.

A database management system consists of (a) an organized collection of

data about some subject and (b) a data-manipulation language for querying

and altering the data. Besides the above essentials, a DBMS may also include

(c) a database schema, which describes the organization of the data; (d) con-

straints, for ensuring the integrity of the database; (e) views, for presenting

individual users with a "customized" version of the database; and (f) provi-

sions for concurrency (simultaneous access by several users), backup (recovery

in the event of a system crash), and security (restricting the access of various

users in terms of which parts of the database they may access and which

operations they may perform).

Consider, for example, a database of personnel records. Assume that the

records are split into two files: the ESD file with one record for each employee,

containing his (or her) name, salary, and department, and the DM file with

one record for each department, indicating its manager (see Fig. D4-1).

A schema for this database would explicate which files are in the database,

what information is in each file, and what form the entries in each record take.

For example:

Relation ESD (Name: string; Salary: integer; Dept: string);

Relation DM (Dept: string; Manager: string);

A query like Who is the manager of John Doe? might be expressed in the

DBMS's data-manipulation language as

Retrieve DM. MANAGER where DM . DEPT=ESD . DEPT and ESD. NAME=" JOHN DOE",

ESD DM

Name Salary Dept. Dept. Manager

John Doe $30K Sales Sales J. Brown

Al Smith $40K Sales Marketing F. Lamont

H. Macken $25K Marketing Inventory K. L. Tang

Figure D4-1. A database composed of two files.

163

164 Applications-oriented AI Research: Science VII

which means: In the DM file, find all records in which the DEPT field matches

the DEPT field in a record in the ESD file that also has "John Doe" in its NAME

field. A typical constraint for this database would be that employee salaries

must always be greater than zero, which might be expressed as:

FOR ALL ESD: ESD. SAL > 0.

AI methodology has been applied to DBMSs in three ways. First, AI

techniques have been employed to improve the user interface—to make it

easier for the user to interact with the system. Second, AI techniques have

made it possible to increase the efficiency of the DBMS system—to find the best

expression in the data-manipulation language for what the user wants to know,

considering how the data are distributed among files in the database. Finally,

the similarities between AI and database management, both of which involve

representation of information, may be exploited to extend the capabilities of

a DBMS, allowing it to answer different kinds of questions about the data and

about itself. Each of these will now be considered in turn.

The User Interface

Improved user interfaces have been developed to provide a degree of data

independence, allowing the user to interact with the system without consider-

ing the manner in which the database is actually organized. In the following

paragraphs, we discuss a number of ways this can be accomplished.

Natural language. The dominant aspect of the user interface is the

data-manipulation language for accessing the database. One possibility in this

regard is to allow the user to access the database in a natural language (NL)

such as English. Although NL processing is a major subarea of AI research (see

Chap. IV, in Vol. I), its use in database management introduces new problems,

including the following:

1. Users of DBMSs, once they become familiar with the system, will often

express their requests in a very abbreviated and not necessarily gram-

matical form.

2. Users will often misspell words.

3. The DBMS's parser may not have a complete lexicon of the words the

user might use in his queries, since the information in the database is

always changing.

4. The user, while aware of the structure of the application domain, is often

ignorant of the structure of the database and of the connection between

the two.

Several NL systems focusing on database access have been implemented,

including LADDER (Sacerdoti, 1977), PLANES (Waltz, 1978), ROBOT (Harris,

D4 Artificial Intelligence in Database Management 165

1977), and TQA (Damerau, 1979). These systems have explored such features

as the ability to handle elliptic input, to correct spelling errors, to handle

pronouns, and to use the database to look up unknown terms in the query.

(Not all systems provided all features.) The systems functioned in different

ways, but all used a grammar of the particular language and a parser to

process the input in terms of the grammar.

The LADDER system, for example, was designed to interrogate a database

of naval information. The LADDER grammar was designed to be interpreted

by the parser of the LIFER natural-language system (Article IY.F7, in Vol. I).

The following segment illustrates LADDER'S handling of ellipsis and spelling

errors (the user's input is preceded by **):

** Where is the Kennedy

Parsed!

(PTP '6000N03000W' PTD 7601171200)

The ship was at 60 degrees north latitude, 30 degrees west longitude, at

noon on January 17, 1976.

** Pecos

Trying ellipsis: Where is Pecos

The parser was unable to make sense of "Pecos" as a sentence, so it tried

a substitution into the previous sentence.

Parsed!

(PTP '2131S00234E PTD 7601171200)

** Who commands the Biddle

Parsed!

(RANK 'CAPT' C0NAM 'J.TOWNES')

** What is his lineal number

His => ((NAM EQ 'BIDDLE') (? RANK) (? CONAM)

)

The interpretation of "his" is the commander of the Biddle.

Parsed!

(LINEAL 4850 RANK 'CAPT' CONAM 'J.TOWNES')

** What ships faster than the Kennedy are within 500 miles

of Naples

Parsed!

None

** How far is the Kitty Hwk from Gibralter

Spelling — > Hawk

166 Applications-oriented AI Research: Science VII

Parsed!

(GCDIST 1087)

The distance is 1,087 nautical miles.

Automatic derivation of a natural-language front end. A number

of other DBMS systems have been designed, not to provide a general NL
interface but, rather, to explore the usefulness of specific NL features in the

front end. For instance, the TED system (Hendrix and Lewis, 1981) functions

in a similar manner to LADDER, except that the NL front end is derived

semiautomatic ally. Instead of requiring extensive programming to build the

NL interface, TED uses the database schema and a dialogue it conducts with

the user; the result of this process is a grammar similar to the one used by

LADDER.
The dialogue may include questions about the English expression of con-

cepts from the database, connections between files in the database, ranges

of certain attributes, and so forth. The following are simplified examples of

questions asked in formulating a front end for a database of naval information

like the one for LADDER:

Assume a file named SHIP*, with attributes NAME, TYPE, MCS, and

MED, and a file named UNIT*, with attributes CONAM and HOGEO.

MCS is 1. arithmetic 2. feature (yes/no) 3. symbolic ?

** 1

Please type in the minimum and maximum values for MCS.

** 999

If there are other names for the attribute MCS, please list

them.

** Speed

If there is a word wwww such that the question "HOW wwww IS

THE SHIP?" is equivalent to "WHAT IS THE MCS OF THE SHIP?",

please type wwww.

** Fast

UNIT* has links to or from which of the following files

(SHIP* UNIT*)

** SHIP*

The current link associates with each SHIP of file SHIP* a UNIT

of file UNIT*. Which properties of the UNIT (from file UNIT*)

are inherited through this link as properties of the associated

SHIP (from file SHIP*)?

D4 Artificial Intelligence in Database Management 167

** CONAM HOGEO

At the completion of this dialogue, TED could answer questions such as

List the ships.

What are the home ports of the fastest medical ship ?

Which ships have home port = NewY?

The language capability produced in this way is slightly more restricted than

the manually created one for LADDER.
Cooperative responses. The direct, literal response to a user's natural-

language query may not be what he wants and might even be misleading. For

example, if a user asks, "Which students failed Computer Science 301 last

spring?" but the course is offered only in the fall, a simple answer of "none" is

misleading, although correct. A better response would be to inform the user

that the course was not offered in the spring. The COOP system (Kaplan,

1979) was designed to provide exactly this kind of response. If the state of

the database violated the user's presumptions, as inferred by COOP from the

user's query, the system would formulate a corrective, indirect response that

was more informative than the formally correct response.

Incremental query formulation. Instead of specifying the query in

full, complex detail, the user may expect help from the system in constructing

it. Such interactive query-formulation was the goal of the RENDEZVOUS
system (Codd, 1978). RENDEZVOUS operated by passing the initial query

through a parser, which converted it to a logical form. The parser then

initiated a clarification dialogue to resolve parts of the query that were ambig-

uous or unclear. The output from this phase was processed by a menu driver,

which offered a list of choices at each point in the dialogue, attempting to

fill in any gaps in the query specification by interrogating the user. Finally,

the completed query was passed to a generator, which printed out an English

translation of the final form for the user's approval.

Thus, RENDEZVOUS was designed to accept a partially specified query

in rather rough form and to attempt to complete it by (a) entering into a

clarification dialogue with the user to resolve parts of the query that were

unclear and (b) attempting to fill in "gaps" in the initial query specification,

by initiating a dialogue such as the following:

Please type in your query:

** nonexcellent non Detroit suppliers shipping part P37

What kind of response to your query are you expecting?

1 . A list of items of information to be printed from the

database

2. A yes/no or true/false answer

3. A count of items from the database

** l

168 Applications-oriented AI Research: Science VII

On which of the following items do you want information printed?

1

.

Suppliers

2

.

Shipments

3. Parts

4. None of the above

** l

Which of the following items of information on suppliers do you

want printed?

1

.

Number

2. Name

3. Location

4

.

Rating

5. None of the above

** 1, 2, 3, 4

This is what the system understands your query to be:

Print the serial number, name, location, and rating

of every supplier not rated excellent and not located

in Detroit who sent a shipment of part number P37

.

Is the system's understanding

1

.

Correct & complete

2. Not yet complete

3. Incorrect ?

** 2

Does the interpretation fail to mention any specif ication(s) on

suppliers, parts, or shipments?

** Yes

What information do you want to specify for (or add to) your

query?

1. Supplier (s) (e.g., one named Acme, etc.)

2. Part(s) (e.g., one with quantity on hand 10, etc.)

3. Shipment (s) (e.g., one sent on June 23, 1976, etc.)

4

.

None of the above

** 3

Which particular item(s) of the following information on

shipments do you want to specify?

1

.

Serial number of parts shipped

2. Serial number of suppliers making shipment

3

.

Quantity shipped

4. Date shipped

5

.

None of the above

** 4

D4 Artificial Intelligence in Database Management 169

Please enter the date of shipment you wish to specify

** Aug75

This is what the system understands your query to be:

Print the serial number, name, location, and rating

of every supplier not rated excellent and not located

in Detroit who, during August 1975, sent a shipment

of part number P37

.

More sophisticated interfaces. Ideally, the user of a DBMS should be

able to interact with the system in terms of the enterprise being modeled, not

confining his questions to concepts and terminology covered by the database

per se. He should also be able to ask questions about the database—for

example, about the kinds of information stored in it. Such concerns, and

others, are the goals of the KLAUS system currently under development at

SRI International (Haas and Hendrix, 1980). Eventually, KLAUS is intended

to assist users in the management of information in various forms by serving

as an interface between the user's need and the resources of the computer

system.

A pilot implementation, NanoKLAUS, can build a model of the domain

by engaging the user in an interactive dialogue in natural language. Following

is an example of NanoKLAUS learning about a naval domain like the one used

by LADDER and TED:

The following demonstrates acquiring a hierarchy of classes:

** A submarine is a ship

You're saying that anything that is a SUBMARINE is also a SHIP.

OK, now I have assimilated SUBMARINE.

** A destroyer is a ship

You're saying that anything that is a DESTROYER is also a SHIP.

Is SUBMARINE a proper subclass of DESTROYER?

** No

Is SUBMARINE necessarily composed of entirely different members

from DESTROYER?

** Yes

Do SUBMARINE and DESTROYER span the set of all SHIPS?

** No

The following demonstrates learning about verbs and actions:

** An officer can assign a unit

170 Applications-oriented AI Research: Science VII

Give the -ed and -en form of ASSIGN (e.g., for GO: WENT, GONE):

** assigned, assigned

If an OFFICER can ASSIGN something a UNIT, type the most general

description of that something.

** a task group

Can an OFFICER ASSIGN a UNIT TO a TASK GROUP?

** Yes

Note that, unlike TED, KLAUS concerns itself with the domain being

represented, rather than just the structure of the database.

Query Optimization

AI techniques can also be used in ways that are not noticeable to the

user but that result in an improvement in the behavior of the system. The
QUIST system (King, 1981) uses semantic- constraint information available

in the database schema to improve the execution of queries. For example,

a typical piece of semantic-constraint information from a database about

shipping might be a statement like The only ships over 600 feet long are

tankers. Applying this constraint, QUIST can transform a query like Which

ships are more than 700 feet long? into Which tankers are more than 700 feet

long? The latter query might be much more efficient to process if, for example,

the information about tankers were stored in a separate file in the database.

QUIST contains a cost model that enables it to estimate the cost of executing

a particular query. Different, but semantically equivalent, formulations of a

query can thus be compared with respect to the cost of processing them.

The tanker example above illustrated a constraint on the value of a

particular attribute. Another type of semantic constraint involves limitations

on the number of entities that can be related to other entities in a particular

way. For example, the number of ships that can be docked at a port may
be bounded by the number of berths at the port. With this constraint, the

query What ports have more than 15 French ships docked at them? can be

transformed into the query What ports with more than 15 berths have more

than 15 French ships docked at them?

Furakawa (1977) developed a deductive database-query system, DBAP,

that used a theorem prover to plan its access to the database. The theorem

prover was designed to make the access efficient by observing a number of

heuristics like the following:

1. Do not access the (logically) same record in a relation more than once.

2. Get all records that satisfy the given conditions to a certain relation at

one time.

D4 Artificial Intelligence in Database Management 171

3. When more than one record is to be accessed, plan the access order to

minimize the database accesses (this was accomplished by operating on

an association graph listing the connections between the relations in the

database).

Note that the heuristics used by DBAP are syntactic, referring only to the

structure of the database, as compared to the information about the actual

contents of the database (e.g., the lengths of different kinds of ships) in King's

QUIST system. These methods are therefore differentiated as syntactic query

optimization and semantic query optimization.

Enhancing DBMS Capabilities

Database management, like AI, is concerned with the representation,

retrieval, and use of information. Recognition and formalization of the simi-

larities between the two fields have exposed some shortcomings in database

systems. Two issues, in particular, concern extensions of the data model,

which describes the structure of the database in the database schema, and

the use of formal logic to reveal restrictions on the ability of database systems

to represent certain kinds of information or to perform certain operations.

Improved data models. As mentioned above, DBMSs typically incor-

porate a database schema that describes the organization of the database.

The schema includes a description of the objects in the database, the opera-

tions permitted on them (for both retrieval and update), and the constraints

that the database must satisfy. The schema is actually expressed by means of

a descriptive language called a data model, which provides a set of constructs

for describing aspects of the database. The idea of a language for encod-

ing knowledge about the database corresponds closely to the AI concept of

a knowledge-representation language that provides the appropriate structure

for encoding some knowledge used by an AI system (see Chap. Ill, in Vol. i).

The knowledge to be encoded with the data model concerns the structure of

the database itself, which will in turn be used by the DBMS for reasoning

about queries.

Sowa (1976) and Roussopoulos (1977) independently developed data mod-

els based on the semantic-network knowledge-representation formalism (see

Article III.C3, in Vol. i). The models were capable of representing such aspects

of DBMSs as semantic constraints, generalized inference for query processing,

and inheritance of properties between classes of objects. The network notation

could be used both for specifying the data model and for stating queries.

For example, Sowa's (1976) conceptual graph model would represent a

relation HIRE, with attributes MANAGER, EMPLOYEE, and DATE, as follows,

MANAGER > AGT HIRE > PTNT EMPLOYEE

> AT DATE

172 Applications-oriented AI Research: Science VII

and the query Who is the manager of Lee ? as follows,

PERSON: ? AGT HIRE PTNT PERSON: LEE

Special algorithms were specified for answering queries by matching the graph

encoding the query against the graph representing the data model. This

provided the system with powerful capabilities for question answering, includ-

ing the use of inferencing, the ability to use a procedure instead of the

database, and the ability to answer queries phrased in a high-level form.

TAXIS (Mylopolous, Bernstein, and Wong, 1980) is a language for the

design of information systems such as databases. It covers both the description

of the structure of the database and the formal specification of the procedures

for operating on the data. TAXIS uses the semantic-net representation for-

malism and also implements the principles of data abstraction and exception

handling from programming-language research.

The semantic data model, SDM (Hammer and McLeod, 1978), allows more

precise specification of semantic information than in a traditional data model.

In particular, the relationships between the entities in the domain could

be characterized as relationships of restriction, abstraction, and aggregation.

The SDM was intended to facilitate representation of information about the

domain of application, as well as about the database.

Logic as a conceptual framework. First-order logic offers a stan-

dard notation with an explicit semantics and mechanizable inference methods,

which accounts for its popularity in AI applications (Article III.C1, in Vol. I).

Logic also provides a clear standard within which different ideas can be

expressed and compared. A recent trend has been to use logic to express

certain aspects of a database. Reiter (1978) points out that a typical database

is merely a collection of well-formed formulas, containing only ground literals

(formulas containing constants but no variables), augmented with types and

various other restrictions. This characterization indicates a number of restric-

tions present in DBMSs as compared to AI systems; two such restrictions will

be described here.

First, current databases are incapable of representing many kinds of

quantified information (e.g., facts about the existence of an unspecified entry,

like There is an employee who works in Montreal), and disjunctive information

(e.g., Either John or Peter is a teacher). These sorts of statements can be

handled in the query language, but not represented in the database.

Second, databases typically do not contain extensive capabilities for infer-

ence. An example of deductive inference would be the use of a fact such as

John works in the sales department and a general rule such as All employees

in the sales department work on commission to infer the fact John works

on commission. Certain forms of deduction are performed by means of con-

straints and views, but general inferencing capabilities do not exist in current

DBMSs. There have been a number of proposals to incorporate deduction

into databases, for purposes such as query processing (Shaw, 1980; Reiter,

D4 Artificial Intelligence in Database Management 173

1978; Minker, 1978; Chang, 1978; Kellogg, Klahr, and Travis, 1978) and query

optimization (King, 1981; Furakawa, 1977).

References

The entertaining survey article on the state of natural-language processing

by Hendrix and Sacerdoti (1981) discusses the issues in natural-language front

ends for data bases. More advanced discussions of AI applications in database

management systems can be found in the articles in the collection edited by

Gallaire and Minker (1978).

Chapter VIII

Applications-oriented AI Research:

Medicine

CHAPTER VIII: APPLICATIONS-ORIENTED

AI RESEARCH: MEDICINE

A. Overview / 111

B. Medical Systems / 184

MYCIN / 184

CASNET / 193

INTERNIST / 191

Present Illness Program / 202

Digitalis Therapy Advisor / 206

IRIS / 212

EXPERT / 211

A. OVERVIEW

THIS CHAPTER reviews the research on AI "consultation" systems designed

as aids to medical decision making. (We do not cover the other major AI appli-

cation in medicine, namely, the use of AI techniques in x-ray and ultrasound

image analysis; see Preston, 1976, for a discussion of this application.) The
motivation for the development of expert computer-based medical consulta-

tion systems is twofold. First, there are obvious benefits to society from

providing reliable and thorough diagnostic services—perhaps even at a reduced

cost. It has been observed (Ledley and Lusted, 1959) that most of the errors

made by clinicians are errors of omission. That is, in trying to identify

the disease that a patient is suffering from, the physician does not consider

all possibilities, thereby missing the correct diagnosis. Assuming that ade-

quate patient data are available to it, a computer program can be designed

to consider exhaustively the diseases in its domain. Furthermore, there are

some tasks that computers can perform more rapidly and accurately than

the clinician can, such as calculating doses of medicines, particularly in cases

where dosage is critical and many factors must be taken into account in the

calculation (as in digitalis therapy; see Article VIII.B5). There are also some

tasks that physicians are notoriously poor at and that are routine enough for

the computer to do, such as the prescription of antimicrobial therapy.

The second motivation for development of these systems is found in

current interests in computer science. Clinical medicine has been a fertile area

for the study of cognitive processes, and diagnosis as a cognitive process has

been studied extensively (e.g., Jacquez, 1964). It involves a highly developed

medical taxonomy; a large, relatively well-organized knowledge base; and a

number of human experts in the domain whose performance is significantly

better on difficult problems than that of the average practitioner (i.e., there

is identifiable expertise). Furthermore, the kind of problem solving that

takes place in the domain is repetitive. These attributes reflect some of

the prerequisites for applications of the developing subfield of AI known as

knowledge engineering—taking AI beyond the stage of "toy" problems to

confront large, real-world problems (see Article VILA).

The development of computer-based consultation systems brings with it

many formidable social, psychological, and ethical problems that must be

addressed by the builders of the systems. These problems include validating

the systems, exporting them to hospitals and clinics, getting physicians and

patients to accept them, and deciding the responsibility for clinical decisions

made with the help of these systems.

177

178 Applications-oriented AI Research: Medicine VIII

Medical Decision Making

There are three principal parts to medical decision making: data gather-

ing, diagnosis, and treatment recommendation. Data gathering consists of

obtaining the patient's history and clinical and laboratory data. The clinical

data include the symptoms, which are the subjective sensations reported by

the patient (such as headache and chest pain), and the signs, which are objec-

tive and observable by the physician (Feinstein, 1967). Laboratory results

generally are referred to as findings. Manifestation refers to any symptom,

sign, or finding. Diagnosis, then, is the process of using these data to deter-

mine the illness. The three phases of medical decision making are not inde-

pendent; disease hypotheses are used to direct further information-gathering,

while treatment recommendation depends on the diagnosis and generally

requires more information gathering. Often, the decision to do a test includes

a physician's estimate of the cost, in terms of both money and danger to

the patient, which is weighed against the value of the information gained.

Gathering information, diagnosing the disease, and deciding on a treatment

regimen constitute a consultation. Figure A-l illustrates this process in rela-

tion to the course of the disease.

Etiology refers to the original causes of the disease; pathogenesis, to the

way in which the disease developed from its causes. Ideally, a diagnosis

involves determining the etiology. A treatment is then formulated for the

identified diseases and their causes. Often, however, medical knowledge is

incomplete, and it is not possible to determine the causes of a disease. In

these cases, treatments must be based on the empirical associations of disease

characteristics and how they are known to respond to treatment.

There are some parts of consultations that computers cannot do, such as

the physical examination. The physician gains much information from general

appearance, facial expressions, and so forth, which are inaccessible to the

computer. Arid, of course, the computer cannot talk with the patient to get

Untreated

Etiology

Patho-

genesis Current

Illness

Past

Prognosis

Treated

Future
Now

Figure A-l. Consultation process depicting a time-specific interpretation of

a medical problem.

A Overview 179

information, explain therapy, or administer therapy. The design of computer

consultation systems must, therefore, take these factors into account and offer

mechanisms for acquiring some of this information indirectly.

The History of Computers in Medicine

The use of computers in medical decision making began in the early 1960s

with the implementation of programs that performed well-known statistical

analyses. These programs focused on the diagnosis part of the consultation:

They accepted a set of findings and selected one disease from a fixed set,

using methods such as pattern recognition through discriminant functions,

Bayesian decision theory, and decision-tree techniques (Croft, 1972; Nordyke,

Kulikowski, and Kulikowski, 1971). Somewhat more complex programs per-

formed sequential diagnosis. Here, when sufficient information is not available

for a reliable diagnosis, the next test to be given the patient (to get more

information) is determined by a strategy that selects the best test based on

three factors: the cost of the test, the danger to the patient, and the amount

of discriminating information the test would supply.

The appeal of statistical methods is that the decisions based on such

methods are optimal according to specified criteria. Unfortunately, these

statistical systems proved unsatisfactory as medical decision-making aids. The
mathematics they were based on assumed that the patient had only one disease

and that the data were not erroneous. More fundamentally, certain assump-

tions and simplifications concerning the independence and mutual exclusivity

of various disease states, required to make the statistical techniques practi-

cal, were found to be unjustified. Furthermore, many prior and conditional

probabilities needed for complete analysis were simply not available.

Since the early 1970s, AI techniques have been applied increasingly to

medical decision making. However, some of the classical AI problem-solving

and knowledge-representation techniques (see Chaps. II and III, in Vol. i) were

not directly applicable. Consider, for example, a simple application of state-

space search to the determination of treatment. If one assumes that the initial

state is the diseased patient, that the final state is the healthy patient, and

that the operators for changing states are the various drugs, physical therapies,

surgical procedures, and so forth, it would appear that simple search methods

would find a path between the initial and final states. But there are two

fundamental problems with this simpleminded approach. First, the initial

state, the disease of the patient, is rarely known with certainty. Second, the

application of an operator—that is, a treatment—is not guaranteed to result

in an expected state. To deal with these problems, methods for representing

inexact knowledge and for performing plausible reasoning have been developed

in each of the consultation systems described in this chapter.

Medical diagnosis can be viewed as a problem of hypothesis formation

(see Article VIII.B4). The diagnosis task involves using clinical findings to

180 Applications-oriented AI Research: Medicine VIII

form a consistent set of disease hypotheses (not to select one disease from

a fixed set of possible diseases). These hypotheses are typically related to

each other in various ways. Each of the experimental medical consultation

systems described in this chapter demonstrates a different approach to this

hypothesis-formation problem.

The State of the Art

The state of the art in computer-based medical decision making is repre-

sented by the programs described in the following articles. These experimen-

tal programs are MYCIN (Shortliffe, 1976), CASNET (Weiss et al., 1978),

INTERNIST (Pople, 1975), PIP (Szolovits and Pauker, 1978), the Digitalis

Therapy Advisor (Silverman, 1975; Swartout, 1977b), IRIS (Trigoboff and

Kulikowski, 1977), and EXPERT (Weiss and Kulikowski, 1979). There are

several other experimental programs under development, including:

1. PUFF, a pulmonary-function program (Kunz et al., 1978);

2. HODGKINS, a system for performing diagnostic planning for Hodgkins

disease (Safrans, Desforges, and Tsichlis, 1976);

3. HEADMED, a psychopharmacology advisor (Heiser, 1978);

4. VM, an intensive-care monitor (Fagan, 1979);

5. RX (Blum and Wiederhold, 1978); and

6. ONCOCIN, a program for monitoring the treatment of oncology out-

patients on experimental treatment regimens (Shortliffe et al., 1981).

The major issues addressed during the development of all these programs

concerning their construction and their acceptance by the medical community

are discussed in the remainder of this article.

Representation of knowledge. Two distinct types of medical knowl-

edge must be represented in these programs: (a) general knowledge of diseases,

including manifestations, causal mechanisms, and diagnostic procedures, and

(b) specific knowledge about the patient, including the current medical history

and therapies. The usual representation formalisms of AI—semantic nets,

production rules, frames, and predicate calculus (all discussed in Chap. Ill, in

Vol. I)—are not directly applicable because of the inexact nature of medical

knowledge. In all the consultation systems that have been developed, these

representations have been augmented to incorporate some way of expressing

strength of belief or strength of association.

Medical knowledge is represented in MYCIN, for example, as a set of

production rules augmented by certainty factors; these factors express the

strength of belief in the conclusion of a rule, given that all of the premises

are true. (Extensive revisions of the MYCIN knowledge base are discussed

in Article DC.C6 on GUIDON.) CASNET uses a causal-network representation

A Overview 181

(a semantic network with one relation, CAUSES) in which each CAUSES link is

qualified by a number representing the strength of causality. In INTERNIST,

a taxonomy of diseases is stored as a huge tree with each node representing

a disease. Associated with each disease node is a list of manifestations, with

numerical weights reflecting the strength of association between the disease

and the manifestation. In PIP, the frame formalism is augmented by numbers

that reflect both the strength of belief in a slot filler and the degree to

which the frame itself applies to this patient. IRIS, in which the semantic-net

and production-rule formalisms have been combined, provides a facility for

incorporating an arbitrary representation of strength of belief.

Clinical reasoning. Clinical reasoning involves weighing different pieces

of evidence for particular hypotheses. Each system has a different approach,

but most employ the technique of thresholding; if the numerical score of a

hypothesis exceeds a certain preset threshold (defined by the expert physician

who builds the knowledge base), the hypothesis is believed to be true. The
clinical reasoning of MYCIN, for instance, uses a production-rule-based infer-

ence mechanism (see Article III.C4) to determine parameters (e.g., the patient's

infections and the causative organisms). The premises of a rule are consid-

ered true if the combined value of the associated certainty factors exceeds

a predefined threshold. If several rules contribute to a conclusion about a

parameter, their certainty factors are functionally combined to form a com-

posite certainty factor for this conclusion. These confidence-factor-combining

functions can be shown to be related to probability theory.

In CASNET, a status measure is associated with each state in the causal

network. Weights are propagated in both forward and backward directions

depending on disease causality. A state is considered confirmed if its status

exceeds a specified threshold.

In INTERNIST, disease hypotheses are scored by a procedure that takes

account of the strength of association among (a) the manifestations exhibited

by the patient and the disease, (b) the manifestations associated with the

disease that are not present in the patient, and (c) the confirmed diseases

causally related to this disease. Disease hypotheses are ranked, and the top-

ranked diseases are investigated further. When the difference between the

scores of the top two disease hypotheses reaches a criterion, the top-ranking

disease is confirmed.

PIP combines two methods of reasoning: categorical and probabilistic.

Categorical decisions are based on logical criteria rather than on numerical

values. The probabilistic reasoning involves scoring the disease. The applica-

bility of a disease frame to a particular patient can be confirmed on either

logical or probabilistic criteria.

In IRIS, an attempt is made to confirm nodes of a semantic net as being

true for the patient. Information is passed between the nodes of the semantic

net via sets of production rules associated with the links. These production

rules can encode both logical and probabilistic decisions.

182 Applications-oriented AI Research: Medicine VIII

Explanation and justification. The explanation and justification of a

system's line of reasoning are important factors for the acceptance of consul-

tation systems by physicians. Explanation shows the user the line of reasoning

in a particular diagnosis; justification is concerned with the medical accuracy

and the reliability of the knowledge and the reasoning strategies used.

Only two research projects currently address the issue of explanation.

MYCIN explains a diagnosis by printing out an English version of the chain

of rules used. More complex explanation facilities are provided by Davis's

TEIRESIAS system (see Article VII. B), an explanation and knowledge-

acquisition system developed in the context of MYCIN.
The OWL Digitalis Therapy Advisor provides English explanations of its

reasoning that are generated directly from the OWL code. The detail of the

explanation can be controlled by the program (Swartout, 1981). Both the

INTERNIST and CASNET systems are able to summarize the consultation by

displaying the scores of the hypotheses and the status measures of states in

the causal network; however, they are unable to explain the methods by which

they arrived at these scores. CENTAUR (Aikins, 1980), a reconfiguration of the

PUFF system designed in part to provide better explanations, can summarize

its hypothesis-directed reasoning.

The issue of justification is a complex one. Both CASNET and MYCIN
can cite references to the research literature in support of diagnoses and

treatment recommendations. One aspect of justification is the accuracy and

reliability of the expert's knowledge and whether this knowledge has been

accurately captured in the representation formalism. Often, medical experts

have differing opinions, and it is not clear whether a consensus should be

sought or whether the different opinions should all be represented. Another

aspect of justification is relating the program's reasoning steps to deeper

causal models, that is, justifying the associations represented in the system's

knowledge base. Little work has been done on this problem.

Validation. Just as the effectiveness of the various instruments and

drugs used by physicians must be validated, so the accuracy, utility, and

dependability of consultation programs must eventually be assessed. CASNET
and MYCIN have undergone extensive clinical trials and have been rated,

in experimental evaluations, as performing at human-expert levels in their

respective domains (Yu, Buchanan, et al., 1979; Yu, Fagan, et al., 1979).

Acquisition of knowledge. Knowledge acquisition is the transfer of the

expert's knowledge to a program. Currently, the only successful way of doing

this is through a computer-scientist intermediary, although eventually experts

should be able to communicate directly with the consultation program.

Concluding Remarks

Despite the extensive work that has been done, none of these systems is

in routine clinical use, except for PUFF, mentioned above. Constructed with

A Overview 183

EMYCIN (a system for building expert systems in any domain, with MYCIN'S
representation and control structure), PUFF employs a set of about 55 rules

on pulmonary dysfunction. The program offers treatment recommendations

that can be overridden by the physician.

The main reason that other expert systems have not been put to use in

medical practice is that they have yet to satisfy the indispensability criterion:

They are not indispensable to the practice of medicine, and physicians perform

adequately without them. For AI programs to make a significant impact

on health care, at least in the short term, it appears that PUFF's example

should be followed. Thus, the ingredients for a successful application in

medicine appear to be (a) a careful choice of the medical problem and (b) the

cooperation of interested experts. The domain must be narrow and rela-

tively self-contained, the computer should provide substantive assistance to

the physician, and the task should be one that the physician either cannot do

or is willing to let a computer do.

To summarize, the main focuses of AI research activity in medical decision-

making aids today are: knowledge engineering, for acquiring knowledge from

experts; knowledge representation, for building and maintaining the large

medical knowledge bases; strategy design, for reasoning with the medical

knowledge; and explanation capabilities as part of program designs, for pre-

senting their reasoning to users.

References

Shortliffe, Buchanan, and Feigenbaum (1979) is an up-to-date overview of

medical computing, including AI applications in this area. Feigenbaum (1977)

gives a short review of this research. Most of the work on medical systems is

discussed in detail in the AIM Workshop proceedings (AIM, 1975-81). Work
on some of the most important systems is described in a special issue of the

Journal of Artificial Intelligence (Sridharan, 1978). The article by Szolovits

in that issue is an excellent overview of AI applications in medicine.

B. MEDICAL SYSTEMS

Bl. MYCIN

THE MYCIN system (Shortliffe, 1976) was designed to provide consultative

advice on diagnosis and therapy for infectious diseases. Such advice is often

required in hospital care because the attending physician may not be an

expert on infectious diseases that show themselves during hospitalization—for

example, an infection that develops in a cardiology patient after heart surgery.

Time considerations compound the problem. A specimen (blood, urine, etc.)

from a patient can show some evidence of bacterial growth within 12 hours,

but generally it takes 24 to 48 hours (or more) for positive identification. The
physician must, therefore, often decide in the absence of complete information

whether or not to start treatment and what drugs to use if treatment is

required. Both of these may be difficult questions.

The MYCIN protocol that follows shows the initial and final parts of a

sample interaction between a physician and the system. MYCIN, in effect,

interviews the doctor about the patient, collecting information from which it

infers the diagnosis and selects an appropriate therapy.

PATIENT-

1

1) Patient's name: (first-last)

** Fred Smith

MYCIN collects some background data about the patient. The physician 's

response follows the double asterisks.

2) Sex:

** Male

3) Age:

** 55

4) Have you been able to obtain positive cultures from a site

at which Fred Smith has an infection?

** Yes

INFECTION-1

5) What is the infection?

** Primary-bacteremia

184

Bl MYCIN 185

6) Please give the date and approximate time when signs or

symptoms of the primary-bacteremia (inf ection-1) first appeared,

(mo/da/yr)

** May 5, 1980

The most recent positive culture associated with the

primary-bacteremia (infection-1) will be referred to as:

CULTURE-

1

7) From what site was the specimen for culture-1 taken?

** Blood

8) Please give the date and time when this blood culture

(culture-1) was obtained. (mo/da/yr)

** May 9, 1980

The first significant organism from this blood culture

(culture-1) will be referred to as:

ORGANISM-1

9) Enter the identity of organism-1

:

** Unknown

Typically, the identity of the organism is not known and, hence, must be

inferred by MYCIN from various other pieces of laboratory and clinical

information. MYCIN proceeds to ask questions that could help to deter-

mine the identity of the organism.

10) Is organism-1 a rod, or coccus (etc.):

** Rod

11) The gram stain of organism-1:

** Gramneg

12) Have there been positive cultures from sites which are NOT

associated with infections about which you are seeking advice?

** No

13) Did organism-1 grow aerobically?

** Yes (.8)

14) Did organism-1 grow anaerobically?

** Yes

15) What is the suspected portal of entry of organism-1 into

this sterile site?

** GI (.6)

186 Applications-oriented AI Research: Medicine VIII

More questions follow, to gather sufficient information for inferring pos-

sible identities of the infecting organisms.

My therapy recommendation will be based on the following

probable infection (s) and potential causative organism (s)

:

INFECTION- 1 is PR IMARY-BACTEREMIA

<Item 1> The identity of organism-1 may be PSEUDOMONAS-AERUGINOSA

<Item 2> The identity of organism-1 may be KLEBSIELLA-PNEUMONIAE

<Item 3> The identity of organism-1 may be E.COLI

<Item 4> The identity of organism-1 may be BACTEROIDES-FRAGILIS

<Item 5> The identity of organism-1 may be ENTEROBACTER

<Item 6> The identity of organism-1 may be PROTEUS-NON-MIRABILIS

46) On a scale of to 4, where higher numbers indicate

increasing severity, how would you rate Fred Smith's degree

of sickness?

** 3

47) Does Fred Smith have a clinically significant allergic

reaction to any antimicrobial agent?

** No

48) Fred Smith's weight in kilograms (or <number> pounds)

:

** 70

Note that two drugs cover for six potential organisms.

[Rec 1] My preferred therapy recommendation is as follows:

In order to cover for Items <1 2 3 5 6>:

Give: GENTAMICIN

Dose: 119 mg (1.7 mg/kg) q8h IV [or IM] for 10 days

Comments: Modify dose in renal failure

In order to cover for Item <4>:

Give: CLINDAMYCIN

Dose: 595 mg (8.5 mg/kg) q6h IV [or IM] for 14 days

Comments: If diarrhea or other GI symptoms develop,

patient should be evaluated for possible

pseudomembranous colitis

.

Do you wish to see the next-choice therapy?

Alternative choices are available.

** Yes

Which, if any, of the above drugs do you wish eliminated

from consideration?

** Clindamycin

Bl MYCIN 187

[Rec 2] Next best therapy recommendation:

In order to cover for Items <2 3 4 5 6>:

Give: CHLORAMPHENICOL

Dose: 1 gm (15 mg/kg) q6h IV for 14 days

Comments: Monitor patient's white count

In order to cover for Item <1>:

Give: GENTAMICIN

Dose: 119 mg (1.7 mg/kg) q8h IV [or IM] for 10 days

Comments : Modify dose in renal failure

MYCIN'S Knowledge Base

The medical knowledge in MYCIN is encoded as production rules of the

sort shown in Figure Bl-1 (see Article III.C4, in Vol. I, on production-system

knowledge representation). The rules are stored internally in the LISP form

shown, from which the English version is generated. Each rule is a single

"chunk" of domain-specific information indicating an action (in this case, a

conclusion) that is justified if the conditions specified in the premise are ful-

filled. Since the rule employs a vocabulary of concepts common to the domain,

it forms, by itself, a comprehensible statement of some piece of domain knowl-

edge. As will become clear, this characteristic is useful in many ways.

Each rule is highly stylized—with an IF . . . THEN format and a specified

set of admissible primitives. In fact, the internal form, as illustrated, is exe-

cutable LISP code. Furthermore, this tightly structured form makes it possible

for a program to be designed to examine the rules as well as execute them.

RULE 050

PREMISE: (AND (SAME CNTXT INFECT PRIMARY-BACTEREMIA)

(MEMBF CNTXT SITE STERILESITES)

(SAME CNTXT PORTAL GI))

ACTION: (CONCLUDE CNTXT IDENT BACTEROIDES TALLY .7)

MYCIN'S English translation:

IF 1) the infection is primary-bacteremia, and

2) the site of the culture is one of the sterile sites, and

3) the suspected portal of entry of the organism is

the gastrointestinal tract,

THEN there is suggestive evidence (.7) that the identity of the

organism is bacteroides.

Figure Bl-1. A MYCIN production rule.

188 Applications-oriented AI Research: Medicine VIII

For example, the rules can be translated into a readable English format, as in

Figure Bl-1. This translation capability has been used in MYCIN to explain

the program's inferences to the expert. (The importance of the system's

ability to explain a line of reasoning leading to a conclusion and to justify

why the program is asking a particular question in a given case is discussed

in Articles VILA, VII.B, and VIILA.) The current knowledge base contains 450

such rules that allow MYCIN to diagnose and prescribe therapy for bacteremia

(infections of the blood) and meningitis.

The premise of each rule is a Boolean combination of one or more clauses,

each of which is constructed from a predicate function with an associative

triple—(attribute, object, value)—as its argument. Thus, each premise clause

typically has the following four components:

(predicate function) (object) (attribute) (value) .

For example, the second clause in rule 50, above, is:

The site of the culture is one of the sterile sites;

or, in LISP:

(MEMBF CNTXT SITE STERILESITES)

I I I I

Predicate Object Attribute Value .

MEMBF is a predicate, and the triple says that the site of the current object

(an organism, in this case) is a member of the class of sterile sites. A stan-

dardized set of some 24 domain-independent predicate functions (e.g., SAME,

KNOWN, DEFINITE) and a range of domain-specific attributes (e.g., IDENTITY,

SITE), objects (e.g., ORGANISM, CULTURE), and associated values (e.g., E.COLI,

BLOOD) form the vocabulary of conceptual primitives for constructing rules.

A rule premise is always a conjunction of clauses, but it may contain

arbitrarily complex conjunctions or disjunctions nested within each clause.

(Instead of writing rules whose premise would be a disjunction of clauses, a

separate rule is written for each clause.) The action part indicates one or

more conclusions that can be drawn if the premises are satisfied, making the

rules purely inferential.

Certainty Factors

Note that the rules are judgmental; that is, they make inexact inferences

on a confidence scale of —1.0 to 1.0, where —1.0 represents complete confidence

that a proposition is false and 1.0 represents complete confidence that it is

true. In the case of the rule in Figure Bl-1, the evidence cited in the premise

is enough to assert the conclusion shown with a mild degree of confidence: .7.

This number is called the certainty or confidence factor (CF) and embodies a

model of confirmation described by Shortliffe (1976).

Bl MYCIN 189

MYCIN uses CFs rather than other, more standard statistical measures to

decide among alternatives during a consultation session. Standard statistical

measures were rejected in favor of CFs because experience with clinicians had

shown that clinicians do not use the information comparable to implemented

standard statistical methods. However, the concept of CFs did appear to

fit the clinicians' reasoning patterns—their judgments of how they weighted

factors, strong or weak, in decision making.

The CFs are a measurement of the association between the premise and

action clauses of each rule. When a production rule succeeds because its

premise clauses are true in the current context, the CFs of the component

clauses that indicate how strongly each clause is believed are combined, and

the resulting CF is used to modify the CF specified in the action clauses. Thus,

if the premise was only weakly believed (low, positive total CF), any conclu-

sions that the rule might make would be modified (reduced) to reflect this

weak belief that the patient was in a particular situation. In questions 13 and

15 in the preceding transcript, the user shows lack of complete confidence.

Also, since the conclusion of one rule may be the premise of another, reasoning

from premises with less than complete confidence factors is commonplace.

Medical facts about the patient are represented as 4-tuples made up of an

associative triple and its current CF. Positive CFs indicate that the evidence

confirms the hypothesis; negative CFs indicate disconfirming evidence. The
following are examples of such 4-tuples:

(IDENT ORGANISM-2 KLEBSIELLA .25)

(IDENT ORGANISM-2 E.COLI .73)

(SENSITIVS ORGANISM-1 PENICILLIN -1.0)

(IMMUNOSUPPRESSED PATIENT-1 YES 1.0)

MYCIN'S model of inexact reasoning permits the coexistence of several

plausible values for a single attribute, if this is suggested by the evidence.

For example, after attempting to deduce the identity (IDENT) of an organism,

MYCIN may have concluded (correctly) that there is evidence of both E.coli

and Klebsiella.

To summarize, there are two major forms of knowledge representation

in use in the performance program: (a) the attributes, objects, and values,

which form a vocabulary of domain-specific conceptual primitives, and (b) the

inference rules expressed in terms of these primitives.

Reasoning: The Inference Engine

The mechanism used to draw conclusions based on the rules in the knowl-

edge base and the data for the current case is the system's reasoning process,

or inference engine. In MYCIN, rules are invoked in a simple backward-

chaining fashion that results in an exhaustive depth-first search of an AND/OR
goal tree (see Article II.B2, in Vol. i). For example, assume that the program is

attempting to determine the identity of an infecting organism. It retrieves all

190 Applications-oriented AI Research: Medicine VIE

the rules that make a conclusion about the topic (i.e., that mention the identity

of bacteria in their action clause) and invokes each one in turn, evaluating

each premise clause to see if the conditions specified have been met. For the

sample rule in Figure Bl-1, this process would begin with the first clause,

determining whether the type of the infection is primary bacteremia. Since

the type of the infection is unknown, it is set up as a subgoal and the process

recurs—the system then looks for rules that conclude about this new topic,

the type of the infection.

The subgoal that is set up is a generalized form of the original goal.

In other words, the subgoal is always of the form Determine the value of

(attribute) rather than Determine whether the (attribute) is equal to (value).

Thus, for the first clause in rule 50 (the infection is primary-bacteremia), the

subgoal set up is Determine the type of infection. By setting up the generalized

goal of collecting all evidence about an attribute, the performance program

effectively exhausts each subject as it is encountered and thus tends to group

together all questions about a given topic. This feature results in a system

that displays a much more focused, methodical approach to the task, which is

a distinct advantage when human-engineering considerations are important.

The cost is the effort of deducing or collecting information that is not strictly

necessary. However, since this unnecessary effort occurs rarely—only when
the (attribute) can be deduced with certainty to be the (value) named in the

original goal—it has not proved to be a problem in practice.

The search is thus depth first (because each premise condition is thor-

oughly explored in turn), the tree that is sprouted is an AND/OR goal tree

(because rules may have OR conditions in their premise), and the search is

exhaustive (all of the rules that are applicable are "fired" and their conclusions

are rank-ordered by certainty factors). Since the rules are inexact—leading to

conclusions of less than total certainty—it is a wisely conservative strategy to

continue to collect all evidence about the subgoal from other applicable rules

even if one rule succeeds; MYCIN considers all the possibilities every time.

If, after trying all relevant rules to resolve a subgoal, the total weight

of the evidence about a hypothesis falls between —.2 and .2 (an empirically

determined threshold value), the answer is regarded as still unknown. This

result would occur if no rules were applicable (because their premises did not

match the available data), if the applicable rules were too weak, if the effects

of several rules offset each other, or if there were no rules for this subgoal at

all. In any of these cases, when the system is unable to deduce the answer, it

asks the user for the value of the subgoal (using a phrase that is stored along

with the attribute itself).

This strategy, of always attempting to deduce the value of a subgoal and

asking the user only when deduction fails, ensures a minimum of questions.

It could also mean, however, that work might be expended searching for a

subgoal, arriving perhaps at a less than definite answer when the user might

already know the answer with certainty. To prevent this inefficiency, some

Bl MYCIN 191

of the attributes have been labeled "laboratory data" to indicate that they

represent information available as results of quantitative tests. In these cases,

the deduce-then-ask procedure is reversed, and the system attempts to deduce

the answer only if the user cannot supply it. Given the desire to minimize

both tree search and the number of questions asked, there is no guaranteed

optimal solution to the problem of deciding when to ask for information and

when to try to infer it, but the distinction described here has worked well and

seems to embody an appropriate criterion.

Two other additions to straightforward tree search increase the infer-

ence engine's efficiency. First, before the entire list of rules for a subgoal is

retrieved, the program attempts to find a sequence of rules that would estab-

lish the goal with certainty, based only on what is currently known. Since this

is a search for a sequence of rules with CF = 1, the result is termed a unity

path. In addition to efficiency, this process offers the advantage of allowing the

program to make commonsense deductions with a minimum of effort (rules

with CF = 1 are largely definitional). Because there are few such rules in the

system, the search is typically very brief.

Second, the inference engine performs a partial evaluation of rule premises.

Since many attributes are found in several rules, the value of one clause

(perhaps the last) in a premise may already have been established while the

rest are still unknown. If this clause alone would make the premise false, there

is clearly no reason to do all the search necessary to establish the others. Each

premise is thus previewed by evaluating it on the basis of currently available

information. The result is a Boolean combination of TRUEs, FALSEs, and

UNKNOWNS, and straightforward simplification (e.g., F X U = F) indicates

whether the rule is guaranteed to fail.

Therapy Selection

After MYCIN determines the significant infections and the organisms that

cause them, it proceeds to recommend an antimicrobial regimen if this is

appropriate. The MYCIN therapy selector (Clancey, 1978) uses a descrip-

tion of the patient's infections, the causal organisms, a ranking of drugs

by sensitivity, and a set of drug-preference categories (such as Propose two

drugs: one second-choice drug and one third- choice drug) to recommend a

drug regimen. The algorithm will also modify dosages in the case of renal

failure in the patient. The program can provide detailed explanations of how
it made a regimen choice and can accept and critique a regimen proposed by

the physician.

Acquisition and Use of New Knowledge

The representation of knowledge as production rules and the ability to

explain specific rules allow MYCIN to interact with an expert clinician in a

192 Applications-oriented AI Research: Medicine VIII

manner that permits the system to acquire and apply new knowledge. Davis's

TEIRESIAS system (see Article VII.B) works in conjunction with MYCIN and

allows the expert to inspect faulty reasoning chains and then add and modify

any rules or clinical parameters required to augment and repair the medical

knowledge of MYCIN.
When the expert is dissatisfied with the system's performance on a par-

ticular case, MYCIN is able to explain how it made the erroneous conclusions

and to guide the expert while he (or she) is determining the source of the

reasoning "bug." To correct the reasoning, the expert may elect to enter new
rules or alter existing ones. He enters his requests through a "nearly natural

language" interface. These requests to add or modify a rule are parsed by

the system and used to create a new rule in MYCIN'S internal (LISP) format,

which is then translated back into English (as in Fig. Bl-1) and presented to

the user for inspection. This interaction helps minimize any misunderstanding

between the clinician and MYCIN.
Once this new rule is accepted and understood by the system, the next

consultation will make use of it and alter its recommendations accordingly.

This ability permits the system to interact directly with the domain experts

without the intervention of a programmer.

Concluding Remarks

Formal evaluations of the MYCIN system have been made that indicate

that MYCIN compares favorably with experts in infectious disease in diagnos-

ing and selecting therapy for patients with bacteremia and meningitis (Yu,

Buchanan, et al., 1979; Yu, Fagan, et al., 1979). At present, however, the sys-

tem is not used on the wards, primarily because of its incomplete knowledge

of the full spectrum of infectious diseases.

MYCIN was one of the first of a new breed of computer systems—systems

that step out of the toy worlds of AI into the real world. These systems must

deal with many of the social and psychological problems of man-machine

interactions. Issues such as modularity and representation of knowledge,

reasoning in specific domains, explanation of a system's logic, and the ability

to accumulate and use new information must be considered, with attention

given both to programming and to interfacing problems. MYCIN has been

designed with these issues in mind and has consequently shown promise as a

real-world aid to the clinician.

References

See Shortliffe (1976) and Davis (1976).

B2. CASNET

THE Causal ASsociational NETwork (CASNET) program (Weiss, Kulikowski,

and Safir, 1977) is a computer system developed at Rutgers University for

performing medical diagnosis. The major application of CASNET has been in

the domain of glaucoma. The system represents a disease not as a static state

but as a dynamic process that can be modeled as a network of causally linked

pathophysiological states. The system diagnoses a patient by determining

the pattern of pathophysiological causal pathways present in the patient and

identifying this pattern with a disease category. Once the disease category is

explicitly identified, the most appropriate treatments can be prescribed. The
causal model also makes possible a prediction of the likely course of a disease

both if treated and if untreated.

Representation of Medical Knowledge

A CASNET model consists of three planes of knowledge, parts of which

are shown in Figure B2-1. The plane of pathophysiological states is the heart

of the model. The nodes in this plane represent elementary hypotheses about

the disease process, and arcs here represent a causal connection between two

elementary hypotheses; for example, INCREASED INTRAOCULAR PRESSURE
. . . CAUSES . . . CUPPING OF THE OPTIC DISK. Associated with each link is

a forward weight or confidence factor, a number on a scale of 1 through 5,

where 1 corresponds to "rarely causes" and 5 to "(almost) always causes." The
determination of these weights and their utility in confirming or disconfirming

the presence of a pathophysiological state are discussed later in this article.

The plane of observations contains nodes representing evidence gathered

from the patient—signs, symptoms, and laboratory tests. During a consul-

tation, some or all of these nodes will be instantiated. Nodes in this plane

are linked to nodes in the pathophysiological plane. The links have associated

confidences, again on a scale of 1 through 5, reflecting the degree to which the

particular test, symptom, or sign supports the associated state. For example,

a scotoma (a perimetry measurement) strongly indicates VISUAL FIELD LOSS,

so it has a confidence value of 5. The same test, however, could have a different

confidence value depending on the results; for example, 15 mm of Hg could be

considered evidence for INCREASED INTRAOCULAR PRESSURE, but a result of

30 would be definite evidence and would carry a greater confidence value. The
confidence values with which observations are linked to pathophysiological

states are predetermined by the designers of CASNET.
In general, there is usually more than one test for a particular state, and

the same test might indicate more than one state. Each test also has an

193

194 Applications-oriented AI Research: Medicine vm

Disease
Categories

r7i Secondary

Pathophysiological

States

Observations

SYMPTOMS

Associational

Links

Gonioscopy / T ~~~~----/
Synechias / / •— ^.

g*i Tonometry: / "*%,

l*3 (OP = 45 mm Hg W\ Perimetry: \^ Arcuate Scotoma \

Blurred
"""^^-^^^ rk Ophtha!mo$copy:

Vision / -C^Cfl^O.7
II3I3

^"' rzaDilated \ ^"^^ ^«~

C SIGNS "^PuP't /
"~" "~

Figure B2-1. Three-level description of a disease process (Weiss et al., 1978).

associated cost that reflects both monetary cost and danger to the patient.

Some states may not have a corresponding test, since such a test may not exist

or may be judged too difficult or costly to use for a particular pathology.

The third plane contains the classification tables for the disease. A classi-

fication table defines a disease as a set of confirmed and denied pathophysio-

B2 CASNET 195

logical states. It also contains a set of treatment statements for that disease.

For example, the classification table in Figure B2-2 indicates that if a patient

is found to have ANGLE CLOSURE and INCREASED INTRAOCULAR PRESSURE

but neither CUPPING nor VISUAL FIELD LOSS, then he (or she) has ANGLE
CLOSURE GLAUCOMA; if he has ANGLE CLOSURE, INCREASED INTRAOCULAR
PRESSURE, CUPPING, and VISUAL FIELD LOSS, then he has CHRONIC ANGLE
CLOSURE GLAUCOMA. The concept represented in the classification tables

is that a disease is dynamic with respect to time and that confirmed states

farther down a pathway represent more advanced stages of the disease. The

states in a classification table will generally be on the same pathway. A starting

state is a state with no causes in the network (also called a basic disease

mechanism). Inadequate understanding of disease mechanisms or incomplete

models sometimes lead to classification tables containing states from more

than one pathway.

Reasoning

Figure B2-2 illustrates how CASNET defines a disease as a conjunction of

causally related pathophysiological states. Diagnosis in CASNET is a matter

of finding one or more causal pathways between these states. Reasoning in

CASNET is designed to maximize the likelihood of finding these pathways,

given a set of signs, symptoms, and test results.

A diagnostic session begins with the program's asking the user (physician)

a series of questions about the patient. The physican answers with values

for any tests, signs, and symptoms, or he answers UNKNOWN. These values,

together with the confidences associated with the tests and the weights asso-

ciated with the causal arcs, are used to compute a status, or confidence factor,

for each node in the causal net.

The STATUS of a state is affected both by the results of its associated tests

and by the STATUS values of the states around it. For example, if A causes

B and B is confirmed by observation, then there is strong evidence for A.

A general algorithm is used to propagate these weights on a state, both in

the forward direction (i.e., along the direction of the causal link) and in the

backward direction. A state is marked confirmed if its STATUS is greater than

a preset threshold, and it is marked denied if its STATUS is less than a second

STATE DISEASES TREATMENTS

ANGLE CLOSURE

INCR IOP ANGLE CLOSURE GLAUCOMA TREATMNT1

CUPPING

VFL CHRONIC ANGLE CLOSURE GLAUCOMA TR1, TR2

Figure B2-2. A classification table.

196 Applications-oriented AI Research: Medicine VIII

threshold; otherwise, it is undetermined. The program employs a strategy for

selecting the next question that is based on the cost of the test and on the

likelihood that it will lead to the confirmation or denial of a state.

After all available symptoms and findings have been entered and after

the STATUS values have been computed, the classification tables are used to

determine diagnoses and treatments. The tables are selected to cover all

confirmed nodes. The strategy for selecting the tables is to find the starting

states for which causal pathways can be generated that reach the largest

number of confirmed states without traversing a denied state. This procedure

is repeated until all of the confirmed states are covered.

The treatment statements of the selected classification tables are then

used to select a therapy for the indicated diseases. Like a state, a treat-

ment has an associated STATUS that is interpreted as its confidence in its

success as a treatment. The treatment with the highest STATUS is selected.

This assessment is repeated for all selected classification tables. A final algo-

rithm decides whether some treatments are subsumed by others, and then the

final treatment recommendations are printed. If desired, a short summary of

research justifying the diagnosis and treatment can also be printed. The cur-

rent glaucoma model contains about 150 states, 350 tests, and 50 classification

tables.

Summary

CASNET adopts a strictly bottom-up approach to the problem of diag-

nosis, working from the tests, through the causal pathways, to a diagnosis.

The separation of medical knowledge (encoded in the causal network) from

reasoning strategies (embodied in the program) will make the expansion of

the disease model, when new research discoveries are made, a simple matter.

The program is continually being tested and updated by a computer-based

network of collaborators.

The model also provides a convenient way of following the progress of

a patient's disease over multiple visits—the causal net can be used to view

the disease progression, both forward and backward, along the pathways.

Although CASNET has been used primarily for glaucoma, the representational

scheme and decision-making procedures are applicable to other diseases that

are understood well enough to make the process of disease known. The pro-

gram's performance has been evaluated by opthalmologists and is considered

close to expert level.

References

See Weiss et al. (1978).

B3. INTERNIST

INTERNIST is a consultation program in the domain of internal medicine

developed jointly by H. Pople, a computer scientist, and J. Myers, a specialist

in internal medicine, both at the University of Pittsburgh. The program is

presented with a list of manifestations of disease in a patient (e.g., symptoms,

physical signs, laboratory data, and history), and it attempts to form a

diagnosis. The diagnosis consists of a list of diseases that would account

for the manifestations. Using information presented during the course of the

consultation, the program is able to discriminate between competing disease

hypotheses. The current version of the program only formulates diagnoses and

does not recommend treatments.

One of the major goals of the INTERNIST project has been to model the

way clinicians do diagnostic reasoning. The program has been used to explore

the way that certain symptoms evoke particular disease hypotheses in the

minds of clinicians, how hypothesized diseases give rise to expectations of other

symptoms, how clinicians focus on particular disease areas and temporarily

ignore certain other symptoms that they judge irrelevant, and how they decide

between competing disease hypotheses.

From the standpoint of computer science, INTERNIST is solving a theory-

formation or hypothesis-formation problem (see Chap. XTV, in Vol. III). Deter-

mining a satisfactory diagnosis involves inferring a set of hypotheses to explain

the patient data. In INTERNIST, the data are manifestations and the hypoth-

eses are diseases.

Diagnosis in internal medicine is complicated because a patient may suffer

from a number of diseases simultaneously. Although some diseases are more

likely to be associated than others, the possible combinations are too numerous

to encode a priori. (Pople, 1977, suggests that a conservative estimate of this

number is 1040 .) Clearly, diagnosis of a set of diseases present in a patient is

nontrivial. INTERNIST-I accomplished this diagnosis by establishing sequen-

tially the diseases that best fit the data. INTERNIST-II is an improvement

over its predecessor in that it establishes the set of diseases in parallel and

therefore avoids some of the annoying artifacts of sequential processing, such

as considering a number of incorrect diagnoses before "focusing in" on the

correct one.

For INTERNIST-I, a problem is defined as a set of mutually exclusive

disease hypotheses. If a patient has a number of diseases, INTERNIST-I
must solve that number of problems. In brief, INTERNIST-I finds a set of

diseases that account for some or all of a set of symptoms. Then it selects one

disease from the set on the basis of a scoring schema, which is the solution

for one of the problems. Then it finds another set of diseases that account for

some or all of any remaining symptoms and again selects the most likely of

197

198 Applications-oriented AI Research: Medicine VIII

these alternatives. It continues in this manner until all symptoms have been

accounted for.

Representation of Medical Knowledge

INTERNIST'S knowledge of diseases is organized into a disease tree, or

taxonomy, using the "form-of" relation (see Fig. B3-1). For example, hepato-

cellular disease is a form of liver disease. The top-level classification in this

tree is by organs—heart disease, lung disease, liver disease, and so on. A
disease node's offspring are refinements of that disease, terminal nodes being

individual diseases. A nonterminal node and its subtree are referred to as a

disease area, while a terminal node is referred to as a disease entity. The
disease hierarchy is predetermined and fixed in the system.

Diseases and their manifestations are related in two major ways: (a) a

manifestation can evoke a disease and (b) a disease can manifest certain signs

and symptoms. These relations can be thought of as probabilities: p(D
\
M)

(the conditional probability of D given M) and p(M
\
D), respectively. The

strength of these relations is given by a number on a scale of through 5,

where means that no conclusions can be drawn about the disease and the

manifestation and 5 means that the manifestation is always associated with

the disease. Each disease in the tree is associated with its relevant manifes-

tations. Several other relationships are superimposed on the disease tree to

capture causal, temporal, and other association patterns among diseases.

Liver-disease

Hepato-
cellular

Disease

All-diseases

Lung-disease

Form-of

Heart-disease

Form-of

Form-of

Hepato- Hepato-
cellular cellular

Injury Infection

Figure B3-1. INTERNIST'S disease tree.

B3 INTERNIST 199

The disease tree and its associated manifestations are constructed and

maintained separately from the diagnosis program. All known EVOKE and

MANIFEST relations are entered for the terminal nodes (diseases) of the tree.

A list of manifestations is then computed for each nonterminal node of the tree

by taking the intersection of the manifestation lists of that node's offspring.

In this way, the manifestations "percolate" up through the tree to the most

general disease with which they are associated and are stored only with

this node. This means that manifestations associated with a nonterminal

disease node are, by implication, also associated with every node (terminal or

nonterminal) beneath it in the tree. As well as providing storage economy,

this information is used during the consultation for selecting disease areas

on which to focus. For example, jaundice (yellowing of the skin) will be

associated with some nonterminal disease (e.g., hepatitis) under liver diseases,

and its presence in a patient will cause the consultation program to investigate

diseases in that disease area.

Various properties are associated with each manifestation. The most

important ones are TYPE and IMPORT. The TYPE property is a measure of

how expensive it is to test for a manifestation, in terms of both financial cost

and physical risk to the patient. TYPE is used to order the questions asked

by the consultation program: Questions about less expensive manifestations

are asked first. The IMPORT of a manifestation is a measure of how easily

it can be ignored in a diagnosis. The manifestation "Shellfish ingestion" can

easily be ignored, but a liver biopsy showing caseating granulomas must be

explained.

Reasoning

At the beginning of a consultation, a list of manifestations is entered. As

each manifestation is entered, it evokes one or more nodes of the disease tree.

A model is created for each evoked disease node. The model consists of four

lists:

1. Observed manifestations that this disease cannot explain (this list is

called the shelf);

2. Observed manifestations that are consistent with the disease;

3. Manifestations that should be present if this disease is the correct diag-

nosis but that have not been observed in the patient;

4. Manifestations consistent with this disease but that have not yet been

observed in the patient.

After the initial entry of manifestations, the disease tree consists of nodes

that have been "lit up" (evoked) and those that have not. A diagnosis

corresponds to a set of lit terminal nodes that account for all of the symptoms.

In general, at this stage very few of the terminal nodes will be lit up, so the

200 Applications-oriented AI Research: Medicine VTH

program must ask for further information. To get this further information,

the program will focus on a disease area and formulate a problem.

Each disease model is scored, receiving a positive score for each manifes-

tation it explains and a negative score for each manifestation that it cannot

explain. Both are weighted by IMPORT. It receives a bonus if it is linked

causally to a disease that has already been confirmed. The disease models

are partitioned into two sets: (a) the top-ranked model and the diseases that

are mutually exclusive to it (alternatives) and (b) the diseases that are com-

plementary to the top-ranked model. For example, if the top-ranked node is

hepatocellular injury, then other evoked liver diseases will be alternatives to

it, while lung or heart diseases will be complementary.

Having formulated a problem by partitioning the disease models, the sys-

tem follows one of several strategies, depending on the number of candidate

diseases in the problem set. If there are many (more than four) alternative

hypotheses, it attempts to rule out as many as possible. Questions about

manifestations that strongly indicate a disease (high p(M
\
D)) are selected

first. If these manifestations are not present, this disease can be ruled out.

If there are between two and four possibilities, the program attempts to dis-

criminate between them. Then questions about manifestations that strongly

indicate one disease, D\ (high p(M
\
D\)), and weakly indicate another disease,

Z>2 (low p(M
|
D2)) > are selected. These questions are used to discriminate

between the two diseases. If there is only one candidate, questions that have

a good chance of confirming this disease are asked. Sometimes, if there are

not enough data, it will not be possible to confirm one of the terminal nodes,

and a more general diagnosis is given (e.g., "liver disease").

After a disease is confirmed, its manifestations are marked "accounted

for," bonus scores are given to previously manifested diseases that are causally

linked to this one, and focus shifts to the new top-ranked disease and the

formulation of a new problem.

INTERNIST-II

There was a major problem with INTERNIST-I: In complex cases, the

program had a tendency to begin the analysis by focusing first on totally

inappropriate areas. While the final diagnosis was usually correct, the initial

meandering was annoying to clinicians. The cause of the problem was traced

to the sequential method of problem formulation. In INTERNIST-II, the

simultaneous formulation of several problems is being investigated.

Representation of medical knowledge. INTERNIST-II uses the same

knowledge base as INTERNIST-I, but it is augmented by a set of constrictor

relations. These are manifestations that do not evoke a particular disease but,

rather, a general area of infirmity. For example, jaundice alerts clinicians to

the presence of liver disease. It does not discriminate between liver diseases,

but it does delimit this disease area. Formally, a disease area constrained by

B3 INTERNIST 201

a constrictor manifestation is a subtree of the disease tree, in this case, the

subtree of liver diseases.

Reasoning. A problem for INTERNIST-I is to find a set of terminal nodes

on the disease tree that accounts for a set of manifestations. It then chooses

one node from the set and formulates another problem. INTERNIST-II does

not start a diagnosis by formulating a set of terminal nodes, because the

number of combinations of terminal disease-nodes that may account for a set

of manifestations is enormous. Instead, INTERNIST-II partitions the disease

tree into disease areas, which collectively account for all the manifestations.

Constrictor manifestations are used to make the partitions. If a patient

manifests more than one constrictor, the disease tree will be partitioned into

more than one disease area. The conjunction of all the disease areas is called

the root structure and is formally a set of subtrees of the disease tree. A
root structure accounts for all the patient's manifestations. The problem for

INTERNIST-II is to decide which terminal nodes (actual diseases) within the

root structure best account for the manifestations. This is accomplished by

partitioning the root structure into smaller subtrees exactly as the disease

tree was partitioned into the root structure, namely, by using manifestations

that strongly suggest a disease area (this time, however, the disease area is

smaller). The process of partitioning the root structure into smaller areas

continues until all the manifestations are accounted for.

This is a summary account of the operation of INTERNIST-IL In actu-

ality, it is more complicated (see Pople, 1977, for a complete explication).

The main point of INTERNIST-II is that it diagnoses a patient's diseases by

dividing the disease tree into smaller and smaller subtrees, until it achieves a

set of terminal nodes that accounts for all the manifestations.

Summary

The two INTERNIST programs have successfully combined a bottom-

up and top-down approach to medical diagnosis. The patient data evoke

certain disease hypotheses (bottom-up) that are then used to predict (top-

down) other manifestations that should be present if the hypothesis is to be

confirmed. The system is purely associational. It does not attempt to model

any disease processes but considers a disease as a static category and diagnosis

as the task of assigning a patient to one or more categories. INTERNIST-I
has a large knowledge base, currently containing over 500 of the diseases of

internal medicine (about 75% complete). It has displayed expert performance

in complex cases involving multiple diseases. Pople and Myers expect that the

system will eventually be in clinical use.

References

See Pople (1975, 1977).

B4. Present Illness Program

The Present Illness Program (pip) is being developed at m.i.t. (see

Pauker et al., 1976; Szolovits and Pauker, 1976, 1978). One application of

it thus far has been to take present illnesses of patients with renal (kidney)

disease. Taking a present illness is different from performing a complete

diagnosis—it is the typical consultation a patient has with a general prac-

titioner. The patient usually presents a chief complaint that becomes the

initial focus of the consultation, and diagnosis is based on only very low

cost sources of information (such as patient history, physical examination,

and routine laboratory tests). High-cost or high-risk procedures that may be

necessary for a complete diagnosis are not used.

The medical knowledge in PIP is represented as a network of frames (see

Article III.C7, in Vol. i). The frames are centered around diseases, clinical

states, and physiological states (hereafter called the patient situation) and

contain data such as typical findings, relationships to other patient situations,

and rules for judging how well a set of findings exhibited by a patient matches

the situation described by the frame. Matching is the key strategy in the

diagnosis, which involves comparing findings to those indicated in the disease

frames and then selecting a set of frames that covers all of the findings. There

are, at present, 36 frames for dealing with renal disease.

Currently, the program does not make treatment recommendations. The
system was originally written in CONNIYER (see Article VI.C2), but that

version was too slow and it has been recoded to run in MACLISP.

Representation of Medical Knowledge

The general medical knowledge in PIP, as mentioned above, is knowledge

about diseases, the patient situation (findings, results of the physical examina-

tion, and reported symptoms), and the relationships between these entities.

This medical knowledge is organized as a frame system. Shown in Figure B4-1

is part of a typical frame.

The slots in the frame are grouped into categories as shown. The typi-

cal findings are those that are expected in a patient having this disorder.

However, patients with the disorder need not exhibit all of the typical findings.

The job of the matching algorithm is to compute the "goodness of fit" between

the findings and a frame. Some of the typical findings have the special status

TRIGGER, and they are key elements of the clinical decision-making strategy.

A TRIGGER is a finding that is so strongly related to a disorder that the

presence of the finding in the patient makes the PIP system attend to the

disorder frame as an active hypothesis. For example, FACIAL EDEMA is listed

202

B4 Present Illness Program 203

in Figure B4-1 as a TRIGGER for ACUTE GLOMERULONEPHRITIS, meaning

that PIP will consider this disease as an active hypothesis if a patient displays

facial edema.

The logical decision criteria are rules that permit the confirmation or

rejection of a hypothesis on the basis of a small number of key findings.

Findings that are strongly correlated with a disease will be listed in the slot

IS-SUFFICIENT. If any of these findings are reported, they will be sufficient to

confirm the presence of the disease.

The relations between frames reflect the ways in which disorders are

related in medicine. Sometimes disease mechanisms are well understood and it

is possible to say that one disorder CAUSES another or is a COMPLICATION-OF
another. If mechanisms are poorly understood, the disorders may simply be

ASSOCIATED. The latter frames are complementary; they represent disorders

ACUTE-GLOMERULONEPHRITIS

Typical Findings

TRIGGERS (EDEMA with L0CATI0N=FACIAL ...)

FINDINGS (ANOREXIA ...)

Logical Decision Criteria

IS-SUFFICIENT (None)

MUST-HAVE (None)

MUST-NOT-HAVE (None)

Complementary Relations to Other Frames

CAUSED-BY (STREPT0C0CCAL-INFECTI0N, ...)

CAUSE-OF (SODIUM-RETENTION, ...)

COMPLICATED-BY (ACUTE-RENAL-FAILURE, ...)

COMPLICATION-OF (CELLULITIS)

Differential Diagnosis

CHRONIC-HYPERTENSION implies CHRONIC-GLOMERULONEPHRITIS

RECURRING-EDEMA implies NEPHROTIC-SYNDROME

Scoring

(((PATIENT WITH AGE=CHILD) - 0.8)

((PATIENT WITH AGE=MIDDLE-AGED) -0.5)

...)

(((EDEMA with SEVERITY = not MASSIVE) > 0.1)

((EDEMA with SEVERITY = MASSIVE) + -1.0)

...)

Figure B4-1. Part of the frame for acute glomerulonephritis (kidney stones).

204 Applications-oriented AI Research: Medicine VTQ

that the patient might have in addition to the initial disorder. In contrast, the

differential diagnosis slots indicate mutually exclusive disorders—the patient

may have one of them and not the disorder represented by the current frame.

The final slot indicates how the findings are scored for the disorder rep-

resented by the frame. This score indicates the goodness of fit of this disorder

to the findings. The statements comprising this slot are sets of clauses that

are evaluated in turn. Within a clause, evaluation terminates when one of the

conditions in the clause is true; its score will be used. The local score for a

frame is the sum of the values of the clauses, normalized by the maximum
total score possible. Thus, 1 denotes complete agreement, while arbitrarily

large negative numbers denote complete disagreement.

Reasoning

The clinical reasoning strategy used by PIP is based on the manipulations

of hypotheses and findings. Knowledge about findings is stored separately

from the frame system, since a finding can be applicable to many frames. A
hypothesis is an instantiation of a disorder frame. There are three kinds of

hypotheses: confirmed, active, and semiactive. Hypotheses with ratings (as

computed by the scoring process) that are higher than a preset threshold are

considered confirmed hypotheses. Active hypotheses are those with at least

one confirmed TRIGGER finding, and they contend for the focus of attention.

Semiactive hypotheses are the immediate neighbors of the active hypotheses in

the frame system. They correspond to hypotheses that, although not strong

enough to be investigated, are "at the back of the consulting physician's

mind."

The consultation begins with the physician telling the system the main

symptoms and signs of a patient. The program then takes the initiative and

tries to determine the validity of any active hypotheses by selecting and asking

appropriate questions.

The program works through the following cycle:

1

.

Acquire a new finding. This task is accomplished by asking a sequence of

questions that characterizes the finding according to its possible descrip-

tions.

2. Process the finding. All of the frames in which this finding is relevant are

located.

3. Update the list of active hypotheses. Several actions can be taken at this

point: Remove an active hypothesis if the finding matches a MUST-NOT-
HAVE rule; confirm a hypothesis if the premise of an IS-SUFFICIENT

rule is now true; activate a hypothesis if the new finding is one of the

hypothesis TRIGGERS or if the finding allows the premise of a differential

diagnosis link to succeed; or revise the score of the hypothesis if the

finding matches a scoring rule. If a new hypothesis is activated, then all

of its immediate relatives are made semiactive.

B4 Present Illness Program 205

4. Select the next finding to query. The highest rated hypothesis becomes

the focus of attention, and a question is generated for the next unex-

plored rinding. If there are no hypotheses, a question about a finding

for the highest rated, causally related frame is asked. Questioning ter-

minates when there are no more active hypotheses or causal relatives

with findings to be determined.

If the logical decision criteria are insufficient to confirm or deny a hypoth-

esis, the score of the hypothesis is computed by combining (a) the value of

a function that measures the fit of observed findings and typical (expected)

findings for the frame (called the matching score) and (b) the value of a

function that is the ratio of the number of findings accounted for by the

hypothesis to the total number of findings (the binding score). The matching

score, in turn, consists of two parts, a local score for the frame (described

above) and a score propagated from causally related frames.

Summary

Like INTERNIST (see Article VIII.B3) and unlike MYCIN (Article VIII.Bl),

PIP is intended to simulate the clinical reasoning of physicians (see, however,

the work on NEOMYCIN discussed in Article DC.C6). The way in which the

general medical knowledge has been represented as a system of hypothesized-

disorder frames and clinical findings reflects this intent, as do the strategies

used to select questions for confirming a hypothesis.

The system employs two types of reasoning, categorical and probabilistic.

Decisions, about the applicability of a hypothesis are determined using the logi-

cal decision criteria (the IS-SUFFICIENT, MUST-HAVE, and MUST-NOT-HAVE
rules) that a physician applies. When these are insufficient, the probabilistic

methods (the computation of matching scores and binding scores) are used.

Both kinds of reasoning feature a combination of local and global decision

strategies. Local strategies decide how well the findings fit a particular frame,

while global strategies determine how well a set of frames fits the findings.

There are several difficulties with the program. One problem is that the

questioning can be erratic, since the top-ranked hypotheses tend to alternate

rapidly. This oscillation is unlike a physician's line of reasoning, which tends

to concentrate on questions that resolve one hypothesis at a time. There is

also the problem of when to stop the questioning. The current approach is to

stop questioning only when all questions about all possibly relevant hypotheses

have been exhausted. This strategy seems too conservative; many irrelevant

questions tend to get asked.

References

See Pauker et al. (1976) and Szolovits and Pauker (1976, 1978).

B5. Digitalis Therapy Advisor

THERE has been considerable work by the Clinical Decision Making Research

Group at M.I.T. to develop a system that advises physicians on the administra-

tion of the drug digitalis (Gorry, Silverman, and Pauker, 1978; Silverman,

1975; Swartout, 1977a, 1977b). These programs are not concerned with

diagnosing the need for the drug in a patient; rather, they determine an

appropriate treatment regimen and its subsequent management for patients

known to require digitalis. This system differs from most other medical AI

systems in that it concentrates primarily on the problem of continuing patient

management and integrates both quantitative and qualitative models. (One

other system emphasizing continuing patient management, in the context of

monitoring respiratory function in the intensive-care ward, is the VM system

described by Fagan, 1979.)

Digitalis is administered to slow and stabilize the cardiac rhythm of

patients who are experiencing or are likely to experience various arrhythmias

and to strengthen the heartbeat of patients who are in heart failure. Digitalis

is difficult to administer properly for several reasons. One is that the difference

between the amount of drug required for the desired therapeutic results and

the amount resulting in toxic manifestations is small. Some of the early

toxic manifestations can easily be mistaken for therapeutic manifestations.

Moreover, the appropriate amount of digitalis varies from patient to patient,

depending on the changing disease state of the patient and the patient's recent

history of digitalis administration. Finally, digitalis is widely administered,

even by physicians with little training in cardiology.

The therapeutic effect of digitalis is achieved by maintaining an appro-

priate amount of the drug in the heart. However, since digitalis is distributed

throughout the body and the digitalis in the heart cannot be measured, the

typical distribution among the heart, the bloodstream, and the rest of the

body must be used to estimate the amount in the heart. The digitalis leaves the

body primarily through the kidneys (in the case of digoxin, the most common
digitalis preparation) and also through the liver, with the amount excreted

being proportional to the amount in the bloodstream. The normal strategy in

administering digitalis is to give the patient a relatively large amount of the

drug over a period of one to four days to reach a drug level sufficient for the

desired therapeutic result in the heart and then to give a smaller daily dose

to replace the digitalis that is excreted.

Various mathematical models have been in existence for some time that

provide an approximation of the relation of digitalis history, body weight,

renal function, and level of digitalis in the body (e.g., Jelliffe, 1967). Based on

these pharmacokinetic models, computational aids for administering digitalis

206

B5 Digitalis Therapy Advisor 207

have been constructed (with and without the additional information provided

by serum drug levels). Unfortunately, such aids provide information only on

how much drug is in the body, while physicians are really interested in the

amount needed to achieve the desired therapeutic results without toxicity.

To make use of such an aid, physicians must be able to make the difficult

transformation between their clinical goals (e.g., slowed heart rate, decreased

arrhythmias, increased cardiac output) and the drug-level information offered

by these clinical aids. They must take into account all of the clinical aspects

of giving the drug, such as recognizing toxic signs, adjusting for factors that

make the patient sensitive to digitalis, and determining the level of digitalis

necessary to compensate for the patient's disease state.

The research group at M.I.T., comprised of G. Gorry, W. Long, S. Pauker,

H. Silverman, W. Swartout, and P. Szolovits, has been developing a program

directed at the continuing n anagement of each specific patient's digitalis

therapy, guided by the response of the patient to the drug and the changing

disease state. The important points about this program are the following:

1. It combines qualitative models of the patient's needs and responses with

the quantitative model of digitalis pharmacokinetics to make recommen-

dations directed at the same goal as the physician's.

2. It tailors these models to the specific conditions that exist in the patient,

taking into account such factors as increased likelihood of toxicity or

damage in some states (e.g., a low serum-potassium level or an acute

myocardial infarction), increased requirement for digitalis (e.g., in atrial

fibrillation), and malabsorption syndromes.

3. It utilizes an adaptive feedback process to reach and maintain a good

state of therapeutic management of the patient.

4. It requires only the kind of information that a cardiologist would require

to make the same decisions.

5. It utilizes concepts and reasoning that a physician would understand and

relate to.

The Digitalis Therapy Advisor interacts with the physician to select and

parameterize the models appropriate to the patient. This interaction involves

asking about the current disease state and all of the factors that might

influence the way that digitalis should be administered. The program then

proposes a dosage schedule to achieve the desired goals and asks the physician

to interact with the program again after a suitable time has elapsed, for an

assessment of the patient's progress. At a follow-up session, the program

assesses the changes in the state of the patient, looking for therapeutic effects,

possible signs of toxicity, changes in potential sensitivities, and signs of pos-

sible noncompliance or malabsorption of the drug. These follow-up sessions

continue until this feedback process adjusts the dosage schedule to the par-

ticular characteristics of the patient.

208 Applications-oriented AI Research: Medicine VIII

The Patient-specific Model

The following is an annotated transcript of the first session for a patient

being treated for atrial fibrillation (a type of fast, irregular rhythm of the heart

muscle). This transcript begins after the name, time, age, weight, height, and

sex have been recorded. (The physician's responses are preceded by **.)

What is the cardiac rhythm?

The possibilities are:

1 . Normal sinus rhythm

2 . Paced-rhythm

3. Atrial fibrillation

4. Atrial flutter

5. Pat

6. Pat with block

7. Nonparoxysmal junctional tachycardia

Enter single value

** 3

Is there regularization of ventricular rhythm?

The possibilities are:

1

.

Present

2

.

Absent

Enter single value

** 2

Regularization of the rhythm would imply that the rhythm is probably

actually nonparoxysmal junctional tachycardia, which is not treatable with

digitalis and is usually a sign of digitalis toxicity.

What is the ventricular rate?

Enter numerical value

** 138

What is the status of PVCs?

The possibilities are:

1

.

Present

2. Absent

Enter single value

** 1

B5 Digitalis Therapy Advisor 209

Is the patient really having PVCs or aberrantly conducted

supraventricular beats (Ashman beats)?

The possibilities are:

1. PVCs

2. Ashman beats

Enter single value

** 2

// they were actually PVCs, they should be closely watched because an

increase in the number of PVCs is an early sign of digitalis toxicity. At

this point, the program assesses the present status of digitalis use, assesses

the renal function, and starts checking for possible increased sensitivity

to digitalis.

What is the level of serum potassium? Units: MEQ per liter

Enter numerical value

** 3.4

Is the patient being given or about to be given diuretics?

The possibilities are:

1

.

Given

2. Not given

Enter single value

** 2

Most diuretics would further deplete the potassium.

It is generally agreed that patients with low serum potassium

levels are more prone to develop dig toxicity. Please watch

this patient carefully and administer potassium supplements.

The program continues to query the user about cardiomyopathy, possible

acute myocardial infarctions (heart attacks), oxygen level, thyroid condi-

tion, and upcoming procedures (cardioversion, catheterization, and sur-

gery), omitted here. In this case, the user indicates that cardiac surgery

is anticipated in two days, requiring that the digitalis level be fairly low

at the time of surgery. After asking all of these questions, the program

prints the parameters it will use in making its recommendations.

Parameters used to make recommendations

:

Reduction factor due to hypokalemia * 0.800

Total alteration sensitivity factor + 0.800

210 Applications-oriented AI Research: Medicine VIII

The program will aim for four-fifths of what it normally would, because

of the low potassium level.

Body store goal -* 0.551 mg

This is the desired average amount of digitalis in the body. It is computed

from the basic requirements of the disease state (atrial fibrillation requires

more digitalis than heart failure), the patient 's weight, and the patient 's

sensitivity (and, in later sessions, the response) to the previous level of

digitalis.

Projected average amount on board * 0.000 mg

Projected current amount on board * 0.000 mg

Body stores shift » 0.637 mg

This amount would have to be given now for the average over the next 24

hours to be .551 mg.

Remaining time to reach goal +24.0 hrs

.

Half life +55.8 hours 2.3 days

Daily loss at equilibrium * 0.164 mg

Once the goal is reached, this amount per day will be required to maintain

that level.

Absorption factor »• 0.75

Unless the program discovers otherwise, it is assumed that 15% of an oral

dose reaches the bloodstream. Next, the program asks how often digitalis

is to be administered and, being told 'twice daily, " provides the following

dosage recommendations:

The dosage recommendations are:

Date Time Oral IV

11/10/79 9:00 .5 mg 0.4375 mg (or 1.75 cc)

Report back after the first dose

The effects of the first dose will be assessed and adjustments made in the

schedule.

21:00 .25 mg 0.125 mg (or 0.5 cc)

9:00 .0625 mg 0.0625 mg (or 0.25 cc)11/11/79

Hold the digitalis for the cardiac-surgery.

When the physician consults the program again about this patient (ideally just

before the second dose is scheduled), the program will assess the therapeutic

B5 Digitalis Therapy Advisor 211

results. Since the patient is being treated for atrial fibrillation, the primary

therapeutic result the program will look for is a decrease in the heart rate.

The program judges the therapeutic results to be in one of three categories:

none, partial, or complete. A decrease in the heart rate is considered a partial

therapeutic result. If the heart rate has dropped into the range 60 to 100 or

the rhythm has been converted to the normal sinus rhythm, the program will

consider the therapeutic effect to be complete. Similarly, the program checks

the possible signs of toxicity and judges the level of toxicity to be none, partial,

or definite. The nine possible combinations of therapeutic and toxic states

provide a basis for adjusting the therapy. The goal of this feedback process is

to maintain the highest level of therapeutic effect with the minimum dosage

without letting the patient become significantly toxic.

Status of the Digitalis Therapy Advisor

The original program was evaluated by comparing its recommendations to

the actual treatment given to 19 patients. The program did quite well, antic-

ipating the toxic episodes without falsely suspecting any. In 1977, William

Swartout added an explanation capability to the program, which explains

the actions of the program by examining the actual code. In 1978, the

program underwent an extensive evaluation involving the case histories of 50

patients from the Veterans Administration Hospital in Houston. The results

of this evaluation were judged by a panel of five experts. On the average,

they had a preference for the recommendations of the attending physician

over those of the program when there was a difference, but the program's

recommendations were judged to be the same or better in 60% to 70% of

the cases (see Long, 1980). More recently, new qualitative and quantitative

models are being developed for the program to account more accurately for

the various phenomena involved in adjusting the therapy.

References

See Gorry, Silverman, and Pauker (1978) and Silverman (1975). The

explanation capability is described by Swartout (1977a, 1981).

B6. IRIS

THE DESIGN GOALS for IRIS (Trigoboff and Kulikowski, 1977; Trigoboff,

1978) are different from those for the other consultation systems constructed

to be expert clinical decision-making systems in a particular medical domain.

IRIS was designed to be a tool for building and experimenting with such

systems. Developed at Rutgers University and written in INTERLISP, it was

intended to permit easy experimentation with alternative representations of

general medical knowledge, clinical strategies, and modes of interaction and

to be used by a computer specialist in collaboration with a domain expert. A
consultation system for glaucoma has been developed with IRIS.

The IRIS system employs a combination of two well-established knowledge-

representation formalisms, namely, semantic nets and production rules (see

Articles III.C3 and III.C4, in Vol. I). The semantic net consists of nodes repre-

senting patient information and uses a large and extendable set of link types

to build associations in this medical knowledge base. A set of production

rules associated with each link of the network controls the transmission of

information between the nodes of the semantic network. This process, called

propagation, is the basis of any clinical strategy implemented in IRIS.

Representation of Medical Knowledge

Like the other medical consultation systems, IRIS makes a very sharp dis-

tinction between general medical knowledge and patient-specific knowledge.

The general medical knowledge is represented partly as a semantic net and

partly as production rules. The nodes of the net represent clinical concepts

such as pathophysiological states, diseases, symptoms, findings, and treat-

ments. Examples of nodes in the glaucoma application are OPEN ANGLE
GLAUCOMA, SCOTOMA, and PILOCARPINE THERAPY. The links represent rela-

tions between the nodes—for example, CAUSES, TREATMENT-FOR, SYMPTOM-
OF, and ASSOCIATED-WITH.

The patient-specific knowledge gathered during a consultation is repre-

sented as a set of knowledge structures called Information SPECifications

(iSPECs), which are associated with nodes of the semantic net and are created,

deleted, and modified during the course of the consultation. An ISPEC is an

assertion about the patient and is essentially a frame (see Article III.C7, in

Vol. i) with the following slots:

1. NODE. This slot is the name of the associated node in the semantic net.

The node represents the concept being asserted about this patient.

2. SIDE. This slot indicates the half of the body to which this ISPEC refers.

Its possible values are LEFT, RIGHT, and NIL. Some nodes in the net will

212

B6 IRIS 213

be applicable to a left organ and a right organ (e.g., eye), while others are

not (e.g., headache, diabetes). The use of SIDE provides an economical

representation, since many nodes might otherwise be duplicated in the

net.

3. MB. This slot is a "measure of belief" reflecting the degree of certainty

in the assertion represented by the ISPEC. Any numerical method of

representing degrees of belief can be implemented here. In the glaucoma

application, the confidence factor mechanism of MYCIN (Article VIII. Bl)

has been implemented. The MB is a pair of numbers: SB (strength of

belief) and SD (strength of disbelief). The actual MB is the difference of

these two numbers and ranges from total belief to total disbelief.

4. TIME. The time slot is a list of two dates, the date the ISPEC became

true of the patient and the date the ISPEC ceased to be true. The system

can also work with a "coarser" view of time: PAST, PASTOR-PRESENT,
and FUTURE. This time representation is part of the mechanism for

dealing with multiple visits and for following a patient through a course

of therapy.

5. MODIFIERS. These are further specifications and qualifications of the

basic ISPEC. Examples of modifiers are VALUE, DEGREE, COLOR, and

WIDTH. These modifiers do not appear in all ISPECs, but only in those to

which they are applicable. These modifiers allow further patient-specific

specifications of the concept in the semantic net. For example, severely

increased intraocular pressure is represented as an ISPEC for INCREASED
INTRAOCULAR PRESSURE with a modifier, DEGREE: SEVERE.

6. TYPE. The type slot of an ISPEC determines how it is interpreted. An
arbitrary number of types is possible. Currently implemented TYPEs are

NIL (the standard and default), FAMILYHISTORY, PATIENTHISTORY,
and several others that are used by the diagnosis strategy—CHOSEN,
COVERED-BY, SUBSUMED-BY, and TREATED-BY

The statement The pressure is 10 in the right eye is equivalent to the ISPEC:

NODE = INTRAOCULAR PRESSURE

SIDE = RIGHT

MB = (1,0)

TIME = PRESENT

MODS = VALUE: 10

TYPE = NIL

Reasoning

IRIS makes no commitment to any particular strategy of question selec-

tion. Currently, a questionnaire strategy has been implemented. At the begin-

ning of a consultation, the program runs through a set of questions and the

user answers them.

214 Applications-oriented AI Research: Medicine VIII

In the applications of IRIS in which consultation and diagnosis are the

goal, ISPECs are associated first with the set of symptoms displayed by the

patient. In IRIS's knowledge base, symptom nodes are linked to disease nodes,

among other things. Thus, a set of disease nodes can be "activated" by

the symptoms; a disease node is said to explain the symptom nodes that

characterize it. (See also the discussion of manifestations evoking disease

nodes in INTERNIST'S knowledge base, Article VIII.B3.) Disease nodes are

also linked to treatment nodes, and when IRIS has determined which disease

holds for a patient, it will activate the appropriate (linked) treatment nodes.

The process of nodes evoking each other in IRIS is called propagation of

ISPECs, because an ISPEC is associated with a symptom, disease, or treatment

node relevant to a patient. When symptoms evoke a disease or when a disease

evokes a treatment, an ISPEC is created. This propagation of information

and generation of inferences between any linked nodes in the semantic net is

controlled by a set of production rules associated with the link. If the ISPECs

associated with the node at the tail of the link satisfy the precondition pattern

of a rule, the actions specified by the rule will be performed at the node at the

head of the link. Typical actions include the creation or deletion of ISPECs

and the modification of MBs. Thus, IRIS uses a forward-chaining reasoning

process.

An important propagation pattern is that of the propagation cone. Con-

sider the rule:

If SYMPTOMi and SYMPT0M2 and SYMPTOM3 then DISEASEi .

In the semantic net, the nodes in this rule would be represented as follows:

DISEASE,

CHAR

SYM, SYM 2 SYM 3

Clearly, an ISPEC should propagate only to DISEASEi if all three symptoms are

present. In the case depicted above, propagation should be from the base of

the cone to the apex. This propagation pattern is achieved by associating the

same decision table with all three CHARACTERIZES links (essentially "ANDing"

SYMi, SYM2, and SYM3 into one production to ensure that all symptoms

are present before a disease node is evoked). In some cases, the direction

of propagation will be from apex to base, for example, when propagating

COVERED-BY ISPECs from a treatment node to each of the diseases it treats.

The production rules are encoded as decision tables to make their execu-

tion more efficient. Consider the following set of production rules:

if A and B then D

if B and (not C) then (not E)

if A and B and (not C) then F

B6 IRIS 215

In evaluating these rules, A and C are evaluated twice and B is evaluated

three times. A decision table encoding these three rules is:

R1 R2 R3

A + +

B + + +

C - -

> 5- 5- -3 r *

D +

E -

F +

A column of the decision table corresponds to a rule. A condition is evaluated

only once, and the result is used in each applicable column.

The IRIS claim is that any clinical strategy can be implemented with the

available medical primitives. In fact, the propagation of weights in CASNET,
therapy selection in MYCIN, and the formation of composite hypotheses in

INTERNIST-II were implemented with very little effort (Trigoboff, 1978).

Clinical Strategy of IRIS for Glaucoma Diagnosis

The clinical strategy for the glaucoma application is implemented via six

special nodes in the semantic net: CHOSEN-DIAGNOSIS, CHOSEN-TREATMENT,
POSSIBLE-DIAGNOSIS, POSSIBLE-TREATMENT, UNEXPLAINED-SYMPTOM, and

UNTREATED-PATHOLOGY. The goal of the consultation is (a) to have one

or more ISPECs associated with the nodes CHOSEN-DIAGNOSIS and CHOSEN-
TREATMENT and (b) to have all ISPECs associated with UNEXPLAINED-
SYMPTOMS and UNTREATED-PATHOLOGY be TYPE=COVERED-BY As the

findings are entered, they propagate ISPECs to the node UNEXPLAINED-
SYMPTOMS. Propagation across SYMPTOM-OF links will result in ISPECs with

varying CFs (certainty factors) associated with a number of disease nodes.

Any disease with a sufficiently high CF will propagate an ISPEC to the node

POSSIBLE-DIAGNOSIS. After all data have been entered, the diseases associ-

ated with POSSIBLE-DIAGNOSIS are then investigated in turn. Each diagnosis

temporarily receives TYPE=CHOSEN, and TYPE=COVERED-BY propagates to

each symptom explained by this disease. The number of explained symptoms
is used as a measure of the explanatory power of a disease. This process, of

216 Applications-oriented AI Research: Medicine VIII

temporary assignment, is repeated for each possible diagnosis, and the disease

that explains the most symptoms is given a permanent TYPE=CHOSEN. If

there are any unexplained symptoms, the process is repeated. A similar

strategy using the nodes POSSIBLE-TREATMENT, CHOSEN-TREATMENT, and

UNTREATED-PATHOLOGY is applied to select treatments.

Summary

IRIS has been explained in the context of its glaucoma application, but

it was designed to represent medical knowledge from any domain and to

implement a variety of clinical strategies. (Recall that aspects of CASNET,
MYCIN, and INTERNIST-II have been implemented in IRIS.) This generality

is feasible because the representation of knowledge is itself very general (aug-

mented semantic nets). In principle, knowledge from any domain—medical

or nonmedical—can be represented.

A second characteristic of IRIS that makes it very general is the separa-

tion of clinical strategy, both conceptually and operationally, from medical

knowledge. Note that to implement the consultation strategy, IRIS needed to

know about only six nodes in the knowledge base: chosen diagnosis, chosen

treatment, possible diagnosis, possible treatment, unexplained symptom, and

untreated pathology. These six concepts are inherent to the clinical strategy

of consultation; every other node in the knowledge base is conceptually and

operationally independent of the implementation of the clinical strategy.

References

See Trigoboff and Kulikowski (1977) and Trigoboff (1978).

B7. EXPERT

THE EXPERT system developed at Rutgers University is a general facility for

helping investigators design and test consultation models (Weiss and Kulikow-

ski, 1979). It was designed independently of any specific application but has

been influenced by the experiences of the Rutgers Resource Group in building

consultation models in medicine, including rheumatology, ophthalmology, and

endocrinology. Experimental models have been developed in other areas, such

as chemistry, oil-well log analysis, laboratory-instrument interpretation, and

automobile repair.

The consultation problems best suited for EXPERT are classification prob-

lems, which have a predetermined list of possible conclusions from which the

program may choose. PROSPECTOR and EMYCIN are similar knowledge-

based systems that specialize in forms of classification problems.

Some of the major themes in the design of EXPERT include:

1. A relatively simple language and notation for representing expert knowl-

edge. The representation is consistent with the traditional two-level view

of a diagnostic problem: (a) selecting appropriate hypotheses or conclu-

sions by (b) interpreting a set of findings or observations.

2. An emphasis on categorical reasoning instead of on suboptimal scoring

functions.

3. Efficient operation through compilation and ordering of rules.

4. An emphasis on decision methods that tend to yield predictable and cor-

rectable results. This may in some cases require that the expert provide

more explicit statements of correlations among findings and a greater

number of decision rules than would otherwise be called for. Since the

interaction between rules and the associated classification strategies is

usually predictable, it is not difficult to trace the changes in program

behavior that will result from modifying individual rules. A novel fea-

ture of EXPERT is that it detects automatically just such changes in the

reasoning about cases stored in its database. This is an important tool

for incrementally generating and testing a consultation model.

The process of creating and running an EXPERT model is similar to writ-

ing and running a computer program. A standard text editor is used to create

a file that will contain statements to describe a model in a special-purpose

programming language. The model is checked for syntactic errors and trans-

lated into an efficient internal representation by the compiler program. The

model may then be executed, and cases may be entered for consultation.

The system is programmed in FORTRAN and is therefore relatively efficient

217

218 Applications-oriented AI Research: Medicine VIE

and transferable between machines. There are versions available for both

DEC and IBM equipment.

EXPERT has many facilities that have proved useful for designing consul-

tation models, such as explanations of the program's interpretations and the

capability to accept volunteered information from the user. All consultation

facilities of EXPERT are fully sequential; for example, one may ask for the

system's interpretation at any point in a consultation session. Extensive work

has been done on interfacing EXPERT models to databases of stored cases.

Many utilities are available for the empirical analysis of cases, including a

complete database system for searching through cases for patterns of both

model interpretations and user-entered data.

Representation of Medical Knowledge

An EXPERT consultation model consists of three sections: hypotheses,

findings, and decision rules. Findings are the facts about a patient elicited dur-

ing a consultation—the history, symptoms, signs, and laboratory test results.

Findings are reported in the form of true, false, unavailable, or numerical

responses to questions from EXPERT. Hypotheses are the conclusions that

may be inferred by the system. They include diagnostic and prognostic

decision categories and therapy recommendations, as well as intermediate

hypotheses about pathophysiological states, expected causes of illness, or typi-

cal aggregates of findings. A measure of uncertainty is usually associated with

a hypothesis.

Within the three sections of the model, several subsections are possible.

The representation used in building a model divides the sections as follows

(two asterisks indicate one of the major sections, a single asterisk indicates a

subsection, and brackets indicate optional statements):

HYPOTHESES
TAXONOMY

[CAUSAL AND INTERMEDIATE HYPOTHESES]

[TREATMENTS]

FINDINGS
RULES
[FF RULES]

FH RULES

The major hypotheses are structured into a taxonomic classification

scheme. Contained within the *TAXONOMY subsection shown above are the

possible diagnostic and prognostic conclusions and the useful set-subset rela-

tionships between general diagnostic categories and intermediate interpreta-

tions. As an example, we show part of a thyroid-disease classification:

B7 EXPERT 219

TAXONOMY

EU .Euthyroid (.75)

THO .Thyroid Dysfunction (.25)

HYPER ..Hyperthyroidism (.05)

HYPO ..Hypothyroidism (.20)

NOP .No Pathology (.70)

GRAY .Graves' Disease (.25)

The mnemonic (EU, THO, etc.) for each hypothesis becomes a shorthand for

specifying its place in the production rules. The optional weight (e.g., .75)

associated with some hypotheses indicates their frequency of occurrence rela-

tive to the higher level hypotheses in which they are included. The indentation

(shown by dots) indicates the set-subset relationship among hypotheses.

Findings are represented as attributes that can be present, absent, or

undetermined in the patient or as a numerical variable that, when measured,

adopts a value within a prespecified range. In those cases in which uncertainty

is associated with an observation, the uncertainty must be described explicitly

in terms of additional modifying findings. For example, the accuracy of a test

result can be requested and decision rules then written to modify inferences

about the original test. To acquire information about a patient, several

question types—multiple choice, checklist, numerical, and yes-no—may be

employed.

There are three types of rules for describing logical relationships among
findings and hypotheses:

1. FF—finding-to-finding rules,

2. FH—finding-to-hypothesis rules,

3. HH—hypothesis-to-hypothesis rules.

The FF rules specify truth values of findings that can be deduced directly from

an already established finding. They are processed in the fixed order specified

by the model designer and are used to establish local control over the sequence

of questions in a fashion consistent with medical practice. FH rules are logical

combinations of findings that indicate confidence in the confirmation or denial

of hypotheses. The general format for FH rules is:

Xi &X2 ...Xi-+ H(MNE, CF)

,

-1 < MNE < 1
,

where

Xi = F(mne, tval)

= [n : F(MNEi, TVAL), F(MNE2 , TVAL). . .] .

If the logical combination of findings on the left side of the rule is satisfied, the

hypothesis, MNE, is assigned a confidence value, CF. The selector argument,

220 Applications-oriented AI Research: Medicine VIII

n in [n : F(MNE l5 TVAL), ...], indicates that if n of the listed findings are

satisfied, the bracketed condition is evaluated as true. An example of an FH
rule is:

F(RHP, t) & F(FFT, t) -> //(HYPER, .5)

,

which can be stated as:

IF: RHP is true (rapid heart palpitation) and

FFT is true (fine finger tremor)

THEN: Conclude hyperthyroidism with a confidence of .5.

The HH rules allow the model builder to specify inferences among hypoth-

eses and treatment selections that follow from other (diagnostic and prog-

nostic) hypotheses. Since such higher level inferences may be sometimes

modified by the presence or absence of a finding, the left-hand side of HH
rules may also contain assertions about findings. In addition, each HH rule

must have a context defined in terms of a set of findings or hypotheses, which

makes possible the application of efficient rule-evaluation strategies over the

compiled model. The context specifies a set of necessary conditions among
the findings to permit evaluation of the HH rule. HH rules are evaluated in the

order of specification in the model. Hypotheses are specified with a range of

confidence that must be satisfied for the HH rule to be invoked. The HH rules

are implemented in a table of the following form:

HH rules

If there are eye and thyroid dysfunctions

F(EEN0, F) and (HXTH, T)

Then consider Graves' disease:

F(ETH0, T) and H(EYE, .5:1.) » H(GRAV, .9)

End

Reasoning Strategies

When an assertion about a finding is made to the system, the rules in

which this result appears are evaluated. The results are usually received in

batches, as in the form of responses to a multiple-choice or checklist question.

The rules are evaluated in the following order to produce weights that rank

the hypotheses:

1. FF rules are evaluated. They take simple responses of true, false, or

unknown and merely enlarge the set of new results of findings. They
are handled in the same way as results received directly in response to

questions.

2. FH rules are then evaluated. Only those FH rules in which new results

of findings appear need be evaluated. FH rules have the property that,

when the left-hand side of a rule is evaluated as true or false, it remains

B7 EXPERT 221

true or false for the remainder of the consultation session, unless an

erroneous response is received.

3. Finally, HH rules are evaluated. The IF part of each HH rule table is

evaluated at the same time as the FH rules. Only HH rules found in tables

that have their IF part evaluated as true are considered. All such HH
rules must be reevaluated sequentially. The premises and consequents of

HH rules may include hypotheses and associated intervals of confidence.

Unlike findings that remain true or false, these intervals can change not

only directly from results of findings, but also indirectly from other rules

(both FH and HH) that affect the confidence measure of a hypothesis. HH
rules are evaluated in the order of their appearance in the model. There

is no backward chaining, because the order of evaluation is determined

beforehand by the model builder. Self-referencing rules are therefore

acceptable. Because HH rules and tables are evaluated in sequence, by

their order of appearance in the model file, it is important to order the

HH rules carefully. An HH rule implying a hypothesis, Hi, that is later

needed to establish another hypothesis, Hi, should appear in the model

file before Hi is referenced in the left side of another HH rule. The
confidence ranges in the HH rules are those that have been directly set

by other FH or HH rules. They are not the adjusted weights implied by

the taxonomy.

The preceding procedures result in the assignment of the confidence mea-

sures, CF{, that can be determined directly from the rules of evidence and

hypothesis weight propagation: the FH and HH rules. When more than one

rule is applicable, the maximum absolute value of confidence is used. Another

procedure is invoked that is helpful both in question selection and as a simple

heuristic to adjust weights slightly. Each hypothesis that has some positive

evidence, in the form of a satisfied rule or a partially satisfied rule (with

unknown truth value), is marked. The count of such rules that apply to each

hypothesis is kept. This corresponds approximately to the number of positive

indicators of a hypothesis.

A different set of weights is derived from the taxonomy and causal network

structure. Forward weights are propagated from predecessor to successor, and

inverse weights are propagated from successor to predecessor. A taxonomy

contains implied relationships between hypotheses that can be treated in a

manner similar to causal connections. The procedures for generating weights

are similar to those used in CASNET. After all FH and HH rules have been

evaluated, the measures of confidence, CF;, may be modified or propagated

according to their taxonomic or causal relationships.

A final weight is derived from both the rule-based and the taxonomic-

causal-net weights. It is taken as the maximum absolute value from all

the indicated directions (with the appropriate sign). A small bonus may be

awarded to the final weights.

The general procedure for sequential test selection may be specified as

follows:

222 Applications-oriented AI Research: Medicine VTH

1. Consider those rules (FH or HH) such that:

a. they set confidence measures for marked hypotheses—they are

related to current evidence;

b. the confidence of the rule is greater than the current confidence

in Hj, so that it provides useful additional information.

2. Select an unasked finding Fi, belonging to the set of rules found in part 1,

such that:

a. the cost is minimal;

b. the current weight W(H) is greatest, indicating that the finding

pertains to the most likely hypothesis;

c. the potential CF(H) is greatest for Fi, so that this finding Fi is

one that can yield greater confidence in Hj than another Fk.

Applications

Several applications of the EXPERT system are in progress. Consultation

models are being developed in rheumatology, ophthalmology, and endocrinol-

ogy (thyroid diseases). A consultation system in rheumatic diseases appears

to have strong potential for acceptance by the medical community. There is

a shortage of rheumatologists in the United States, and keeping up to date

on the interpretation of many new immunological tests can be difficult for

nonspecialist physicians. In collaboration with investigators at the University

of Missouri, the EXPERT formalism is being used to develop a prototype con-

sultation system for rheumatic diseases (Lindberg et al., 1980). Initially, the

set of problems considered has been confined to fewer than 10 important, yet

complex, diagnostic categories. The model is currently being expanded to

cover additional problem areas.

References

See Weiss, Kulikowski, and Safir (1977), Weiss et al., (1978), and Weiss,

Kulikowski, and Galen (1981).

Chapter IX

Applications-oriented AI Research:

Education

CHAPTER DC: APPLICATIONS-ORIENTED

AI RESEARCH: EDUCATION

A. Overview / 225

B. ICAI Systems Design / 229

C. Intelligent CAI Systems / 236

1. SCHOLAR / 236

2. WHY/ 242

3. SOPHIE / 247

4. WEST / 254

5. WUMPUS / 261

6. GUIDON / 267

7 BUGGY / 279

8. EXCHECK / 283

D. Other Applications of AI to Education / 291

A. OVERVIEW

EDUCATIONAL APPLICATIONS of computer technology have been under

development since the early 1960s. These applications have included schedul-

ing courses, managing teaching aids, and grading tests. The predominant

application, however, has been to use the computer as a device that interacts

directly with the student, rather than as an assistant to the human teacher.

For this, there have been three general approaches.

The "ad lib," or environmental, approach is typified by Seymour Papert's

LOGO Laboratory (Papert, 1980; Abelson and diSessa, 1981), which allowed

the student more or less free-style use of the machine. In this case, the student

is involved in programming. It is conjectured that learning problem-solving

methods takes place as a side effect of working with tools that are designed to

suggest good problem-solving strategies to the student. The second approach

uses games and simulations as instructional tools. Once again, the student is

involved in an activity—for example, doing simulated genetics experiments

—

for which learning is an expected side effect. The third computer application

in education is computer-assisted instruction (CAI). Unlike the first two

approaches, CAI makes an explicit attempt to instigate and control learning

(Howe, 1973), although this may take place while the student is involved in

some activity like a simulation or a game. Applications of AI techniques to this

third use of computer technology in education are the focus of the systems

described in this chapter (see Article LX.D for a description of work by AI

researchers in a more environmental vein).

The goal of CAI research is to build instructional programs that incor-

porate well-prepared course material in lessons that are optimized for each

student. Early programs were either electronic "page-turners," which printed

prepared text, or drill-and-practice monitors, which printed problems and

responded to the student's solutions using prestored answers and remedial

comments. In the Intelligent CAI (ICAI) programs of the 1970s, course material

was represented independently of teaching procedures, so that problems and

remedial comments could be generated differently for each student. Research

today focuses on the design of programs that can offer instruction in a manner

that is sensitive to the student's strengths, weaknesses, and preferred style of

learning. The role of AI in computer-based instructional applications is seen

as making possible a new kind of learning environment.

This article surveys how AI techniques have been applied in research

attempting to create intelligent computer-based tutors. In the next article,

some design issues are discussed and typical components of ICAI systems are

described. Subsequent articles describe some important applications of AI

techniques in instructional programs.

225

226 Applications-oriented AI Research: Education DC

Frame- oriented CAI Systems

The first instructional programs took many forms, but all adhered to

essentially the same pedagogical philosophy. The student was usually given

some instructional text (sometimes "on line," sometimes not) and asked a

question that required a brief answer. After he (or she) responded, the student

was told whether his answer was right or wrong. His response was sometimes

used to determine his "path" through the curriculum, that is, the sequence of

problems he was given (see Atkinson and Wilson, 1969; Barr and Atkinson,

1975). When the student made an error, the program branched to remedial

material.

The courseware author attempts to anticipate every wrong response, pre-

specifying branches to appropriate remedial material based on his ideas about

what the underlying misconceptions might be that would cause each wrong

response. Branching on the basis of response was the first step toward indi-

vidualization of instruction (Crowder, 1962). This style of CAI has been

dubbed ad-hoc, frame-oriented (AFO) CAI by Carbonell (1970b) to stress

its dependence on author-specified units of information. (The term frame

as it is used in this context predates the more recent usage in AI research

on knowledge-representation—see Article III.C7, in Volume I—and refers to

a page or unit of text.) Design of ad-hoc frames was originally based on

Skinnerian stimulus-response principles. The branching strategies of some

AFO programs have become quite involved, incorporating the best learning

theory that mathematical psychology has produced (Atkinson, 1972; Fletcher,

1975; Kimball, 1973). Some of these systems have been used successfully and

are available commercially.

Intelligent CAI

In spite of the widespread use of ad-hoc, frame-oriented CAI in diverse

educational applications, many researchers believe that most AFO courses are

not the best use of computer technology:

In most CAI systems of the AFO type, the computer does little more than

what a programmed textbook can do, and one may wonder why the machine

is used at all. . . . When teaching sequences are extremely simple, perhaps

trivial, one should consider doing away with the computer, and using other

devices or techniques more related to the task. (Carbonell, 1970b, pp. 32,

193)

In this pioneering paper, Carbonell goes on to define a second type of CAI

that is known today as knowledge-based or Intelligent CAI. ICAI systems and

the earlier CAI systems both have representations of the subject matter they

teach, but ICAI systems also carry on a dialogue with the student and use the

student's mistakes to diagnose his misunderstandings.

A Overview 227

Early uses of AI techniques in CAI were called generative CAI (Wexler,

1970), since they stressed the ability to generate problems from a large data-

base representing the subject they taught. (See Koffman and Blount, 1975,

for a review of some early generative CAI programs and an example of the

possibilities and limitations of this style of courseware.) However, the kind of

courseware that Carbonell was describing in his paper was to be more than just

a problem generator—it was to be a computer tutor that had the inductive

powers of its human counterparts. ICAI programs offer what Brown (1977)

calls a reactive learning environment, in which the student is actively engaged

with the instructional system and his interests and misunderstandings drive

the tutorial dialogue. This goal was expressed by other researchers trying to

write CAI programs that extended the medium beyond the limits of frame

selection (Koffman and Blount, 1975):

Often it is not sufficient to tell a student he is wrong and indicate the

correct solution method. An intelligent CAI system should be able to make
hypotheses based on a student's error history as to where the real source of

his difficulty lies. (p. 218)

The Use of AI Techniques in ICAI

The realization of the computer-based tutor has involved increasingly

complicated computer programs and has prompted CAI researchers to apply

AI techniques. AI work in natural-language understanding, knowledge repre-

sentation, and methods of inference, as well as specific AI applications such as

algebraic simplification, symbolic integration, medical diagnosis, and theorem

proving, have been applied by various researchers toward making CAI pro-

grams increasingly intelligent and effective. Early research on ICAI systems

focused on representation of the subject matter. Benchmark efforts include

SCHOLAR, the geography tutor of Carbonell and Collins (see Article DC.Cl);

SOPHIE, the electronics troubleshooting tutor of Brown and Burton

(Article EX.C3); and EXCHECK, the logic and set theory tutor by Suppes and

his associates (Article DC.C8). The high level of domain expertise in these

programs permits them to be responsive in a wide range of problem-solving

interactions.

These ICAI programs are quite different from even the most complicated

frame-oriented, branching program:

The traditional approaches to this problem using decision theory and sto-

chastic learning models have reached a dead end due to their oversimplified

representation of learning. ... It appears within reach of AI methodology to

develop CAI systems that act more like human teachers. (Laubsch, 1975,

pp. 124-125)

However, an AI system that is expert in a particular domain is not neces-

sarily an expert teacher of the material
—

"ICAI systems cannot be AI systems

warmed over" (Brown, 1977, p. 255). A good teacher must understand what

228 Applications-oriented AI Research: Education EX

the student is doing, not just what he is supposed to do. AI programs often

employ very powerful problem-solving methods that do not resemble those

of humans. In some cases, CAI researchers borrowed AI techniques for rep-

resenting subject-domain expertise but had to modify them, often making

the inference routines less powerful, in order to force them to follow human
reasoning patterns, to make the line of reasoning more understandable to the

student, and to model his problem-solving progress more closely (Goldberg,

1973; Smith, 1976). Even AI representations designed to replicate human
reasoning steps at some level of detail, such as production rules, may be

inadequate for use in teaching if important organizational and strategic con-

cepts are not represented explicitly (Clancey and Letsinger, 1981; see also the

discussion of NEOMYCIN in Article DC.C6 on GUIDON).

In the mid-1970s, a second phase in the development of ICAI tutors was

characterized by the inclusion of additional expertise in the systems regarding

(a) the student's learning behavior and (b) tutoring strategies (Brown and

Goldstein, 1977). AI techniques were used to construct models of the learner

that represent his knowledge in terms of issues (see Article DC.C4) or skills

(Barr and Atkinson, 1977) that should be learned. This model then controls

tutoring strategies for presenting the material. Finally, some ICAI programs

are now using AI techniques to represent explicitly these tutoring strategies,

gaining the advantages of flexibility and modularity of representation and

control (Burton and Brown, 1979a; Goldstein, 1977; Clancey, 1979b).

References

The best general review of research in ICAI is Brown and Goldstein (1977).

Several papers are collected in a special issue of the International Journal of

Man-Machine Studies, Volume 11 (1979), an expanded version of which is to

be published as a book (Sleeman and Brown, in press).

B. ICAI SYSTEMS DESIGN

THE MAIN COMPONENTS of an Intelligent CAI (ICAI) system are problem-

solving expertise, the knowledge that the system tries to impart to the student;

the student model, indicating what the student does and does not know; and

tutoring strategies, which specify how the system presents material to the

student. (See Self, 1974, for an excellent discussion of the differences and

interrelations of the types of knowledge needed in an ICAI program.) Not

all of these components are fully developed in every system. Because of the

size and complexity of ICAI programs, most researchers tend to concentrate

their efforts on the development of a single part of what would constitute a

fully usable system. The issues that have been discussed in the design of each

component are described briefly below.

The Expertise Module

The "expert" component of an ICAI system is charged with the task of

generating problems and evaluating the correctness of the student's solutions.

The CAI system's knowledge of the subject matter was originally envisioned as

a huge, static database that incorporated all the facts to be taught. This idea

was implicit in the early drill-and-practice programs and was made explicit in

generative CAI (see Article DC.A). Representation of subject-matter expertise

in this way, for example, with semantic nets (see Article III.3, in Vol. i), has been

useful for generating and answering questions involving causal or relational

reasoning (Carbonell and Collins, 1973; Laubsch, 1975; see also Articles EX.C1

and DC.C2 on the SCHOLAR and WHY systems).

Recent systems have employed procedural representation of domain knowl-

edge, for example, in the form of methods for taking measurements and mak-

ing deductions (see Article III.C2, in Vol. i). This knowledge is represented as

procedural experts that correspond to subskills that a student must learn in

order to acquire the complete skill being taught (Brown, Burton, and Bell,

1975). Production rules (Article III.C4, in Vol. i) have been used to construct

modular representations of skills and problem-solving methods (Goldstein,

1977; Clancey, 1979b). Problem-solving grammars have been explored as a

representation of the expertise involved in writing computer programs (Miller

and Goldstein, 1977). In addition, Brown and Burton (1978) have pointed

out that multiple representations are sometimes useful for answering student

questions and for evaluating partial solutions to a problem (e.g., a semantic net

of facts about an electronic circuit and procedures simulating the functional

behavior of the circuit). Stevens and Collins (1978) considered an evolving

229

230 Applications-oriented AI Research: Education DC

series of simulation models for reasoning metaphorically about the behavior

of causal systems.

It should be noted that not all ICAI systems can actually solve the prob-

lems they pose to a student. For example, BIP, the BASIC Instructional

Program (Barr, Beard, and Atkinson, 1975), cannot write or analyze com-

puter programs: BIP uses sample input/output pairs (supplied by the course

authors) to test the student's programs. Similarly, the procedural experts in

SOPHIE-I could not debug an electronic circuit (see Article DCC3). In con-

trast, the production-rule representation of domain knowledge in WUMPUS
and GUIDON allows these programs to solve problems independently, as well

as to criticize student solutions (see Articles EX.C5 and DC.C6). Being able to

solve the problems, ideally in any of several possible ways, is necessary if the

ICAI program is to make fine-grained suggestions about the completion of

partial solutions.

The expert component of an ICAI system is called an articulate expert

(Goldstein, 1977) if it can explain each problem-solving decision in terms that

correspond (at some level of abstraction) to those of a human problem-solver.

In contrast, typical expert AI programs have data structures and processing

algorithms that do not necessarily mimic the reasoning steps of humans and

are therefore considered "opaque" to the user. For example, the electronic-

circuit simulator underlying SOPHIE-I, which is used to check the consistency

of a student's hypotheses about failed circuit elements and to answer some of

his (or her) questions, is an opaque expert on the functioning of the circuit. It

is a complete, accurate, and efficient model of the circuit, but its mechanisms

are never revealed to the student, since they are certainly not the mechanisms

that he is expected to acquire. In WEST, on the other hand, while a complete,

efficient, opaque expert is used to determine the range of possible moves that

the student could have made with a given roll of the dice, a different, artic-

ulate expert, which models only pieces of the game-playing expertise, helps

determine possible causes for less than optimal moves by the student.

ICAI systems are distinguished from earlier CAJ approaches by the separa-

tion of teaching strategies from the subject expertise to be taught. However,

the separation of subject-area knowledge from instructional planning requires

a structure for organizing the expertise that captures the difficulty of various

problems and the interrelationships of course material. Modeling a student's

understanding of a subject is closely related conceptually to figuring out a

representation for the subject itself or for the language used to discuss it.

Trees and lattices showing prerequisite interactions have been used to

organize the introduction of new knowledge or topics (Koffman and Blount,

1975). In BIP, this lattice took the form of a curriculum net that related the

skills to be taught to sample programming tasks that exercised each skill (Barr,

Beard, and Atkinson, 1976). Goldstein (1979) called the lattice a syllabus

in the WUMPUS research and emphasized the developmental path that a

B ICAI Systems Design 231

learner takes in acquiring new skills. For arithmetic skills needed in WEST,
Burton and Brown (1976) employ curriculum units called issues at several

levels, for example, the use of arithmetic operators, strategies for winning

the game, and meta-level considerations for improving performance. Burton

and Brown suggest that when the skills are "structurally independent," the

order of their presentation is not particularly crucial. This representation is

useful for modeling the student's knowledge and coaching him on different

levels of abstraction. Stevens, Collins, and Goldin (1978) have argued further

that a good human tutor does not merely traverse a predetermined network

of knowledge in selecting material to present. Rather, it is the process of the

tutor's ferreting out student misconceptions that drives the dialogue.

The Student-model Module

The modeling module represents the student's understanding of the mate-

rial to be taught. Much recent ICAI research has focused on this component.

The purpose of modeling the student is to make hypotheses about his miscon-

ceptions and suboptimal performance strategies so that the tutoring module

can point them out, indicate why they are wrong, and suggest corrections.

It is advantageous for the system to be able to recognize alternative ways

of solving problems, including the incorrect methods that the student might

use as a result of systematic misconceptions about the problem or inefficient

strategies.

Some early frame-oriented CAI systems employed mathematical stochastic

learning models, but this approach failed because it modeled only the prob-

ability that a student would give a specific response to a stimulus. In general,

knowing the probability of a response has little diagnostic power (Laubsch,

1975)—it is not the same as knowing what a student understands.

Typical uses of AI techniques for modeling student knowledge include

(a) simple pattern recognition applied to the student's response history and

(b) flags in the subject-matter semantic net or in the rule base representing

areas that the student has mastered. In these ICAI systems, a student model

is formed by comparing the student's behavior to that of the computer-based

"expert" in the same environment. The modeling component marks each skill

according to whether evidence indicates that the student knows the material

or not. Carr and Goldstein (1977) have termed this component an overlay

model—the student's understanding is represented completely in terms of the

expertise component of the program (see Article EK.C5).

Another approach is to model the student's knowledge not as a subset of

the expert's knowledge, but rather as a perturbation of or deviation from the

expert's knowledge—a "bug." (See, e.g., the SOPHIE and BUGGY systems

—

Articles DC.C3 and EX.C7.) There is a major difference between the overlay

and bug approaches to modeling: In the bug approach, it is not simply

232 Applications-oriented AI Research: Education DC

assumed that the student reasons as the expert does, except for knowing less;

the student's reasoning can, in fact, be substantially different from expert

reasoning.

Other information that might be accumulated in the student model

includes the student's preferred modes for interacting with the program, a

rough characterization of his level of ability, a consideration of what he seems

to forget over time, and an indication of what his goals and plans seem to be

for learning the subject matter.

Major sources of evidence for maintaining the student model can be char-

acterized as: (a) implicit, from student problem-solving behavior; (b) explicit,

from direct questions asked of the student; (c) historical, from assumptions

based on the student's experience; and (d) structural, from assumptions based

on some measure of the difficulty of the subject material (Goldstein, 1977).

Historical evidence is usually determined by asking the student to rate his

level of expertise on a scale from beginner to expert. Early programs, like

SCHOLAR, used only explicit evidence. Recent programs have concentrated

on inferring implicit evidence from the student's problem-solving behavior.

This approach is complicated in that it is limited by the program's ability

to recognize and describe the strategies applied by the student. Specifically,

when the expert program indicates that an inference chain is required for

a correct result and the student's observable behavior is wrong, how is the

modeling program to know which of the intermediate steps are unknown or

wrongly applied by the student? This is the apportionment of credit or blame

problem; it has been an important focus of WEST research (Article DCC4).

In his work on the MACSYMA Advisor, Michael Genesereth (1979) built

a system that interprets the MACSYMA user's activity in terms of a problem-

solving grammar (Miller and Goldstein, 1977b). MACSYMA is a powerful

and complex computer-based tool for mathematical problem solving used by

scientists and engineers across the country (see Article VII.Dl). The analysis

by the MACSYMA Advisor allows the user's efforts to be modeled in terms of a

"standard set" of problem-solving operations. The Advisor's plan-recognition

procedure attempts to interpret, or parse, the user's solution steps in terms

of the grammar, building a model of what the user is trying to do, called the

plan. The plan is used to infer the user's beliefs and misconceptions.

The SPADE-0 system (Miller, 1979; Miller and Goldstein, 1977a, 1977b)

explored the relation between expert knowledge and student modeling in the

context of a LOGO-graphics programming tutor. Since a complete expert

module for programming tasks is beyond the state of the art, SPADE-0 focused

on providing an instructional programming environment in which an articu-

late program-planning dialogue could take place. Plans for LOGO programs

were displayed as treelike hierarchies of design choices; programming-language

"code" was at the leaves of these tree structures. Each node in a SPADE-0
plan could be annotated according to purpose (what it was to do) and rationale

B ICAI Systems Design 233

(why it was chosen). Although only rudimentary tutorial and modeling capa-

bilities were actually implemented in SPADE-0, its design provided a test

case for exploring potential AI contributions along these lines. The insight

of human tutors apparently results from recognizing the student's plan and

analyzing its differences from the most similar "expert" plan; underlying mis-

conceptions are inferred from sequences of "buggy" student plans. SPADE-0's

attempt to interact with the student in terms of an explicit vocabulary of

high-level planning and debugging ideas represented a radical departure from

conventional programming instruction (which is typically organized around

specific language constructs).

Because of inherent limitations in the modeling process, it is useful for

a "critic" in the modeling component to measure how closely the student

model actually predicts the student's behavior. Extreme inconsistency or an

unexpected demonstration of expertise in solving problems might indicate that

the representation in the program does not capture the student's approach.

Finally, Goldstein (1977) has suggested that the modeling process should

attempt both to measure whether or not the student is actually learning and

to discern what teaching methods are most effective. Much research is needed

in this area.

The Tutoring Module

The tutoring module of ICAI systems must integrate knowledge about

natural-language dialogues, teaching methods, and the subject area. This is

the module that communicates with the student, selecting problems for him to

solve, monitoring and criticizing his performance, providing assistance upon

request, and selecting remedial material. The design of this module involves

issues such as when it is appropriate to offer a hint or how far the student

should be allowed to go down the wrong track:

These are just some of the problems which stem from the basic fact that

teaching is a skill which requires knowledge additional to the knowledge

comprising mastery of the subject domain. (Brown, 1977, pp. 256-257)

This additional knowledge, beyond the representation of the subject domain

and of the student's state of understanding, is knowledge about how to teach.

Most ICAI research has explored teaching methods based on diagnostic

modeling, in which the program debugs the student's understanding by posing

tasks and evaluating his response (Collins, 1976; Brown and Burton, 1978;

Koffman and Blount, 1975). From the program's feedback, the student is

expected to learn which skills he uses wrongly, which skills he does not use

(but could use to good advantage), and so forth. Recently, there has been

more concern with the possibility of saying just the right thing to the student

so that he will realize his own errors and switch to a better method (Carr and

234 Applications-oriented AI Research: Education DC

Goldstein, 1977; Burton and Brown, 1979a; Norman, Gentner, and Stevens,

1976). This new direction is based on attempts to make a bug constructive

by establishing for the student that there is something suboptimal in his

approach, as well as giving enough information for the student to use what

he already knows to focus on the bug and characterize it so that he avoids

this failing in the future.

However, it is by no means clear how "just the right thing" is to be said

to the student. We do know that it depends on having a very good model of

his understanding process (the methods and strategies he uses to construct a

solution). Current research is focusing on means for representing and isolating

the bugs themselves (Stevens, Collins, and Goldin, 1978; Brown and Burton,

1978).

Another approach is to provide an environment that encourages the

student to think in terms of debugging his own knowledge. In one BIP

experiment (Wescourt and Hemphill, 1978), explicit debugging strategies for

computer programming were conveyed in a written document and then a

controlled experiment was undertaken to see whether this training fostered a

more rational approach for detecting faulty use of programming skills.

Brown, Collins, and Harris (1978) suggest that one might foster the ability

to construct hypotheses and test them (the basis of understanding in their

model) by setting up problems in which the student's first guess is likely to

be wrong, thus "requiring him to focus on how he detects that his guess is

wrong and how he then intelligently goes about revising it."

The Socratic method used in WHY (Stevens and Collins, 1977) involves

questioning the student in a way that will encourage him to reason about

what he knows and thereby modify his conceptions. The tutor's strategies are

constructed by analyzing protocols of real-world interactions between student

and teacher.

Another teaching strategy that has been successfully implemented on

several systems is called coaching (Goldstein, 1977). Coaching programs are

not concerned with covering a predetermined lesson plan within a fixed time

(in contrast to SCHOLAR). Rather, the goal of coaching is to encourage skill

acquisition and general problem-solving abilities by engaging the student in

some activity like a computer game (see Articles DCA and DC.D). In a coaching

situation, the immediate aim of the student is to have fun, and skill acquisition

is an indirect consequence. Tutoring comes about when the computer coach,

"observing" the student's play of the game, interrupts the student and offers

new information or suggests new strategies. A successful computer coach

must be able to discern what skills or knowledge the student might acquire,

based on his playing style, and to judge effective ways to intercede in the

game and offer advice. WEST and WUMPUS (Articles DC.C4 and DC.C5) are

both coaching programs.

Socratic tutoring and coaching represent different styles for communicat-

ing with the student. All mixed-initiative tutoring follows some dialogue

B ICAI Systems Design 235

strategy, which involves decisions about when and how often to question the

student and methods for the presentation of new material and review. For

example, a coaching program, by design, is nonintrusive and only rarely lec-

tures. On the other hand, a Socratic tutor questions repetitively, requiring

the student to pursue certain lines of reasoning. Recently, ICAI research has

turned to making explicit these alternative dialogue-management principles.

Collins (1976) has pioneered the careful investigation and articulation of teach-

ing strategies. Recent work has explored the representation of these strategies

as production rules (see Articles DC.C2 and DC.C6 on WHY and GUIDON).

For example, the tutoring module in the GUIDON program, which dis-

cusses MYCIN-like case-diagnosis tasks with a student, has an explicit repre-

sentation of discourse knowledge. Tutoring rules select alternative dialogue

formats on the basis of economy, domain logic, and tutoring or student-

modeling goals. Arranged into procedures, these rules cope with various recur-

rent situations in the tutorial dialogue, for example, introducing a new topic,

examining a student's understanding after he asks a question that indicates

unexpected expertise, relating an inference to one just discussed, discussing

the next plan of attack after the student completes a subproblem, and wrap-

ping up the discussion of a topic.

Conclusion

In general, ICAI programs have only begun to deal with the problems of

representing and acquiring teaching expertise and of determining how this

knowledge should be integrated with general principles of discourse. The pro-

grams described in the articles to follow have all investigated some aspect of

this problem, and none offers an answer to the question of how to build a

computer-tutor. Nevertheless, these programs have demonstrated potential

tutorial skill, sometimes showing striking insight into students' misconcep-

tions. Research continues toward making viable AI contributions to computer-

based education.

References

Goldstein (1977) gives a clear discussion of the distinctions between the

modules presented here, concentrating on the broader, theoretical issues.

Burton and Brown (1976) also discuss the components of ICAI systems and

their interactions and provide a good example. Self (1974) is a classic discus-

sion of the kinds of knowledge needed in a computer-based tutor.

C. INTELLIGENT CAI SYSTEMS

CI. SCHOLAR

In ADDITION to responding to the student's questions, the tutor should be

able to take the initiative during an instructional dialogue by generating good

tutorial questions. These questions can be used by the tutor to indicate

the relevant material to be learned, to determine the extent of a student's

knowledge of the problem domain, and to identify any misconceptions that he

(or she) might have. SCHOLAR is one such mixed- initiative, computer-based

tutoring system; both the system and the student can initiate conversation by

asking questions. SCHOLAR was the pioneering effort in the development of

computer tutors capable of handling unanticipated student questions and of

generating instructional material in varying levels of detail, according to the

context of the dialogue. Both the student's input and the program's output

are English sentences.

The original SCHOLAR system, created by Jaime Carbonell, Allan Collins,

and their colleagues at Bolt Beranek and Newman, Inc., tutored students

about simple facts in South American geography (Carbonell, 1970b). It has

a number of tutoring strategies for composing relevant questions, determining

whether or not the student's answers are correct, and answering questions

from the student. Both the knowledge-representation scheme (see below)

and the tutorial capabilities are applicable to domains other than geography.

For example, NLS-SCHOLAR was developed to tutor people unfamiliar with

computers in the use of a complex text-editing program (Grignetti, Hausmann,

and Gould, 1975).

In addition to investigating the nature of tutorial dialogues and of human
plausible reasoning, the SCHOLAR research project explored a number of AI

issues, including:

1. How can real-world knowledge be stored effectively for the fast, easy

retrieval of relevant facts needed in tutoring?

2. What general reasoning strategies are needed to make appropriate plaus-

ible inferences from the typically incomplete database of the tutor pro-

gram?

3. To what extent can these strategies be made independent of the domain

being discussed (i.e., dependent only on the form of the representation)?

The Knowledge Base—Semantic Nets

In SCHOLAR, knowledge about the domain being tutored is represented

in a semantic net (see Article III.C3, in Vol. i). Each node, or unit, in the net,

236

CI SCHOLAR 237

corresponding to some geographical object or concept, is composed of the

name associated with that node and a set of properties. These properties are

lists of attribute-value pairs. For example, Figure Cl-1 shows a representation

of the unit for Peru. (For a discussion of the LISP notation, see Article VI.B.)

Attributes can be English words (other units) that are defined elsewhere

in the net; one of several special attributes such as SUPRA for superattribute,

SUPERC for superconcept or superordinate, SUPERP for superpart; or case-

structure attributes used in parsing (see below). An example of SUPRA might

be the fact that fertile refers to soil and soil refers to topography; of SUPERC,

that Peru is a country; and of SUPERP, that Peru is part of South America.

Values can also be importance tags, like the expressions (I 0) after LOCATION in

Figure Cl-1 and (I 1) after EASTERN: the lower the number, the more important

the property. SCHOLAR uses these tags to measure the relevance of a node

with respect to the topic under discussion.

Tutorial Dialogue

An important part of the SCHOLAR research has been an emphasis on the

nature of tutorial dialogue, in particular, the Socratic style of tutoring, where

the tutor first attempts to diagnose the student's misconceptions and then

presents material that will force the student to see his own errors (Collins,

Warnock, and Passafiume, 1974). As part of the SCHOLAR research, human

PERU:

((EXAMPLE-NOUN PERU))

(10) "Importance" of unit is high

(SUPERC (I 0) COUNTRY)

(SUPERP (I 6) SOUTH/AMERICA) Link to superordinate units

(LOCATION (I 0) Values of LOCATION attribute follow:

(IN (I 0) (SOUTH/AMERICA (I 0) WESTERN))

(ON (I 0) (COAST (I 0) (OF (I 0) PACIFIC))

(LATITUDE (I 4) (RANGE (I 0) -18 0))

(LONGITUDE (I 5) (RANGE (I 0) -82 -68))

(BORDERING/COUNTRIES (I 1)

(NORTHERN (I 1) (LIST COLUMBIA ECUADOR))

(EASTERN (I 1) BRAZIL)

Figure Cl-1. The unit for PERU.

238 Applications-oriented AI Research: Education DC

tutorial protocols were analyzed to see what strategies people follow, in an

attempt to incorporate these strategies into the system (see also Article DC.C2

on the groups continuing research in this direction). The following example

is an excerpt from a session with the South American geography tutor. The
student's questions and answers are preceded by ** and annotations are shown

in italics:

What is the language of Argentina?

** Probably Spanish

Very good.

Approximately what is the area of Argentina?

Student changes topic

.

. .

** Tell me something about Peru

Peru is a country.

It is located in South America.

The capital of Peru is Lima.

Now answer the question you didn't answer before.

. . . finally answers the question.

** The area of Argentina is 1,100,000 square miles

Approximately true, but a more exact value is 1,200,000.

The eastern bordering country of Peru is .

Student makes an error and is corrected . .

.

** Catholicism

Wrong. Catholicism is not a country but a religion.

The correct answer is : Brazil

Where is Peru?

. . . and once again changes topic.

** Is Asuncion hot?

Since Asuncion is part of Paraguay, yes.

** What is the most important difference between

Peru and Paraguay?

The primary difference is : The population of Peru

is larger by a factor of 7.8.

The natural-language processing used by SCHOLAR is based on a case

grammar system (Article IV.C4, in Vol. i), and the semantic interpretation

of a student's response is heavily guided by the geography knowledge in the

semantic net. Natural-language processing is important in SCHOLAR because

CI SCHOLAR 239

it allows the student to take the initiative and ask questions that were not

anticipated by the program. However, comprehension of English input is

facilitated by a taxonomy of expected question types. The case grammar
is also used by the system to construct questions and presentations of new
material from the semantic network. English output is composed of short,

simple sentences, with no embedded clauses and a limited repertoire of verbs

—

generally some form of the verb to be.

A simple agenda keeps track of topics that are being discussed. Timing

considerations and relevance (importance tags) affect the generation and prun-

ing of topics on this agenda. Continuity between questions is weak, however,

since SCHOLAR does not plan a series of questions to make a point. SCHOLAR
is capable of diagnosing a student's misunderstanding only by following up

one question with a related question.

Making Inferences

SCHOLAR'S inference strategies, for answering student questions and eval-

uating student answers to its questions, are designed to cope with the incom-

pleteness of the information stored in the semantic-net knowledge base. Some
of the important strategies for reasoning with incomplete knowledge are given

below. These abilities have been explored further in current research dealing

with default reasoning (Reiter, 1978) and plausible reasoning (Collins, 1978).

Intersection search. Answering questions of the form "Can X be a

part of y?" (e.g., "Is Buenos Aires in Argentina?") is done by an intersection

search: The superpart (SUPERP) arcs of both nodes for X and Y are traced

until an intersection is found (i.e., a common superconcept node is found). If

there is no intersection, the answer is "No." If there is an intersection node Q,

SCHOLAR answers as follows:

\{Q = Y, then "Yes";

If Q = X, then "No, ris an X"

For example, the question "Is Buenos Aires in Agentina?" is answered "Yes"

because Argentina is a SUPERP of Buenos Aires in the net (Q = Y):

South America

/(Superpart)

Argentina (Y)

/(Superpart)

Buenos Aires (X)

240 Applications-oriented AI Research: Education DC

But the question "Is Argentina in Buenos Aires?" receives the response "No,

Buenos Aires is in Argentina."

South America

/(Superpart)

Argentina (X)

/(Superpart)

Buenos Aires (Y)

Common superordinate. If the common superpart node, Q, is neither

X nor Y, the program focuses on the two elements that have Q as a common
superordinate. If they are contradictory (i.e., contain suitable CONTRA prop-

erties) or have distinguishing, mutually exclusive properties (e.g., different

LOCATIONS), the answer is, "No"; otherwise, the system answers, "I don't

know." Answering "Is X a YV questions is similar, except SUPERC (super-

concept) arcs are used for the intersection process.

Open and closed sets. In order to look for all objects in the system

that satisfy some condition (e.g., "How many cities in Columbia are on the

Atlantic?"), a distinction must be made about whether the resulting set of

these objects is closed (explicitly contains all such objects) or open (contains

some and need not contain all such objects). In SCHOLAR'S net, sets are

tagged by the courseware author as either open or closed, thus giving an

indication of the incompleteness of the system's knowledge.

While it is easy for SCHOLAR to answer questions such as "Is France

a country in South America?" about closed sets (i.e., the set of countries

in South America), similar questions about open sets require the use of spe-

cial techniques—SCHOLAR must be able to reason about the extent of its

knowledge. For example, if we ask SCHOLAR whether or not rubber is a

product of, say, Guyana and if there is no explicit information about Guyanese

rubber production in the semantic net, SCHOLAR starts to reason with what

it knows: It compares the importance tags (I-tags) of the agricultural products

of Guyana with the importance tags for rubber in countries that it knows

produce rubber. It happens that Peru is a known rubber producer. SCHOLAR
looks at the I-tag of rubber for Peru and compares this tag to the largest

(least important) I-tags associated with Guyana. If it finds that these are com-

parable, SCHOLAR infers that it knows as much about Guyana (up to some

large I-tag value) as it knows about Peru. Therefore, SCHOLAR infers that it

would know about rubber production in Guyana if it were important. Since

rubber is not listed for Guyana, SCHOLAR makes the plausible (though uncer-

tain) conclusion that rubber is not produced there. At this point, SCHOLAR

CI SCHOLAR 241

answers that it does not know for certain and gives the information about

rubber and Peru.

SCHOLAR'S use of knowledge about the extent of its knowledge in this

kind of plausible reasoning is unique in AI research and represents an applica-

tion of meta-level knowledge (see Article III.A, in Vol. i).

Summary

The inferencing strategies of SCHOLAR are independent of the content

of the semantic net and are applicable in different domains. The inferences

produced are fairly natural; that is, they handle incomplete knowledge by

employing reasoning processes similar to those that people use. The SCHOLAR
project as a whole provides an ongoing environment for research on dis-

course, teaching strategies, and plausible reasoning (see Article DC.C2 on recent

research, including the WHY system).

References

Carbonell (1970a) is a classic paper, defining the field of ICAI and intro-

ducing the SCHOLAR system. Collins (1976) is an illuminating study of

human tutorial dialogues. Collins (1978) discusses inference mechanisms, and

Collins (1978) reports extended research on plausible reasoning. Grignetti,

Hausmann, and Gould (1975) describe NLS-SCHOLAR.

C2. WHY

RECENT RESEARCH by Allan Collins, Albert Stevens, and their ICAI

research group at Bolt Beranek and Newman (BBN) has focused on devel-

oping computer-based tutors that can discuss complex systems. Their pre-

vious research on SCHOLAR (Article DC.Cl), a system that offers tutoring in

facts about South American geography, led them to investigate the nature of

tutorial dialogues about subject matter that was not just factual—where the

causal and temporal interrelations between the concepts in the domain were of

interest and where students' errors could involve not only forgotten facts, but

also misconceptions about why processes work the way they do. Stevens and

Collins (1977) describe a new system, called WHY, that tutors students in the

causes of rainfall, a complex geophysical process that is a function of many
interrelated factors (no single factor can be isolated that is both necessary

and sufficient to account for rainfall).

In their research on tutorial dialogue of this type, the BBN group has

focused on three questions that are central themes throughout ICAI research

(Stevens, Collins, and Goldin, 1978):

1. How can a good tutor's use of questions, statements, and examples be

characterized? What is the "goal structure" of a Socratic tutor?

2. What types of misconceptions do students have? How do tutors diagnose

these misconceptions from the errors students make?

3. What are the abstractions and viewpoints that tutors use to explain

physical processes?

By analyzing tutorial dialogues between human experts and students, Collins

and Stevens identify elements of a theory of tutoring. These are incorporated

into a tutorial program, which is then used to find the weak points of the

theory for further investigation. The current version of the WHY system is

the first of a series of iterations of this sort. The work so far has concentrated

on the first topic above, the nature of Socratic tutoring.

Socratic Tutoring Heuristics

Collins (1976) argues that learning to reason about and understand com-

plex processes is best accomplished by dealing with specific problems and cases

and trying to generalize from them. Socratic dialogue is especially appropriate

for tutoring complex subjects in which factors interact and in which their

interaction accounts for the phenomenon under consideration. In an effort to

model explicitly the nature of the Socratic dialogue, the current version of

WHY incorporates 24 heuristics that control the student/system interaction.

242

C2 WHY 243

A sample heuristic is:

// the student gives as an explanation of causal dependence one or more

factors that are not necessary,

then select a counterexample with the wrong value of the factor and ask

the student why his causal dependence does not hold in that case.

This rule forces the student to consider the necessity of a particular factor.

For example, if the student gives rainfall as a reason for growing rice, then

the computer-generated counterexample "Why do they grow rice in Egypt,

where there isn't much rainfall?" challenges the student's explanation of rice

growing. These heuristic rules are designed to facilitate tutorial dialogues in

which the student must consider combinations of factors that are necessary for

rainfall, eliminate irrelevant factors, and attempt to generalize from specific

cases to general conditions. (See Collins, 1976, for a complete discussion of

the tutoring rules; this subject is also discussed in Article EX.C6 on GUIDON.)
WHY's knowledge base about rainfall is represented in script-like data

structures (see Article III.C7, in Vol. i), which encode temporal relations in the

rainfall process; for example, First water evaporates from an ocean or sea, then

the water-laden air mass is carried over land by winds, which in turn causes the

air mass to cool, which causes precipitation. This knowledge representation

is adequate for capturing many of the characteristics of a tutorial dialogue,

but there are other kinds of knowledge about rainfall that are not represented

here but that are discussed below.

The following excerpt is from a dialogue with the current version of the

WHY system. The system prompts the student to suggest causes of rainfall,

to look for prior or intermediate causes, and finally to suggest a general rule.

When such a rule is proposed, the system finds a counterexample and forces

revision of the rule to account for it. The system proceeds in this way until

a rule of sufficient generality is found. The protocol is annotated with the

heuristics employed by the system at each juncture in the conversation.

Heuristic 1: Ask for a prediction about a particular case.

Do you think the Amazon jungle has heavy rainfall

or light rainfall?

** Heavy rainfall

Heuristic 2: Ask for prior causes.

Why does the Amazon jungle have heavy rainfall?

** Because it's near the Atlantic

Yes, the Amazon jungle is near the equatorial Atlantic.

Heuristic 3: Ask for intermediate causes.

How does that affect rainfall in the Amazon jungle?

244 Applications-oriented AI Research: Education DC

** The water in the current is warm

Heuristic 4-' Ask for subsequent causes.

What happens after the moisture-filled air reaches the land?

** I don't know

Heuristic 5: Suggest a factor and ask if it is a cause.

Do you think the Andes mountain range has any effect on the

rainfall in the Amazon jungle?

** Yes

Heuristic 3: Ask for intermediate causes.

How?

** The prevailing wind hits the Andes and the air cools

Heuristic 8: Ask for intermediate causes.

How does the fact that the prevailing wind hits the Andes

lead to air cooling?

Heuristic 6: Form a general rule for an insufficient cause.

Do you think that any place with mountains has heavy rainfall?

** Yes

Heuristic 7: Pick a counterexample for an insufficient cause, and

Heuristic 2: Ask for prior causes.

Southern California has mountains

.

Why doesn't Southern California have heavy rainfall?

Current Research

Tutorial goals. One of the shortcomings of the existing system is that

it does not have long-term "goals" for the tutorial dialogue. Implicit in

the tutorial rules is some idea about local management of the interaction,

but a global strategy about the tutoring session is absent. Human tutors,

however, admit to having goals like Concentrate on one particular part of the

causal structure of rainfall at a time or Clear up one misconception before

discussing another. Stevens and Collins (1977) set about codifying these

goals and strategies for incorporation into the WHY system. They analyzed

tutoring protocols in which human tutors commented on what they thought

the students did and did not know and on why they responded to the students

as they did. From this analysis, two top-level goals became apparent:

C2 WHY 245

1. Refine the student's causal structure, starting with the most important

factors in a particular process and gradually incorporating more subtle

factors.

2. Refine the student's procedures for applying his causal model to novel

situations.

Student misconceptions. The top-level goals involve subgoals of iden-

tifying and correcting the student's misconceptions. Stevens and Collins

classified these subgoals into five categories of bugs and provided directions

for correcting them, as follows:

1. Factual bugs. The tutor deals with these by correcting the student.

Teaching facts is not the goal of Socratic tutoring; interrelations of facts

are more important.

2. Outside-domain bugs. These are misconceptions about causal structure,

which the tutor chooses not to explain in detail. For example, the

"correct" relationship between the temperature of air and its moisture-

holding capacity is often stated by the tutor as a fact, without further

explanation.

3. Overgeneralization. When a student makes a general rule from an insuffi-

cient set of factors (e.g., Any place with mountains has heavy rainfall), the

tutor will find counterexamples to probe for more factors.

4. Overdifferentiation. When a student counts factors as necessary when
they are not, the tutor will generate counterexamples to show that they

are not.

5. Reasoning bugs. Tutors will attempt to teach students skills such as

forming and testing hypotheses and collecting enough information before

drawing a conclusion.

If a student displays more than one bug, human tutors will employ a set of

heuristics to decide which one to correct first:

1. Correct errors before omissions.

2. Correct causally prior factors before later ones.

3. Make short corrections before longer ones.

4. Correct low-level bugs (in the causal network) before correcting higher

level ones.

Functional relationships. The bugs just discussed are all domain

independent; that is, they would occur in tutorial dialogues about other

complex processes besides rainfall. But some bugs are the results of specific

misconceptions about the functional interrelationships of the concepts of the

specific domain. For example, one common misconception about rainfall is

that Cooling causes air to rise. This is not a simple factual misconception, nor

is it domain independent. It is best characterized as an error in the student's

functional model of rainfall.

246 Applications-oriented AI Research: Education EX

In fact, the script representation in the WHY system that captures the

temporal and causal relations of land, air, and water masses in rainfall proved

inadequate to get at all of the types of student misconceptions. Recent work

has investigated a more flexible representation of functional relationships,

which allows the description of the processes that collectively determine rain-

fall from multiple viewpoints—for example, the temporal- causal-subprocess

view captured in the scripts and the functional view emphasizing the roles that

different objects play in the various processes (Stevens, Collins, and Goldin,

1978). Misconceptions about rainfall are represented as errors in the student's

model of these relationships. A functional relationship has four components:

(a) a set of actors, each with a role in the process; (b) a set of factors that

affect the process, all of which are attributes of the actors (e.g., water is an

actor in the evaporation relationship and its temperature is a factor); (c) the

result of the process, which is always a change in an attribute of one of the

actors; and (d) the relation that holds between the actors and the result, or

how an attribute gets changed. These functional relationships may be the

result of models from other domains that are applied metaphorically to the

domain under discussion (Stevens and Collins, 1978).

Summary

The WHY system started as an extension of SCHOLAR by the implemen-

tation of rules that characterize Socratic tutoring heuristics. Subsequently,

an effort was made to describe the global strategies used by human tutors

to guide the dialogue. Since these were directed toward dispelling students'

misconceptions, five classes of misconceptions, as well as means for correcting

them, were established. Many misconceptions are not domain independent

and the key to more versatile tutoring lies in continuing research on knowledge

representation.

References

The major reference on the research reported here is Stevens, Collins, and

Goldin (1978). The tutorial rules are discussed fully in an excellent article by

Collins (1976). The later work on the goal structure of a tutor is reported

in Stevens and Collins (1977). Finally, research on conceptual models and

multiple viewpoints of complex systems is discussed in Stevens and Collins

(1978).

C3. SOPHIE

SOPHIE (a SOPHisticated Instructional Environment) is an ICAI system devel-

oped by John Seely Brown, Richard Burton, and their colleagues at Bolt

Beranek and Newman, Inc., to explore broader student initiative during the

tutorial interaction. The SOPHIE system provides the student with a learning

environment in which he (or she) acquires problem-solving skills by trying out

his ideas, rather than by instruction. The system has a model of the problem-

solving knowledge in its domain, as well as numerous heuristic strategies for

answering the student's questions, criticizing his hypotheses, and suggesting

alternative theories for his current hypotheses. SOPHIE allows the student

to have a one-to-one relationship with a computer-based "expert" who helps

him come up with his own ideas, experiment with these ideas, and, when
necessary, debug them.

Figure C3-1 illustrates the component modules of the original SOPHIE-I

system (Brown, Rubenstein, and Burton, 1976) and the capabilities added for

the SOPHIE-II system, discussed later in this article.

SOPHIE-I

SOPHIE teaches problem-solving skills in the context of a simulated elec-

tronics laboratory. The problem facing the student is to find the faults in a

malfunctioning piece of equipment whose characteristics he obtains by taking

measurements. Thus, the student takes a sequence of measurements (such

as voltages, currents, and resistances) to determine what is wrong with the

equipment and asks questions about the measurements and about what fault

hypotheses he should consider, given the information he has discovered so

far. SOPHIE evaluates the hypotheses by considering all of the information

that the student should have been able to derive from his current set of

measurements. The system also judges the merits of a student's suggestion for

a new measurement in light of the prior sequence of measurements. SOPHIE
can decide if a measurement is valuable, based on whether it eliminates or

isolates a fault, and will inform the student when a proposed measurement

provides no new information.

The following portion of a sample protocol (from Brown and Burton, 1975)

illustrates some of the linguistic and inferential capabilities of the SOPHIE
system. SOPHIE randomly selects a fault (in the performance of a circuit

component), inserts it into a model or simulation of the circuit, and tells the

student how the controls are set. The student is given a schematic diagram of

the circuit, and the dialogue refers to components in the schematic diagram

(e.g., resistor 8 [R8], node connection 1 [Nl], transistors [Ql] and [Q6]). The

247

248 Applications-oriented AI Research: Education DC

Hypothesis
Evaluator

Natural

Languages

Semantic
Network

SOPHIE-I

Question
Answerer

Circuit

Simulator

Team
Game
Monitor

Augmentations for SOPHIE-II

Articulate

Expert

Debugger/
Explainer

SOPHIE Menu

Figure C3-1. SOPHIE-I and SOPHIE-II (Brown, Rubenstein, and Burton,

1976).

student begins his troubleshooting by performing measurements in the faulted

circuit.

Welcome to SOPHIE, a reactive learning environment.

The piece of equipment you are studying is a regulated

cc 1.0

CR HIGH

LOAD 20

VC 1.0

VR HIGH

C3 SOPHIE 249

power supply. Would you like to start with a faulted

instrument that needs fixing?

** Yes

The instrument has a fault and its present

control settings are

:

CURRENT CONTROL

CURRENT RANGE SWITCH

LOAD RESISTANCE IN OHMS

VOLTAGE CONTROL

VOLTAGE RANGE SWITCH

** What is the output?

The output voltage is 11.7 volts.

Notice that "output" was disambiguated as "output voltage."

** What is it in a working instrument?

In a working circuit the output voltage is 19.9 volts.

In case the student does not know what the required value of measurement

should have been, he can ask for any measurement in a properly function-

ing instrument. The student then requests an internal measurement.

** What is the voltage between R8 and Ql?

The voltage at Nl is 47.6 volts.

** Replace Q6

The student believes that he has discovered the problem (in transistor Q6)

and tries to fix it. Before a component is replaced, however, the system

queries him as to how he thinks it is faulted.

I am going to ask you some questions about how Q6 is faulted.

Are any junctions shorted?

** I don't know

Are any terminals open?

** Yes

Which terminal (s) are open?

** The base

Q6 is not faulted in that manner. Q6 not replaced.

After learning that Q6 does not have an open base, the student asks if

this was at least a reasonable hypothesis.

250 Applications-oriented AI Research: Education DC

** Is it possible that Q6 has an open base?

Before the system 's evaluation procedures can be applied to the student 's

idea or hypothesis, the hypothesis must be completely specified. To help

the student out, the system suggests a plausible complete specification of

it in an abbreviated form familiar to the student.

Is the complete fault mode EB/EC/BC = Open/Ok/Open

what you intended?

** Sure

That fault is consistent with all of the measurements

you have made

.

The hypothesis is reasonable, but other measurements will indicate that

another component is faulty.

Natural-language Processing—Semantic Grammar

In an instructional setting, it is important that the student be provided

with a convenient way to communicate his ideas to the system. The student

will quickly become frustrated if he has to try several ways of expressing an

idea before the system can understand it. SOPHIE 's natural-language under-

stander copes with various linguistic problems such as anaphoric references,

context-dependent deletions, and ellipses, which occur frequently in natural

dialogues.

SOPHIE's natural-language capabilities are based on the concept of a

performance or semantic grammar, in which the usual syntactic categories

such as noun, verb, and adjective are replaced by semantically meaningful

categories (Burton, 1976b; Burton and Brown, 1979b). These categories

represent concepts known to the system—measurements, circuit elements,

transistors, hypotheses, and so on. For each concept there is a grammar
rule that gives the alternate ways of expressing that concept in terms of its

constituent concepts. Each rule is encoded as a LISP procedure that specifies

the order of application of the various alternatives in each rule.

A grammar centered around semantic categories allows the parser to deal

with a certain amount of "fuzziness," or uncertainty, in its understanding

of the words in a given statement; that is, if the parser is searching for a

particular instantiation of a semantic category, and the current word in the

sentence fails to satisfy this instantiation, it skips over that word and continues

searching. Thus, if the student uses certain words or concepts that the system

does not know, the parser can ignore these words and try to make sense of

what remains. To limit the negative consequences that may result from a

misunderstood question, SOPHIE responds to the student's question with a

full sentence that tells him what question is being answered. (See Chaps. IV

C3 SOPHIE 251

and V, in Vol. I, especially Articles IV.F7 and V.C4, for other systems using

semantic grammar parsers.)

Inferencing Strategies

To interact with the student, SOPHIE performs several different logical

and tutorial tasks. First, there is the task of answering hypothetical questions.

For example, the student might ask, "If the base-emitter junction of the

voltage-limiting transistor opens, then what happens to the output voltage?"

A second task SOPHIE must perform is that of hypothesis evaluation, in

which the student asks, "Given the measurements I have made so far, could

the base of transistor Q3 be open?" The problem here is not to determine

whether the assertion The base of Q3 is open is true, but whether this asser-

tion is logically consistent with the data that have already been collected by

the student. If it is not consistent, the program explains why it is not. When
it is consistent, SOPHIE identifies which information supports the assertion

and which information is independent of it.

A third task that SOPHIE must perform is hypothesis generation. In its

simplest form, this involves constructing all possible hypotheses consistent

with the known information. This procedure permits SOPHIE to answer

questions like "What could be wrong with the circuit (given the measurements

that I have taken)?" The task is solved using generate and test with the

hypothesis-evaluation task described above performing the test function.

Finally, SOPHIE can determine whether a given measurement is redun-

dant, that is, if the results of the measurement could have been predicted

from a complete theory of the circuit, given the previous measurements.

SOPHIE accomplishes all of these reasoning tasks through an inference

mechanism that relies principally on a general-purpose simulator of the circuit

under discussion. For example, to answer a question about a changed voltage

resulting from a hypothetical modification to a circuit, SOPHIE first interprets

the question with its parser and then, applying this interpretation, simulates

the desired modification. The result is a voltage table that represents the

voltages at each terminal in the modified circuit. The original question is

then answered in terms of these voltages.

The tasks of hypothesis evaluation and hypothesis generation are handled

in a similar manner, using the simulator. In evaluating hypotheses, SOPHIE
attempts to determine the logical consistency of a given hypothesis. To accom-

plish this task, a simulation of the hypothesis is performed on the circuit

model and measurements are taken of the result. If the values of any of these

measurements are not equivalent to the measurements taken by the student,

a counterexample has been established, which is used to critique the student's

hypothesis.

252 Applications-oriented AI Research: Education IX

When generating hypotheses, SOPHIE attempts to determine the set of

possible faults or hypotheses that are consistent with the observed behavior of

the faulted instrument. This task is performed by a set of specialist procedures

that propose a possible set of hypotheses to explain a measurement and then

simulate them to make sure that they explain the output voltage and all of

the measurements that the student has taken. Hypothesis generation can

suggest possible paths to explore when the student has run out of ideas for

what could be wrong with the circuit or when he wishes to understand the full

implications of his last measurement. It is also used by SOPHIE to determine

when a measurement is redundant.

SOPHIE-II: The Augmented SOPHIE Laboratory

Extensions to SOPHIE include (a) a troubleshooting game with two teams

of students and (b) the development of an articulate expert debugger/explainer.

The simple reactive learning environment has also been augmented by the

development of frame-oriented CAI lesson material, to prepare the student for

the laboratory interaction (Brown et al., 1976). The articulate expert not only

locates student-inserted faults in a given instrument but also can articulate

exactly the deductions that led to its discovery, as well as the more global

strategies that guide the troubleshooting scenario.

Experience with SOPHIE indicates that its major weakness is an inability

to follow up on student errors. Since SOPHIE is to be reactive to the student, it

will not take the initiative to explore a student's misunderstanding or suggest

approaches that he does not consider. However, the competitive environment

of the troubleshooting game, in which partners share a problem and work it

out together, was found to be an effective means of exercising the student's

knowledge of the operation of the instrument being debugged. Finally, an

experiment involving a minicourse—and exposure to the frame-based texts,

the expert, and the original SOPHIE laboratory—indicated that long-term

use of the system is more effective than a single, concentrated exposure to the

material (Brown et al., 1976).

Summary

The goal of the SOPHIE project was to create a learning environment in

which students would be challenged to explore ideas on their own and to come

up with conjectures or hypotheses about a problem-solving situation. The
students receive detailed feedback as to the logical validity of their proposed

solutions. In cases where the students' ideas have logical flaws, SOPHIE
can generate relevant counterexamples and critiques. The SOPHIE system

combines domain-specific knowledge and powerful domain-independent infer-

encing mechanisms to answer questions that even human tutors might find

extremely difficult to answer.

C3 SOPHIE 253

References

The most thorough discussion of SOPHIE is in Brown, Burton, and

de Kleer (in preparation). Brown, Burton, and Bell (1975) give a complete

description of the early work on SOPHIE; and Brown, Rubenstein, and Burton

(1976) report on the later work. Also see Brown and Burton (1978).

C4. WEST

DEVELOPMENT of the first computer coach was undertaken by Richard

Burton and John Seely Brown at Bolt Beranek and Newman, Inc., for the

children's board game called "How the West Was Won." The term Coach

describes a computer-based learning environment in which the student is

involved in an activity, like playing a computer game, and the instructional

program operates by "looking over his shoulder" during the game and occa-

sionally offering criticisms or suggestions for improvement (Goldstein, 1977).

This research focused on identifying (a) diagnostic strategies required to infer

a student's misunderstandings from his observed behavior and (b) various

explicit tutoring strategies for directing the tutor to say the right thing at the

right time (Burton and Brown, 1976, 1979a).

The intention of the WEST research project was to use these strategies to

control the interaction so that the instructional program took every possible

opportunity to offer help to the student without interrupting so often as to

become a nuisance and destroy the student's fun at the game. By guiding a

student's learning through discovery, computer-based coaching systems hold

the promise of enhancing the educational value of the increasingly popular

computer games.

Philosophy of the Instructional Coach

The pedagogical ideas underlying much of the computer-coaching research

in WEST can be characterized as guided discovery learning. It assumes that

the student constructs his (or her) understanding of a situation or a task based

on his prior knowledge. According to this theory, the notion of misconception,

or bug, plays a central role in the construction process. Ideally, a bug in the

student's knowledge will cause an erroneous or suboptimal behavior, which the

student will notice. If the student has enough information to determine what

caused the error and can then correct it, the bug is referred to as constructive.

The role of a tutor in an informal environment is to give the student extra

information in situations that would otherwise be confusing to him, so that

he can determine what caused his error and can convert nonconstructive

bugs into constructive ones (see Fisher, Brown, and Burton, 1978, for further

discussion).

However, an important constraint on the Coach is that it should not

interrupt the student too often. If the Coach immediately points out the

student's errors, there is a danger that the student will never develop the

necessary skills for examining his own behavior and identifying the causes

of his mistakes. The Coach must be perceptive enough to make relevant

254

C4 WEST 255

comments but not be too intrusive, destroying the fun of the game. The
research on the WEST system examined a wide variety of tutorial strategies

that must be included to create a successful coaching system.

"How the West Was Won"

"How the West Was Won" was originally a computer-simulated board

game, designed by Bonnie Anderson of the Elementary Mathematics Project,

on the PLATO computer-based education system at the University of Illinois

(Dugdale and Kibbey, 1977). The purpose of this original (nontutorial) pro-

gram was to give elementary-school students drill and practice in arithmetic.

The game resembles the popular "Chutes and Ladders" board game and,

briefly, goes something like this: At each turn, a player receives three numbers

(from spinners) with which he constructs an arithmetic expression using the

operations of addition, subtraction, multiplication, and division. The numeric

value of the completed expression is the number of spaces the player can move,

the object of the game being to get to the end first.

However, the strategy of combining the three numbers to make the largest

valued expression is not always the best strategy, because there are several

special features on the game board that have a bearing on the outcome. Towns

occur every 10 spaces, and if a player lands exactly on one, he skips ahead

to the next town. There are also shortcuts, and if the player lands on the

beginning of one, he advances to the other end of the shortcut. Finally, if

the player lands on the space that his opponent is occupying, the opponent

is bumped back two towns. The spinner values in WEST are small, so these

special moves are encouraged (i.e., landing on towns, on shortcuts, or on the

opponent).

Differential Modeling

There are two major related problems that must be solved by the com-

puter Coach. They are (a) when to interrupt the student's problem-solving

activity and (b) what to say once the Coach has interrupted. In general,

solutions to these problems require techniques for determining what the stu-

dent knows (procedures for constructing a diagnostic model) as well as explicit

tutoring principles about interrupting and advising. These, in turn, require

theories about how a student forms abstractions, how he learns, and when

he is apt to be most receptive to advice. Unfortunately, few, if any, exist-

ing psychological theories are precise enough to suggest anything more than

caution.

Since the student is primarily engaged in a gaming or problem-solving

activity, diagnosis of his strengths and weaknesses must be unobtrusive to

his main activity. This objective means that the diagnostic component can-

not use prestored tests or pose a lot of diagnostic questions to the student.

256 Applications-oriented AI Research: Education DC

Instead, the computer Coach must restrict itself mainly to inferring a stu-

dent's shortcomings from what he does in the context of playing the game
or solving the problem. This objective can create a difficulty—just because a

student does not use a certain skill while playing a game, one cannot conclude

that he does not know that skill.

Although this point seems quite obvious, it poses a serious diagnostic

problem: The absence of a possible skill carries diagnostic value if and only

if an expert in an equivalent situation would have used that skill. Hence,

apart from outright errors, the main window a computer-based Coach has on

a student's misconceptions is through a differential-modeling technique that

compares what the student is doing with what an expert would do in his

place. These differences suggest hypotheses about what the student does not

know or has not yet mastered. (See the related discussion of overlay models

in Articles EX.C5 and DC.C6.)

Constructing the differential model requires that two tasks be performed

by the Coach with the computer Expert (the part of the program that is

expert at playing the game WEST):

1. Evaluate the student's current move with respect to the set of possible

alternative moves that the Expert might have made in exactly the same

circumstances.

2. Determine what underlying skills were used to select and compose the

student's move and each of the "better" moves of the Expert.

To accomplish the evaluative task, the Expert need only use the results of

its knowledge and reasoning strategies—its better moves. However, for the

second task the Coach has to consider the "pieces" of knowledge involved in

making those moves, since the absence of one of these pieces of knowledge

might explain why the student failed to make a better move.

Tutoring by Issue and Example—A General Paradigm

The Coach's comments should be both relevant to the situation and mem-
orable to the student. The Issues and Examples tutoring strategy provides

a framework for meeting these two constraints. Issues are concepts used in

the diagnostic process to identify, at any particular moment, what is relevant.

Examples provide concrete instances of these abstract concepts. Providing

both the description of a generic Issue (a concept used to select a strategy)

and a concrete Example of its use increases the chance that the student will

integrate this piece of tutorial commentary into his knowledge. In the Issues

and Examples paradigm, the Issues embody the important concepts under-

lying a student's behavior. They define the space of concepts that the Coach

can address—the facets of the student's behavior that are monitored by the

Coach.

C4 WEST 257

In WEST, there are three levels of Issues on which a Coach can focus: At
the lowest level are the basic mathematical skills that the student is practicing

(the use of parentheses, the use of the various arithmetic operations, and

the form or pattern of the student's move as an arithmetic expression). The
second level of Issues concerns the skills needed to play WEST (like the special

moves: bump opponent, land on town, take shortcut) and the development of

a strategy for choosing moves. At the third level are the general skills of game
playing (like watching the opponent to learn from his moves), which are not

addressed by the WEST program.

Each of the Issues is represented in two parts, a recognizer and an evalu-

ator. The Issue recognizer is data driven; it watches the student's behavior

for evidence that he does or does not use a particular concept or skill. The
recognizers are used to construct a model of the student's knowledge. The
Issue evaluators are goal directed; they interpret this model to determine

the student's weaknesses. The Issue recognizers of WEST are fairly straight-

forward but are, nevertheless, more complex than simple pattern-matchers.

For example, the recognizer for the PARENTHESIS Issue must determine not

only whether or not parentheses are present in the student's expression, but

also whether or not they were necessary for his move, or for an optimal move.

Figure C4-1 is a diagram of the modeling-tutorial process underlying the

Issues and Examples paradigm. The top part of Figure C4-1 shows the process

of constructing a model of the student's behavior. It is important to observe

that without the Expert it is impossible to determine whether the student is

weak in some skill or whether the skill has not been used because the need

for it has arisen infrequently in the student's experience.

The Coaching Process

The lower part of Figure C4-1 illustrates the top level of the coaching

process. When the student makes a less than optimal move (as determined by

comparing his move with that of the Expert), the Coach uses the evaluation

component of each Issue to create a list of Issues on which it has assessed

that the student is weak. From the Expert's list of better moves, the Coach

invokes the Issue recognizers, to determine a second list of Issues that are

illustrated by these better moves. From these two lists of Issues, the Coach

selects an Issue and the move that illustrates it (i.e., creates an example of it)

and decides, on the basis of tutoring principles, whether or not to interrupt the

game. If the two lists have no Issues in common, the reason for the student's

problem lies outside the collection of Issues, and the Coach says nothing.

If the Coach decides to interrupt, the selected Issue and Example are

then passed to the explanation generators, which provide the feedback to

the student. Currently, the explanations are stored in procedures, called

258 Applications-oriented AI Research: Education DC

Gaming Environment
or

Problem-Solving Situation

Data Structure or

Observable Behavior

C_3 Process

Input

Output

Expert's Behavior

(Over Same Environment)

ssue Recognizers
(Identify Pertinent

Aspects of Behavior)

Abstracted Component
,

of Student Behavior
Abstracted Component

of Expert Behavior

Issue

Evaluators

Issues Where
Student is

Weak

Student's
Current Move
(Behavior)

Issue and Example
(Tutor Hypothesis

of Student's Weakness
Illustrated by a

Better Move)

Expert's

Current

Moves

Issues

Exhibited by
Better Moves

(b)

Figure C4-1. Diagram of the modeling-coaching process (Burton and

Brown, 1979a).

C4 WEST 259

SPEAKERS, attached to each Issue. Each SPEAKER is responsible for presenting

a few lines of text explaining its Issue.

Tutoring Principles

General tutoring principles dictate that, at times, even when relevant

Issues and Examples have been identified, it may be inappropriate to interrupt.

For example, what if there are two competing Issues, both applicable to a

certain situation? Which one should be selected? The Issues in WEST are

sufficiently independent that there is little need to consider their prerequisite

structure, for example, whether or not the use of parentheses should be taught

before division (see, however, the description of the syllabus in WUMPUS in

Article DC.C5). Instead, additional tutoring principles must be invoked to

decide which one of the set of applicable Issues should be used.

In WEST, experiments have been conducted using two alternate principles

to guide this decision. The first is the Focus Strategy, which ensures that,

everything else being equal, the Issue most recently discussed is chosen—the

Coach will tend to concentrate on a particular Issue until evidence is present

to indicate that it has been mastered. The alternate principle is the Breadth

Strategy, in which Issues that have not recently been discussed tend to be

selected. This strategy minimizes a student's boredom and ensures a breadth

of concept coverage.

The rest of WEST's strategies for deciding whether to raise an Issue and

what to say can be placed in the four categories listed below, with sample

rules of each:

1. Coaching philosophy. Tutoring principles can enhance a student's likeli-

hood of remembering what is said. For example, When illustrating an

Issue, use an Example (an alternate move) only when the result or outcome

of that move is dramatically superior to the move made by the student.

2. Maintaining interest in the game. The Coach should not destroy the

student's inherent interest in the game by interrupting too often. For

example, Never tutor on two consecutive moves or If the student makes an

exceptional move, identify why it is good and congratulate the student.

3. Increasing chances of learning. Four levels of hints are provided by the

WEST tutor, at the student's request: (a) Isolate a weakness and directly

address that weakness, (b) delineate the space of possible moves at this

point in the game, (c) select the optimal move and tell why it is optimal,

and (d) describe how to make the optimal move.

4. Environmental considerations. The game-playing environment should be

considered by the Coach. For example, // the student makes a possibly

careless error, one for which there is evidence that the student knows better, be

forgiving.

260 Applications-oriented AI Research: Education DC

Noise in the Model

When the student does not make an optimal move, the program knows

only that at least one of the Issues required for that move was not employed

by the student. Which of these Issues blocked the student from making the

move is not known. In practice, blame is apportioned more or less equally

among all of the Issues required for a missed better move. One effect of this is

the introduction of noise into the model; that is, blame will almost certainly

be apportioned also to Issues that are, in fact, understood. A second source

of noise in the differential model is that the system does not account for the

entire process that a person goes through in deriving a move, so the set of

Issues is, by definition, incomplete. A third source of noise is the difficulty of

modeling human factors such as boredom or fatigue that cause inconsistent

behaviors. For example, students are seldom completely consistent. They

often forget to apply techniques that they know, or they get tired and accept

a move that is easy but that does not reflect their knowledge.

Another source of noise is inherent in the process of learning. As the

student plays the game, he acquires new skills. The student model, which has

been building during the course of his play, will not be up to date; that is, it

will still show the newly learned issues as weaknesses. Ideally, the old pieces of

the model should decay with time. The costs involved in this computation are

prohibitive. To avoid this particular failing of the model, the WEST Coach

removes from consideration any Issues that the student has used recently (in

the last three moves), assuming that they are now part of his knowledge.

To combat the noise that arises in the model, the Evaluator for each Issue

tends to assume that the student has mastery of the Issue. Some coaching

opportunities may be missed, but eventually, if the student has a problem

addressed by an Issue, a pattern will emerge.

Experience with WEST

WEST has been used in elementary-school classrooms; in a controlled

experiment, the coached version of WEST was compared to an uncoached ver-

sion. The coached students showed a considerably greater variety of patterns

in the mathematical expressions they used, indicating that they had acquired

many of the more subtle patterns and had not fallen permanently into "ruts"

that prevented them from seeing when such moves were important. Perhaps

most significant of all, the students in the coached group enjoyed playing the

game considerably more than did the uncoached group (Goldstein, 1979).

References

A good discussion of the WEST coach is Burton and Brown (1979a).

C5, WUMPUS

THIS ARTICLE describes a computer coach for WUMPUS, a computer game
in which the player must track down and slay the vicious Wumpus while

avoiding pitfalls that result in certain, if fictional, death (Yob, 1975). The
coach described here is WUSOR-II, one of three generations of computer

coaches for WUMPUS developed by Ira Goldstein and Brian Carr at M.I.T.

(Carr and Goldstein, 1977; for discussions of WUSOR-I and WUSOR-III, see

Stansfield, Carr, and Goldstein, 1976, and Goldstein, 1979, respectively). To

be a skilled Wumpus-hunter, one must know about logic, probability, decision

theory, and geometry. A deficit in one's knowledge may result in being eaten

by the Wumpus or falling to the center of the earth. In keeping with the

philosophy of computer coaching, students are highly motivated to learn these

fundamental skills.

The design of the WUSOR-II system involves the interactions of the

specialist programs shown in Figure C5-1. There are four modules: the

Expert, the Psychologist, the Student Model, and the Tutor. The Expert tells

the Psychologist if the player's move is nonoptimal and which skills are needed

for him (or her) to discover better alternatives. The Psychologist employs this

comparison to formulate hypotheses concerning which domain-specific skills

are known to the student. These hypotheses are recorded in the Student

Model, which represents the student's knowledge as a subset of the Expert's

skills—an overlay model (see Article DC.B). The Tutor uses the Student Model

to guide its interactions with the player. Basically, it chooses to discuss skills

not yet exhibited by the player in situations where their use would result in

better moves. Goldstein (1977) provides a more detailed discussion of the

structure and function of these coaching modules. (See also the discussion of

the WEST computer coach in Article DC.C4.)

The central box of Figure C5-1 contains a representation for the problem-

solving skills of the domain being tutored. It is, in essence, a formal repre-

sentation of the syllabus. The Expert is derived from the skills represented

therein, as is the structure of the student model. The Psychologist derives

expectations from this knowledge regarding which skills the student can be

expected to acquire next, based on a model of the relative difficulty of items in

the syllabus. The Tutor derives relationships between skills such as analogies

and refinements, which can be employed to improve its explanations of new

skills (see Goldstein, 1979).

Theoretical Goals: Toward a Theory of Coaching

The approach to the design of computer coaches in WUSOR-II is to

construct a rule-based representation (see Article III.C4, in Vol. i) for the skills

261

262 Applications-oriented AI Research: Education DC

Coach

Psychologist

A

Move
Analysis

Expert

Game
State

Code

Data

Rules
Defining

Expert

Play

State

Game

Complexity
Data

Problem
Solving

Knowledge

Explanation

Data

Update
Model

Overlay
Student
Model

Student's

Current State

Control

Data

Play

Figure C5-1. Diagram of a computer coach (Goldstein, 1979).

C5 WUMPUS 263

needed by the Expert to play the game, for the modeling criteria used by the

Psychologist, and for the alternative tutoring strategies used by the Tutor.

Each is expanded below.

The Expert uses rules that embody the knowledge or skills required to

play the game in order to analyze the player's behavior. The virtue of a rule-

based representation of expertise is that its modularity both allows tutoring

to focus on the discussion of specific skills and permits modeling to take the

form of hypotheses regarding which rules are known by the player.

The Psychologist applies rules of evidence to make reasonable hypotheses

about which of the Expert's skills the player possesses. Typical rules of evi-

dence are:

1. Increase the estimate that a player possesses a skill if the player explic-

itly claims acquaintance with the skill, and decrease the reliability if the

player expresses unfamiliarity.

2. Increase the estimate that a player possesses a skill if the skill is manifest

in the player's behavior, and decrease the estimate if the skill is not

manifest in a situation in which the Expert believes it to be appropriate;

hence, implicit as well as overt evidence plays a role.

3. Decrease the estimate that a player possesses a skill if there is a long

interval since the last confirmation was obtained (thereby modeling the

tendency for a skill to decay with less use).

The Tutor uses explanation rules to select the appropriate topic to discuss

with the player and to choose the form of the explanation. These rules include:

1

.

Rules of simplification that take a complex statement and reduce it to a

simpler assertion. Simplification rules are essential if the player is not

to be overwhelmed by the Tutor's explanations.

2. Rules of rhetoric that codify alternative explanation strategies. The two

extremes are explanation in terms of a general rule and explanation in

terms of a concrete instance.

The WUMPUS Expert

In WUMPUS, the player is initially placed somewhere in a randomly

connected warren of caves and is told which caves adjoin his cave. His goal

is to find the horrid Wumpus and slay it with an arrow. Each move to a

neighboring cave yields information regarding that cave's neighbors. The
difficulty in choosing a move arises from the various dangers in the warren

—

bats, pits, and the Wumpus itself. If the player moves into the Wumpus's lair,

he is eaten. If he walks into a pit, he falls to his death. Bats pick the player

up and randomly drop him elsewhere in the warren.

The player can minimize risk and find the Wumpus by making the proper

logistic and probabilistic inferences from warnings that he is given. These

264 Applications-oriented AI Research: Education DC

warnings are provided whenever the player is near a danger. The Wumpus
can be smelled within one or two caves. The squeak of bats can be heard one

cave away, and the breeze of a pit can be felt one cave away. The game is won
by shooting an arrow into the Wumpus's lair. If the player exhausts his set

of five arrows without hitting the creature, all is lost.

The WUMPUS Expert uses a rule-based representation, consisting of about

20 rules, to infer the risk of visiting new caves. Five of these rules are shown

below:

LI. Positive Evidence Rule. A warning in a cave implies that a danger exists

in a neighboring cave.

L2. Negative Evidence Rule. The absence of a warning implies that no danger

exists in any neighbors.

L3. Elimination Rule. If a cave has a warning and all but one of its neighbors

are known to be safe, the danger is in the remaining neighbor.

PI. Equal Likelihood Rule. In the absence of other knowledge, all of the

neighbors of a cave with a warning are equally likely to contain a

danger.

P2. Double Evidence Rule. Multiple warnings increase the likelihood that a

given cave contains a danger.

A Sample Protocol with the WUSOR-II Computer Coach

A transcript of an interaction with the WUSOR-II Coach is presented

below. The player's responses are preceded by **.

Hello, Timmy. There are 15 caves, 2 bats, 2 pits,

and 1 Wumpus. You are now at cave 15 with neighbors 4,

14, and 0. Brrr ! There is a draft. You are near a pit.

What a stench! The Wumpus is near. What now?

** 4

You are now at cave 4 with neighbors 15, 14, and 2.

Brrr! Squeak! A bat is near. What now?

The goal of the Coach is to tutor a beginner in the relevant logical, prob-

abilistic, and strategic knowledge needed to play the game. For example,

the Expert informs the Tutor that cave 14 should be treated as more dan-

gerous than cave or 2, since there is multiple evidence (from the drafts

in caves 15 and 4) that cave 14 contains a pit. If the player now moved

to cave 14, coaching might take place as follows:

** 14

Timmy, it isn't necessary to take such large risks with pits.

One of caves 2 and 14 contains a pit. Likewise one of

C5 WUMPUS 265

caves and 14 contains a pit. This is multiple evidence

of a pit in cave 14, which makes it quite likely that cave 14

contains a pit. It is less likely that cave contains a pit.

Hence, we might want to explore cave instead.

Do you want to take back your move?

Although it is not apparent from these simple remarks, every module of

the Coach contributed to the dialogue. These contributions are summarized

below.

The Expert analyzes all possible moves, using its set of skills. The outcome

of its analysis is a ranking of possible moves with an attached list that

associates the skills that would be needed to make each move. For example,

using the five skills listed earlier, the Expert recognizes that cave 14 is the

most dangerous move and cave is the safest move.

Essentially, the Expert provides the following proof for use by the Psy-

chologist and Tutor modules. (The proof is given here in English for read-

ability; the Expert's actual analyses are in the programming language LISP.)

Lemma 1: The Wumpus cannot be in cave 0, 2, or 14 since there is no smell

in 4. (Application of the Negative Evidence Rule, L2, for the

two-cave warning of Wumpus.)

Lemma 2: Caves and 2 were better than 14 because there was single

evidence that caves and 2 contained a pit, but double evidence

for cave 14. (Application of the Double Evidence Rule, P2.)

Lemma 3: Cave 2 is more dangerous than cave 0, since 2 contains a bat,

and the bat could drop you in a fatal cave. (We know this fact

because the squeak in 4 implied a bat in 14 or 2, but the absence

of a squeak in 15 implies no bat in 14. Hence, by the Elimination

Rule, L3, there is a bat in 2.)

The Psychologist, after seeing Timmy move to cave 14, decreases the

Student Model weight indicating familiarity with the Double Evidence Rule,

P2, since the Expert's proof indicates that this heuristic was not applied.

Table C5-1 presents the Psychologist's hypotheses regarding which skills of

the Expert the student possesses.

Modeling raises many issues. One subtlety is that the move to cave 14

above may be evidence of a more elementary limitation—a failure to under-

stand the logical implications of the draft warning—that is, that a pit is in

a neighboring cave. The current state of the Student Model is used by the

Psychologist to determine, in the event of a nonoptimal move, which skill is,

in fact, missing. The Student Model indicates the level of play that can be

expected from this player—the player might be a beginner with incomplete

knowledge of the basic rules of the game, a novice with an understanding

of the logical skills, an amateur with knowledge of the logical and the more

elementary probability skills, and so on. The Psychologist would attribute

266 Applications-oriented AI Research: Education DC

Table C5-1

A Typical Student Model Maintained by the Coach

Rules Appropriate Used Percent Known

LI 5 5 100 Yes

L2 4 3 75 Yes

L3 4 2 50 ?

L4 5 5 100 Yes

L5 4 1 25 No

the student's error in the current situation to unfamiliarity with a skill at

his current level of play; in this case, Timmy is a player who has mastered

the logical skills and is learning the basic probability heuristics. Hence, the

Coach's explanation focused on explaining the double-evidence heuristic.

The Tutor is responsible for abridging the Coach's response to the player's

move to cave 14. (The complete explanation generated by the Expert was

the three lemmas shown above.) Such pruning is imperative if the Coach is

to generate comprehensible advice. Hence, the Tutor prunes the complete

analysis using simplification rules that delete those parts of the argument

that are already known to the player (on the basis of the Student Model)

and those portions that are too complex. Here, the coach deleted Lemma 1,

the discussion of the Wumpus danger, because it is based on the negative-

evidence skill that the Student Model attributes to the player. Lemma 2,

the elimination argument for bats, is potentially appropriate to discuss, but a

simplification strategy directs the Coach to focus on a single skill. Additional

information will be given by the Coach if requested by the player.

Conclusions

The novelty of this research is that in a single system there is significant

domain expertise, a broad range of possible interaction strategies available to

the tutor, and a modeling capability for the student's current knowledge state.

Informal experience with over 20 players of various ages has shown WUSOR-II
to be a helpful learning aid, as judged by interviews with the players. The

short-term benefit from this research is an improved understanding of the

learning and teaching processes. The long-term benefit may be the develop-

ment of a practical educational technology, given the expected decrease in

hardware costs.

References

Carr and Goldstein (1977) describe WUSOR, the overlay model, and

related theory. Also see Goldstein (1977, 1979) and Stansfield, Carr, and

Goldstein (1976).

C6. GUIDON

GUIDON, a program for teaching diagnostic problem-solving, is being devel-

oped by William J. Clancey and his colleagues at Stanford University. Using

the rules of the MYCIN consultation system (Article VIII.Bi) as subject mate-

rial, GUIDON engages a student in a dialogue about a patient suspected

of having an infection. In this manner, it teaches the student about the

relevant clinical and laboratory data and about how to use that information

for diagnosing the causative organism. GUIDON's mixed-initiative dialogue

differs from that of other ICAI programs in its use of prolonged, structured

teaching interactions that go beyond responding to the student's last move

(as in WEST and WUMPUS) and repetitive questioning and answering (as in

SCHOLAR and WHY).
MYCIN'S infectious-disease diagnosis rules constitute the skills to be

taught. As applied to a particular problem, the rules provide GUIDON with

topics to be discussed and with a basis for evaluating the student's behavior.

GUIDON's teaching knowledge is wholly separate from MYCIN. It is stated

explicitly in the form of 200 tutorial rules, which include methods for guiding

the dialogue economically, presenting diagnostic rules, constructing a student

model, and responding to the student's initiative. Because of the separation of

teaching and domain knowledge, MYCIN'S infectious-disease knowledge base

can be replaced by diagnostic rules for another problem domain.

GUIDON is designed to explore two basic questions: First, how do the

problem-solving rules, which perform so well in the MYCIN consultation

system, measure up to the needs of a tutorial interaction with a student?

Second, what knowledge about teaching might be added to MYCIN to make
it into an effective tutorial program? MYCIN'S rules have not been modified

for the tutoring application, but they are used in new ways, for example, for

forming quizzes, guiding the dialogue, summarizing evidence, and modeling

the student's understanding.

Several design guidelines for the rules make it plausible that the rules

would be a good vehicle for teaching. First, they are designed to capture a

significant part of the knowledge necessary for good problem solving. Formal

evaluation of MYCIN demonstrated that its competence in selecting antimicro-

bial therapy for meningitis and for bacteremia is comparable to that of the

members of the infectious-disease faculty at the Stanford University School

of Medicine (where MYCIN was developed; see Yu, Buchanan, et al., 1979).

Second, flexible use of the rule set is made possible by the provision of repre-

sentational meta-knowledge, which allows a program to take apart rules and

to reason about the components (see Article III.A, in Vol. i). Finally, MYCIN'S
rules, in contrast with Bayesian programs, are couched in terms familiar to

267

268 Applications-oriented AI Research: Education DC

human experts, so it seems likely that reading back MYCIN'S line of reasoning

to a student might be helpful to him (or her).

This article discusses the following aspects of a GUIDON tutorial dialogue:

1

.

The nature of the interaction

2. The components of the student model

3. The organization of teaching knowledge into discourse procedures

4. The use of the student model

5. Opportunistic tutoring

6. Pedagogical principles behind the tutoring rules.

The capability of GUIDON to tutor from a library of cases and for domains

outside of medicine is also discussed. The final section outlines the lessons

learned about knowledge representation that are being applied to reconfigure

the MYCIN rule base for its use in teaching.

Interaction with GUIDON

An essential part of tutorial dialogue management is allowing the student

to express himself. In a mixed-initiative program, provision must be made for

every kind of initiative on the part of the student. This includes referring back

to an earlier topic to provide more details, changing the topic, and so on. We
might summarize this by saying that we must allow the student to specify what

he knows, what he wants to know more about, and what he wants to ignore.

The annotated protocol excerpted below illustrates GUIDON's flexibility in

responding to the student's initiative.

The student asks for the data and subgoals relevant to the topic being

discussed. These are extracted from MYCIN'S rules.

** Factors

The following factors will be useful to determine the type of

the infection:

3a. whether the meningitis is partially treated

3b. whether a lumbar puncture has been performed on Pt538

3c. the duration of the neurological signs

3d. the CSF protein

(*)3e. whether Pt538 has a rash consistent with Herpes Zoster

GUIDON keeps track of what has been discussed, MYCIN'S use of data,

and conjectures about what the student knows.

Factors marked with (*) have already been stated. Based

on what we have already mentioned, you should be able to

conclude about: 3b.

C6 GUIDON 269

The student asks how a particular datum is useful. He is given the case-

specific information, and then a summary of its use in the rule or rules

that apply in this case (negative conclusions are omitted here because the

choices are mutually exclusive).

** Use 3c

The duration of the neurological signs is 7.2 hours.

Using other information available to you now, the duration

of the neurological signs enables you to conclude that the

type of the infection is bacterial (.2) viral (.2) [RULE524]

.

The student indicates that he has determined a particular subgoal. As

described in this article, a "discourse procedure" is invoked to respond to

the student. If the student model were not consistent with his claim, he

would be asked to state his conclusion and then possibly support it.

** IKNOW 3b

Good. MYCIN has also made a decision.

The site of CULTURE-1 is evidence that a lumbar puncture has

been performed on Pt538 [RULE112] .

Back to our discussion of the type of the infection . .

.

At this point, the topic of discussion is completed, and the student is

receiving a summary of the relevant conclusions. The program is automat-

ically extracting the "key factor" from each rule and displaying only the

"interesting" (useful) conclusions.

Summary of evidence that the type of the infection is

bacterial (.98):

29a. The fact that the meningitis is partially treated (.95)

is evidence that the type of the infection

is bacterial (.19) [RULE148]

29b. The WBC from the CSF and the percent of PMNs in the CSF

is evidence that the type of the infection

is bacterial (.9) [RULE501]

The student requests more information about one of the inferences. The

program reasons that because several subgoals have not been discussed,

these are the details to offer first.

** Details 29a

For which of the following factors would you like to see

a review of the evidence?

(Select from the following)

:

1

.

the infection which requires therapy

2. the fact that the meningitis

is partially treated (.95)

** 2

270 Applications-oriented AI Research: Education DC

Summary of evidence that the meningitis

is partially treated (.95):

32a. The infection which requires therapy, the fact that

organisms were not seen on the stain of the pending

CSF culture, and the time since therapy with the

cephalothin was started are evidence that the

meningitis is partially treated (.95) [RULE145]

Given this information, perhaps the student would like to see the details

of how it is used.

Do you want to see RULE148?

** No

GUIDON provides a menu of options for requesting case data, asking for

MYCIN'S evaluation of the problem (e.g., "What subgoals are PENDING?"

"Give me DETAILS"), determining dialogue context (e.g., "What RULE are

we discussing?"), changing the topic, requesting assistance (the options HELP,

HINT, and TELLME), and conveying what is known (e.g., "I want to make a

HYPOTHESIS"). The menu of over 30 options allows for input to be terse,

while defining clearly for the student what the program can understand. As
arguments to the options, the student can use phrases (e.g., "IKNOW about

the lumbar puncture"), keywords (e.g., "IKNOW LP"), or indices of remarks

made by the program (e.g., "IKNOW 3B").

The Student Model

Before a session with the student begins, GUIDON uses MYCIN to "solve"

the case to be presented to the student. The results of this background

consultation, consisting of MYCIN'S rule conclusions and its records of why
rules did not apply, are reconfigured into a complete AND/OR tree of goals

and rules, so the rules are indexed both by the goals they conclude about and

the subgoals or data needed to apply them. During the tutorial session, as

the student inquires about the patient and receives more case data, this same

information is used to drive MYCIN'S rules in a forward direction. Thus, at

any time, some of the rules MYCIN uses for determining, say, the type of

the infection, will have led to a conclusion, while others will require more

information about the patient before they can be applied.

This record of what the expert (i.e., MYCIN) "knows" at any time during

the student-run consultation forms the basis for evaluating a student's partial

solutions and providing assistance. Such an overlay model (see Articles DC.B

and LX.C5) assumes that the student's knowledge is a subset of MYCIN'S
knowledge and that there are unique reasoning steps for making any particular

C6 GUIDON 271

deduction. Neither assumption is always correct; the rule set nevertheless

provides a first-order approximation to the student-modeling problem.

The three components of the student model are shown in Figure C6-1.

The cumulative record of which rules the student knows is called the USE-

HISTORY. It is the program's belief that, if the student were given the premise

of the rule, he would be able to correctly, in the abstract, draw the proper

conclusion. USE-HISTORY is primed by the student's initial indication of his

level of expertise, which is matched against "difficulty ratings" associated

with each rule. Like the other components, USE-HISTORY is represented as

a certainty factor (see Article VIII.Bl) that combines the background evidence

with the implicit evidence stemming from needs for assistance and verbalized

partial solutions, as well as the explicit evidence stemming from a direct

question that tests knowledge of the rule.

The second component, called STUDENT-APPLIED?, records the program's

belief that the student is able to apply the rule to the given case, that is, that

the student would refer to this rule to support a conclusion about the given

goal. Thus, there is a distinction between knowing a rule (USE-HISTORY) and

being able to apply it, since the student may know which subgoals appear in

the rule but be unable to achieve them. STUDENT-APPLIED? is determined

once for each rule during a case, at the time MYCIN is able to apply the rule.

The third component of the student model, called USED?, is relevant

whenever the student states a partial solution. It records the program's belief

that the student would mention a rule if asked to support his partial solution.

This component combines indirect evidence by comparing conclusions made
by rules with the student's conclusions, the record of what rules the student

is believed to be able to use (STUDENT-APPLIED?), and evidence that the

student may have remembered to apply the rule in this case (e.g., the rule

mentioned earlier in the dialogue). This combined evidence affects how the

program responds to the partial solution and feeds back into the USE-HISTORY

component of the student model.

Update When a Update During

D-rule Fires Hypothesis Evaluation

Background USE-HISTORY STUDENT-APPLIED USED?—

Assistance Quiz
Needs

Hypothesis

Figure C6-1. Maintenance relations for student-model components

(Clancy, 1979b).

272 Applications-oriented AI Research: Education DC

Discourse Procedures and Alternative Dialogues

The student is allowed to explore MYCIN'S reasoning by using options like

FACTORS, shown earlier in the protocol excerpt. However, the tutor is not a

simple, passive, information-retrieval system. In addition to clearly laying out

data and inferences, the tutor has to reason about what constitutes reasonable,

expected elaboration on the basis of what has been previously discussed. For

example, in the excerpt, GUIDON provided details for an inference (rule 148)

by offering to support achieved preconditions that were not mentioned in the

tutorial dialogue up to that point.

Similarly, when the student takes the initiative by saying he has deter-

mined some subgoal, the tutor needs to determine what response makes sense,

based on what it knows about the student's knowledge and shared goals for

the tutorial session (topics or rules to discuss). The tutor may want to hold

a detailed response in abeyance, simply acknowledge the student's remark,

or probe him for evidence that he does indeed know the fact in question.

Selection among these alternative dialogues might require determining what

the student could have inferred from previous interactions and the current

situation. In the dialogue excerpt shown above, GUIDON decides that there

is sufficient evidence that the student knows the solution to a relevant sub-

problem, so detailed discussion and probing are not necessary.

Decoupling domain expertise from the dialogue program, an approach

used by all ICAI systems, is a powerful way to provide flexible dialogue

interaction. In GUIDON, discourse procedures formalize how the program

should behave in general terms, not in terms of the data or outcome of a

particular case. A discourse procedure is a sequence of actions to be followed

under conditions determined by the complexity of the material, the student's

understanding of the material, and tutoring goals for the session. Each option

available to the student generally has a discourse procedure associated with it.

For example, if the student indicates, via the IKNOW option, that he has a

hypothesis about some subgoal but MYCIN has not been able to make a deci-

sion yet, the procedure for requesting and evaluating a student's hypothesis

is invoked. Otherwise, if MYCIN has reached the same conclusion, the proce-

dure for discussing a completed topic is followed. Whether or not the student

will be probed for details depends on the model that the tutor is building of

the student's understanding (considered below).

Conditional actions in discourse procedures are expressed as tutoring

rules. Figure C6-2 shows the tutoring rule (t-rule) that caused GUIDON to

acknowledge the student's statement about what he knew in the dialogue

illustrated above, rather than ask for details. Of course, this discourse proce-

dure for discussing a completed topic is invoked from many other procedures

besides the one corresponding to the IKNOW option: It may be invoked in the

course of giving details about how a subgoal is determined, in responding to a

student's hypothesis for a subgoal, when the program detects that the current

C6 GUIDON 273

T-RULE5 . 02 Directly state single, known rule.

IF 1) There are rules having a bearing on this goal

that have succeeded and have not been

discussed, and

2) The number of rules having a bearing on this

goal that have succeeded is 1, and

3) There is strong evidence that the student has

applied this rule

THEN Simply state the rule and its conclusion

Figure C6-2. T-rule for deciding how to complete discussion of a topic.

subgoal (topic) is substantially completed (enough data have been given to

make a strong conclusion), and so on.

Responding to Partial Solutions

Shown below is an annotated excerpt demonstrating how the program

responds to partial solutions stated by the student. Tutoring rules are used

both to update the model and to select the appropriate discourse procedures

for responding. In this excerpt, while the student's hypothesis for a sub-

problem is correct, nevertheless, after analyzing the previous history of inter-

action with the student, GUIDON is not sure that the student really knows

why his hypothesis is correct. Therefore, instead of accepting this answer,

GUIDON requests relevant factors to support the hypothesis and probes fur-

ther to see if the student knows why an alternative hypothesis is discredited.

GUIDON asks the student to state a hypothesis for a subgoal. The student

may have volunteered to do this, or the program may be testing the

student's understanding.

What is the type of the infection?

** Bacterial

The program asks the student to support this hypothesis either because it is

incorrect or, as in this case, the student model indicates that the student

may not know all of the relevant rules. (GUIDON changes the prompt

for student input to "»" to indicate that specific input is expected and

student-initiated options are not.)

What facts about this case tell you that the type of the

infection is bacterial?

(Enter one factor per line.)

>> PMNs

274 Applications-oriented AI Research: Education DC

The percent of PMNs in the CBC is not relevant for determining

the type of the infection.

>> PMNs in the CSF

>> Cerebral-fluid glucose value

>> Protein of the CSF

These factors are related to the rules used by MYCIN to conclude that the

infection is bacterial, and the student model is updated accordingly.

You're right about the CSF protein, the percent of PMNs in

the CSF, and the CSF glucose value; however, you should have

mentioned the fact that the meningitis is partially treated,

the WBC from the CSF, and the fact that the simultaneous

blood glucose value is not known.

Other hypotheses are then discussed.

MYCIN rejected some possibilities you did not mention:

What facts about this case tell you that the type of the

infection is not viral?

Referring to the rules that MYCIN uses to solve subproblems (such as

determining whether a meningitis infection is bacterial, fungal, viral, or tuber-

culous), GUIDON decides which of these rules, if any, might have been used

by the student. That is, what inference chains are consistent with the stu-

dent's behavior? This analysis is complicated by the fact that a particular

hypothesis about the problem may be indicated by more than one rule, or

negative evidence may outweigh positive evidence.

A potential weakness of the GUIDON program is that it attempts to

explain the student's behavior solely in terms of MYCIN'S rules. If the student

is basing his questions and hypotheses on incorrect rules, GUIDON is not able

to formulate these rules and address them directly. It is possible as well that

the student's concepts are different from MYCIN'S, so his conclusions might be

correct, but he will want to support them with reasoning that is different from

MYCIN'S. This could involve something as simple as wanting to refer to the

patient's age in general terms (infant, adolescent), while MYCIN recognizes

only precise, numerical ages.

Modeling medical reasoning in terms of an alternative rule set (not just a

subset of MYCIN'S rules) is a theory-formation problem that goes beyond the

current capabilities of AI. It is possible that the approach followed by Stevens

and Collins (see Article DC.C2) of collecting data about student misconceptions

and then incorporating these variations into the modeling process will prove

tenable for the medical domain.

C6 GUIDON 275

Opportunistic Tutoring

It is sometimes advantageous for the tutor to take the initiative to present

new material to the student. This requires that the tutor have presentation

methods that opportunistically adapt material to the needs of the dialogue.

In particular, the tutor has to be sensitive to how a tutorial dialogue fits

together, including what kinds of interruptions and probing are reasonable

and expected in this kind of discourse. GUIDON demonstrates its sensitivity

to these concerns when it corrects the student before quizzing him about

"missing hypotheses," asks him questions about recently mentioned data to

see if he understands how to use them, quizzes him about rules that are

related (by premise and action) to one that has just been discussed, follows

up on previous hints, and comments on the status of a subproblem after an

inference has been discussed ("Other factors remain to be considered ...").

Pedagogical Style

There are many subtle issues—when to interrupt the student, how much
to say, and the like—that constitute a pedagogical style and are implicit in

GUIDON's teaching rules. For example, several tutoring rules in different

situations may present short orientation lectures, but nowhere does GUIDON
reason that its interaction will be of the tutorial type, which provides orienta-

tion when appropriate, in contrast with the coaching type (see Article DC.C5),

which only makes interruptions. For this reason, it is useful to summarize the

set of tutoring principles that appear implicitly in the tutoring rules:

1. Be perspicuous: Have an economical presentation strategy, provide lucid

transitions, and adhere to conventional discourse patterns.

2. Provide orientation to new tasks by top-down refinement: Provide the student

with an organized framework of considerations he should be making,

without giving away the solution to the problem (important factors,

subgoals, size of the task), thus challenging the student to examine his

understanding constructively.

3. Strictly guide the dialogue: Say when topics are finished and inferences

are completed, as opposed to letting the student discover transitions for

himself.

4. Account for incorrect behavior in terms of missing expertise (as opposed to

assuming alternative methods and strategies): Explain clearly what is

improper from the tutor's point of view (e.g., improper requests for case

data). This is, of course, more a statement of how GUIDON models the

student than a principle of good teaching.

276 Applications-oriented AI Research: Education DC

5. Probe the student's understanding when you are not sure what he knows, when
you are responding to partial student solutions: Otherwise, directly

confirm or correct the solution.

6. Provide assistance by methodically introducing small steps that will con-

tribute to the problem's solution:

a. Assistance should at first be general, to remind the student of

solution methods and strategies he already knows;

b. Assistance should encourage the student to advance the solution

by using case data he has already been given.

7. Examine the student's understanding and introduce new information when-

ever there is an opportunity to do so.

Case and Domain Independence

Patient cases are entered into the MYCIN system for receiving a consul-

tation or for testing the program, so the case library is available to GUIDON
at no cost. This provides over 100 patients that GUIDON can discuss, clearly

demonstrating the advantage that ICAI has over the traditional computer-

based-instruction approach in which each lesson must be designed individually.

Besides being able to use the teaching procedures to tutor different cases,

GUIDON can provide tutorials in any problem area for which a MYCIN-like

knowledge base of decision rules and fact tables has been formalized (see

van Melle, 1980). This affords an important perspective on the generality of

the discourse and pedagogical rules.

Experimental tutorials using other knowledge bases have revealed that the

effectiveness of discourse strategies for carrying on a dialogue economically

is determined in part by the depth and breadth of the reasoning tree for

solving problems, a characteristic of the rule set for each domain. When a

solution involves many rules at a given level, for example, when there are

many rules to determine the organism causing the infection, the tutor and

student will not have time to discuss each rule in the same degree of detail.

Similarly, when inference chains are long, an effective discourse strategy will

entail summarizing evidence on a high level, rather than considering each

subgoal in the chain.

Results

GUIDON demonstrated that teaching knowledge could be treated analo-

gously to the domain expertise of consultation systems: It can be codified in

rules and built incrementally by testing it on different cases. The framework

of tutoring rules organized into discourse procedures worked well, indicating

that it is suitable to think of a tutorial dialogue as being separated into

C6 GUIDON 277

relatively independent sequences of interaction. Moreover, the judgmental

knowledge for constructing a student model can also be captured in rules

utilizing certainty factors, showing that the task of modeling a student bears

some relation to MYCIN'S task of diagnosing a disease.

In contrast to GUIDON's teaching knowledge, the evaluation of MYCIN'S
rule set for this application was not so positive. While MYCIN'S repre-

sentational meta-knowledge made possible a wide variety of tutorial activity,

students find that the rules are difficult to understand, remember, and incor-

porate into a problem-solving approach. These difficulties prompted an exten-

sive study of MYCIN'S rules to determine why the teaching points were not

as clear as had been expected. GUIDON researchers discovered that impor-

tant structural knowledge (hierarchies of data and diagnostic hypotheses) and

strategic knowledge (searching the problem space by top-down refinement)

were implicit in the rules. That is, the choice and ordering of rule-premise

clauses constitute procedural knowledge that brings about good problem-

solving performance in a MYCIN consultation but is unavailable for teaching

purposes. Rather than teaching a student problem-solving steps (rule clauses)

by rote, it is advantageous to convey an approach or strategy for bringing

those steps to mind—the plan that knowledge-base authors were following

when they designed MYCIN'S rule set. To make this implicit design knowledge

explicit, a new system, NEOMYCIN (Clancey and Letsinger, 1981), is being

developed that separates out diagnostic strategy from domain knowledge and

makes good use of hierarchical organization of data and hypotheses.

Moreover, besides reconfiguring MYCIN'S rules so that knowledge is sepa-

rated out and represented more declaratively, it is necessary to add knowledge

about the justification of rules. Justifications are important as mnemonics

for the heuristic associations, as well as for providing an understanding that

allows the problem solver to violate the rules in unusual situations.

Finally, NEOMYCIN has additional knowledge about disease processes

that allows it to use the strategy of "group and differentiate" for initial

problem formulation, in which the problem solver must think about broad

categories of disorders and consider competing hypotheses that explain the

problem data. Thus, we want to teach the student the knowledge a human
would need to focus on infectious-disease problems in the first place, essentially

the knowledge (previously unformalized) that a human needs to use MYCIN
appropriately.

In conclusion, GUIDON research sets out to demonstrate the advantages

of separate, explicit representations of both teaching knowledge and subject

material. The problems of recognizing student misconceptions aside, this

research demonstrated that simply representing in an ideal way what to

teach the student is not a trivial, solved problem. An unstructured set

of production rules is inadequate. GUIDON's teaching rules are organized

into procedures; NEOMYCIN'S diagnostic rules are hierarchically grouped

by both premise and action and are controlled by meta-rules. GUIDON

278 Applications-oriented AI Research: Education DC

research demonstrated that the needs of tutoring can serve as a "forcing

function" to direct research toward more psychologically valid representations

of domain knowledge, which potentially will benefit those aspects of expert-

systems research that require human interaction, particularly explanation and

knowledge acquisition.

References

GUIDON is described fully by Clancey (1979b); a shorter discussion is

given in Clancey (1979a). Clancey and Letsinger (1981) describe the NEO-
MYCIN research. The study of MYCIN'S rule base leading up to this new
system and some methodological considerations are provided by Clancey (in

press-a, in press-b).

C7. BUGGY

BUGGY is a program that can determine accurately a student's misconcep-

tions (bugs) about basic arithmetic skills. The system, developed by John

Seely Brown, Richard Burton, and Kathy M. Larkin at Bolt Beranek and

Newman, Inc., provides a mechanism for explaining why a student is making

an arithmetic mistake, as opposed to simply identifying the mistake. Having

a detailed model of a student's knowledge that indicates his (or her) miscon-

ceptions is important for successful tutoring.

A common assumption among teachers is that students do not follow pro-

cedures very well and that erratic behavior is the primary cause of students'

inability to perform each step correctly. Brown and Burton (1978) argue that

students are remarkably competent procedure followers, although they often

follow the wrong procedures. By presenting examples of systematic incorrect

behavior, BUGGY allows teachers to practice diagnosing the underlying causes

of students' errors. Through BUGGY, teachers gain experience in forming

hypotheses about the relation between the symptoms of bugs that students

manifest and the underlying misconceptions. This experience helps teachers

become more aware of methods or strategies available for diagnosing their

students' problems properly.

Manifesting Bugs

Experience with BUGGY indicates that forming a model of what is wrong

with a student's method of performing a task is often more difficult than

performing the task itself. Consider, for example, the following addition

problems and their (erroneous) solutions. They were provided by a student

with a "bug" in his addition procedure:

41 328 989 66 216

±9 +917 +52 +887 +13
50 1345 1141 1053 229

Once you have discovered the bug, try testing your hypothesis by simulating

the buggy student—predict his results on the following two test problems:

446 201

+815 +399

The bug is simple. In procedural terms, after determining the carry,

the student forgets to reset the "carry register" to zero; he accumulates the

amount carried across the columns. For example, in the student's second

problem (328 + 917 = 1345), he proceeds as follows: 8 + 7 = 15, so he writes 5

and carries 1; 2 + 1 = 3 plus the 1 carried is 4; finally, 3 + 9 = 12, but the 1

279

280 Applications-oriented AI Research: Education DC

carried from the first column is still there—it has not been reset—so adding

it to the final column gives 13. If this is the correct bug, the answers to the

test problems will be 1361 and 700. (This bug is really not so unusual; a child

often uses his fingers to remember the carry and might forget to bend them

back after each column.)

The model built by BUGGY incorporates both correct and incorrect sub-

procedures that simulate the student's behavior on particular problems and

capture what parts of a student's skill are correct and what parts are incorrect.

BUGGY represents a skill, such as addition, as a collection of subskills, one

of which, for example, is knowing how to carry a digit into the next column.

The subprocedures in BUGGY that correspond to human subskills are linked

into a procedural net (Sacerdoti, 1974), which is BUGGY's representation of

the entire human skill. If all the subprocedures in BUGGY's procedural net

for addition work correctly, then BUGGY will do addition problems correctly.

On the other hand, replacing correct subprocedures with ones that are faulty

will result in systematic errors of the kind shown above. Brown and Burton

call a procedural network with one or more faulty subprocedures a diagnostic

model, because it is a way of representing systematic errors. The model has

been used in two ways. First, it can diagnose a student's errors and pinpoint

the bugs in the student's skill. Second, it can help train a teacher to diag-

nose student errors by playing the part of a student with one or more buggy

subskills.

When BUGGY is diagnosing a student's errors, its task is to modify the

correct procedural network of, say, subtraction until it accounts for all of

the student's answers, both right and wrong. This modification is done by

systematically replacing correct subprocedures with incorrect variants until

a consistent diagnostic model is found. There are currently 70 primitive

faulty subprocedures for subtraction. These are explored exhaustively while

attempting to determine a consistent diagnostic model. If a single variant or

bug is insufficient to explain a student's behavior, combinations of two bugs

are tried. (Because of the overwhelming number of combinations of three or

more bugs, they are not used to form diagnostic models.) In this manner,

330 bugs have been identified, each with a bug description. Interactions

among bugs and the ramifications of a buggy subprocedure's being called

by several high-order procedures constitute major challenges for designing

efficient simulations of multiple bugs. Note also that this technique requires

a large amount of compute time and is amenable only to domains where bugs

can be explicated in a more or less complete way.

The procedural network for subtraction (and its bugs) was evaluated in

an experiment based on the results of a test administered to 1,325 students in

the fourth, fifth, and sixth grades. The BUGGY model indicated that about

40% of the students exhibited consistently buggy behavior. That is, BUGGY
was able to construct a diagnostic model for students' errors demonstrating

that they were using nonrandom, though incorrect, procedures.

C7 BUGGY 281

Using BUGGY to Train Teachers

BUGGY can also help train teachers to diagnose student errors. This

facility is illustrated by the following protocol excerpted from Brown (1977),

in which BUGGY presents a team of teachers with incorrectly solved mathe-

matics problems and supervises their diagnosis of the bug.

Welcome to Bugland. I have chosen a bug.

Here is an example of the bug.

17

±5

13

The system presents an example in which the student did not get the right

answer.

Now you can give me problems to determine the bug.

** 18 43

** +6 +79

15 23

The teachers suggest problems, and BUGGY solves them incorrectly, fol-

lowing a buggy procedure. The team is trying to diagnose the bug in

BUGGY's addition procedures by presenting BUGGY with problems to

solve. However, they are using problems similar to the original one, which

is a poor strategy because it may leave other symptoms of the bug undis-

covered.

** Got the bug!

The team thinks that they know what the problem is. Omitted here

for space (but illustrated later in the dialogue), BUGGY asks them to

formulate the bug in English. This step has the effect of making the team

verbalize the bug clearly. It is a difficult task, and the results are often

ambiguous. BUGGY does not "read" the description of the bug, because it

does not have the natural-language abilities to do so. Instead, it generates

a series of problems for the team to solve. The team must solve them

incorrectly, using the bug that they think they have identified, to convince

BUGGY that they have, in fact, discovered the bug.

Here. are some problems to test your theories about the bug.

What is:

21

+39

** 51

That's not the bug I have. Using my bug:

282 Applications-oriented AI Research: Education DC

21

+39

15

Try giving me some more examples. .

.

The team fails BUGGY 's test by being unable to solve the given problem.

That is, their bug is not the same one that BUGGY is using. If they had

solved five problems "correctly" (i.e., incorrectly because of a bug), then

BUGGY would credit them with a correct diagnosis. Now, however, they

must set more problems for BUGGY to solve, in an attempt to deduce the

bug.

** 51 99 68

** +1707 +99 +9

21 36 23

** Got the bug!

Please describe the bug you think I have:

** The student is adding all the digits together.

Here are some problems to test your theory about the bug.

What are

:

33 1091 8 28 90

+99 +60 +34 +70 +6

** 24 17 15 17 15

Very good. My description of the bug is:

The student always sums up all the digits,

with no regard to columns

.

Summary

The central idea of this research is that procedural networks can be used to

build diagnostic models. This representation scheme facilitates an appropriate

decomposition of a skill into subskills, to make explicit the control structures

underlying a collection of skills and to execute directly the resulting diagnostic

model. Rather than being a subset or simplification of expert rules, as in

overlay modeling (see Articles IX.B, DC.C4, and DC.C5), the procedural network

is a model of a student's behavior that is structured in terms of semantically

meaningful deviations from the correct procedure. Each subskill, whether

correct or incorrect, is explicitly represented as a subprocedure in the network.

References

Brown and Burton (1978) is the most complete report on BUGGY. Recent

extensions of this research are discussed by Van Lehn and Brown (1981). See

also Brown, Burton, Hausmann, et al. (1977) and Brown, Burton, and Larkin

(1977).

C8. EXCHECK

EXCHECK is an instructional system developed by Patrick Suppes and his

colleagues at the Institute for Mathematical Studies in the Social Sciences

(IMSSS) at Stanford University. It presents complete, university-level courses

in logic, set theory, and proof theory. At a computer terminal, the student

is presented lesson material followed by exercises consisting of theorems that

he (or she) is to prove. The courses are taught on IMSSS 's CAI system, which

uses computer-generated speech and split-screen displays. Several hundred

Stanford students take these courses each year.

From an AI point of view, the most interesting aspects of the EXCHECK
system are the facilities that permit the interaction to take place in a natural

style that closely approximates standard mathematical practice. The pro-

gram's "expertise" consists of inference procedures that allow it to understand

sketches of proofs, summarize proofs, and explain set-theoretical construc-

tions. These inference procedures conform to the kinds of reasoning steps

mathematicians make, called natural deduction (Suppes, 1957). EXCHECK
has no student model, but its inference procedures allow it to make assump-

tions about a student's reasoning and track his solutions and thus it provides

a "reactive environment" similar to that of SOPHIE (Article DCC3).

Understanding Informal Mathematical Reasoning

The mathematical reasoning involved in the set theory and proof theory

courses is complex and subtle. The fundamental AI problem of EXCHECK
is making the program capable of understanding informal mathematical

reasoning: It must be able to follow mathematical proofs presented in a

"natural" manner. That is, just as the intent of natural-language process-

ing is to handle languages in the manner in which they are actually written

or spoken, the intent of natural proof processing is to handle proofs as they

are actually done by practicing mathematicians. In general, such proofs are

presented by giving a sketch of the main line of argument along with any other

mathematically significant information that might be needed to reconstruct

the proof completely. This style should be contrasted with the derivations

familiar from elementary logic, where each detail is presented and the focus

of attention is on syntactic manipulations rather than on the underlying

semantics.

A major aspect of the problem of machine understanding of natural

proofs is finding languages that permit users to express their proofs in the

fashion described above. Such languages, in turn, must find their basis in an

analysis or model of informal mathematical reasoning. Finding these natural

proof languages should be compared to the problem of finding high-level

283

284 Applications-oriented AI Research: Education DC

"natural" or "English-like" programming languages. For more detailed dis-

cussions of these issues, see Blaine and Smith (1977), R. L. Smith (1976), and

Smith et al. (1975). A simple example of understanding informal mathemati-

cal reasoning and a fuller discussion of the techniques involved follow.

A Student Proof

We present two proofs of the elementary theorem

Thm: If A C B, then -i(£ C A)
,

where "C" indicates proper subset and "C" indicates subset

First, the proof is given in the informal style of standard mathematical

practice:

We want to show that if A C B, then ->(B C A).

Assume A C B. We show ->(B C A) by indirect proof. Assume that

B C A. Since A C B, then, by definition, A C B and A y^ B. Since

A C B and £? C A, then A = B. But this is a contradiction and, hence,

the assumption that B C A is false. Therefore, ->(B C A).

The following typescript shows how one student did the proof in the

EXCHECK system. Input from the student is underscored and comments

are in italics; everything else is generated by the program. The program

keeps track of the goal that the student is currently trying to establish; the

initial goal is the theorem to be proved. EXCHECK indicates acceptance of

an inference by returning the top-level prompt "**"; if a suggested inference

is not acceptable, EXCHECK returns an error message.

Derive: If A C B then ^(B C A)

** hyp (1) ** A C B

The hypothesis of the theorem is assumed. The goal is automatically reset

to the consequent of the theorem.

** raa

assume (2) **G B C A

The student begins an indirect proof (the command "raa" is a mnemonic

for reductio ad absurdum). The program assumes the negation of

current goal. The goal is now any contradiction.

** ldef inition Number or Name? ** proper subset

1 Df . proper subset

(3) A C B and A ^ B

The definition of proper subset is applied to line 1.

C8 EXCHECK 285

** 2,3establish ** B = A

2.3 Establish

(4) B = A

The student asks the theorem prover to check the simple set-theoretic

inference.

** 3 , Contradiction
Using ** ok

3.4 Contradiction

(5) B -i C A

The student indicates that lines 3 and 4 lead to a contradiction. EXCHECK
returns the negation of assumption 2.

** qed

Correct

EXCHECK accepts the derivation.

The following informal review printout was generated by the program from

the proof given in the above typescript.

Derive: If A C B then -. (B C A)

Assume (1) A C B

By raa show: -i(B C A)

Assume (2) B C A

From 1, by definition of proper subset,

(3) A C B and A ^ B

From 2,3 it follows that,

(4) A = B

3,4 lead to a contradiction; hence, assumption 2 is false:

(5) -.(B C A)

Natural-inference Procedures

There are no significant structural differences between the detailed infor-

mal proof and the student's proof as presented to EXCHECK. The same steps

occur in the same relations to each other. Such global or structural fidelity to

natural proofs is a major research goal of the EXCHECK project and depends

on the development of natural-inference procedures. Some of these, such as

the HYPOTHESIS and INDIRECT PROOF procedures in the preceding proof, are

familiar from standard logical systems. The procedure used in the applica-

tion of the definition of proper subset to line 1 is called IMPLIES. It is used to

derive results that, intuitively speaking, follow by applying a previous result

or definition. It is considerably more complex than the inference procedures

usually found in standard logical systems. An even more complex natural-

inference procedure in the preceding proof is the ESTABLISH procedure. In

286 Applications-oriented AI Research: Education DC

general, ESTABLISH is used to derive results that are consequences of prior

results in the theory under consideration, in this case, in the theory of sets,

eliminating the need to cite specific results in the theory, which would disrupt

the main line or argument. Both IMPLIES and ESTABLISH are discussed in

more detail below.

The inference procedures in EXCHECK are intended not only to match

natural inferences in strength but also to match them in degree and kind.

However, there are differences. EXCHECK inference procedures must always

be invoked explicitly—in standard practice, particular inference procedures or

rules are usually not cited explicitly. For example, compare how the student

expresses the inferences that result in lines 3 and 4 with their counterparts in

the informal proof. The explicit invocation of inference procedures basically

requires that two pieces of information be given: first, the inference procedure

to be used and, second, the previous results to be used—in particular, explicit

line numbers must be used.

Explicitness is not disruptive of mathematical reasoning. Neither is the

reduction of complex inferences to smaller inferences nor is the use of explicit

line numbers disruptive, in the sense of distracting the student from the main

line of the mathematical argument. They are both simple elaborations of

the main structure. However, having to think about what inference rule to

apply can interrupt the main line of argument. The success of a system for

interactively doing mathematics depends crucially on having a few powerful

and natural inference procedures, with clear criteria for use, that are sufficient

to handle all the inferences.

IMPLIES

IMPLIES is used to derive results by applying a previous result or definition

as a rule of inference in a given context. This form of inference is probably

the most frequent, naturally occurring inference. While the basic pattern is

simple, the refinements that must be added to the basic form to handle most of

the naturally occurring cases result in a computationally complex procedure.

The following is a simple example of the basic pattern:

(i) A is a subset of B

** i definition (Name or Number) ** subset

(i) (Vx) (x G A -h. x e B) .

In this example, the student directed the program to apply the definition of

subset to line i and IMPLIES generated the result: (Vx)(x GA^iG B). It

is important to note that, in an application of the IMPLIES procedure, the

student indicates what axiom, definition, theorem, or line to apply to which

lines, and the IMPLIES procedure generates the formula that is the result of

the inference.

C8 EXCHECK 287

The IMPLIES procedure seems to correspond closely to naive notions of

inference, in that logically unsophisticated but mathematically sophisticated

users can use it very well after seeing the basic explanation and a few simple

examples. However, the IMPLIES rule does have a fault. It is a purely

logical inference procedure, and this can occasionally cause problems for users

because mathematicians tend to think in terms of set-theoretic rather than

logical consequence. The following discussion of the ESTABLISH rule carries

this distinction further.

ESTABLISH

The following example of a simple use of ESTABLISH is taken from the

earlier typescript, in which the student was trying to produce a contradiction:

(2) B C A

(3) A C B and A 7^ B

** 2,3establish ** B = A

2,3 Establish

(4) B = A

The ESTABLISH rule allows users simply to assert that some formula is an

elementary set-theoretic truth or is an elementary set-theoretic consequence

of prior results. In the example above, ESTABLISH is used to infer from B C A
(line 2) and A G B (line 3) that A = B, which in turn contradicts the other

clause in line 3. A = B is a set-theoretic consequence, but not a logical

consequence, of A C B and B C. A.

If ESTABLISH handled only logical consequence, the student would have

had to cite explicitly the relevant set-theoretic theorems or definitions needed

to reduce the inference to a purely logical inference. This is not only disruptive

of the line of argument but also difficult to do. Even the most experienced

logicians and mathematicians have difficulty ferreting out all the axioms,

definitions, and theorems needed to reduce even simple inferences to purely

logical inferences.

All of the examples so far are extremely simple if considered in terms of

the full capabilities of the ESTABLISH procedure. ESTABLISH incorporates a

theorem prover that can prove about 85% of the first 200 theorems in the set

theory course.

Proof Analysis and Summarization

EXCHECK contains procedures that generate informal summaries and

sketches of proofs. Such analyses and summaries are useful not only as a

semantic basis for the program, to understand and to present proofs better,

288 Applications-oriented AI Research: Education IX

but also to give guidance to the student, as illustrated in Figure C8-1. The
summarization procedures analyze the proof by breaking it into parts (or sub-

proofs) and isolating the mathematically important steps. They also permit

a goal-oriented interpretation of the proof, in which the program keeps track

of what is to be established at each point (i.e., the current goal); which lines,

terms, and the like, are relevant; and how the current line or part fits into the

whole structure. MYCIN'S consultation explanation system (see Article VIII.Bl)

takes a similar approach. Goldstein (1977) also employs summarization tech-

niques in the rhetorical modules of the WUMPUS coach (Article IX.C5).

The summaries presented in Figures C8-1 and C8-2 were generated by

EXCHECK from a student proof of the Hausdorff maximal principle. The
original line numbers have been retained (in parentheses) to give a sense of

how much of the proof has been omitted in the summary. In Figure C8-1,

only the top-level part of the proof is presented; the proofs of its subparts are

omitted. All mathematically or logically insignificant information is omitted.

In these proofs and summaries, "D contains E" is synonymous with "E C £)."

Also, C is a chain if and only if both C is a set of sets and, given any two

elements of C, at least one is a subset of the other. Figure C8-1 is not the

only summary that could be generated; it essentially presents only the main

part of the proof. Subparts of the main part could have been included or even

handled independently if so desired.

Derive: If A is a family of sets then

every chain contained in A is contained in some

maximal chain in A

Proof

Assume (1) A is a family of sets

Assume (2) C is a chain and CCA
Abbreviate: {B: B is a chain and C C B and B C A}

by: C! chains

By Zorn's lemma,

(23) C! chains has a maximal element

Let B be such that

(24) B is a maximal-element of C! chains

Hence,

(25) B is a chain and C C B and B C A

It follows that

(31) B is a maximal chain in A

Therefore,

(32) C is contained in some maximal chain in A

Figure C8-1. Informal summary of a proof of the Hausdorff maximal

principle.

C8 EXCHECK 289

Derive: If A is a family of sets then

every chain contained in A is contained in some

maximal chain in A

Proof

:

Use Zorn's lemma to show that

{B: B is a chain and C C B and B C A}

contains a maximal element B. Then show that B is a

maximal chain in A which contains C.

Figure C8-2. An example of summarization.

The proof-analysis and proof-summarization procedures will also generate

the summary presented in Figure C8-2, which is an attempt to sketch the

basic idea of the proof.

The summarization presented in Figure C8-2 was obtained from the ear-

lier one by tracing backward the history of the maximal chain in A that con-

tains C. That is, the general form of the theorem to be proved is (3x)FM(x),

which is proved by showing FM(t) for some term t. Usually, in proofs of

this form, the most important piece of information is the term t. Tracing

backward in this particular proof yields the information that there are two

terms involved. The first is the set of all chains in A containing C, and the

second is any maximal element of the set of all chains in A containing C.

Elementary Exercises and Dialogues

Another form of reasoning done by students is the solution of construction

problems. A great many problems in elementary mathematics take the form

of asking the student to give finite objects that satisfy certain conditions. For

example, given the finite sets A and B, the student might be asked to give a

function F that is a bijection (i.e., one-to-one and onto) from A to B.

For a large class of construction problems, there are procedures that will

generate a tree of formulas and other information from the original state-

ment of the problem. We call such trees verification trees for the prob-

lem. Essentially, the verification tree for a problem constitutes a reduction

of the original (usually not directly verifiable) condition to a collection of

directly verifiable conditions (the formulas at the leaves). These trees have

the property that the failure of the formula at a node in the tree explains the

failure of formulas at any of its ancestors. Similarly, the failure of a formula

at a node is explained by the failure of formulas at any of its descendants.

For example, in the problem above of supplying a bijection F from A
onto B, suppose that the student forgets to specify a value for some element

290 Applications-oriented AI Research: Education EX

of A, say, 3. The first response to the student might be: "The domain of F
isn't A" The student might then ask, "Why?" The program would then

answer (going toward the leaves), "Because there is an element of A that

has not been assigned a value in B." The student might then ask, "Which

one?" Since the routines that evaluate the formulas at the leaves provide

counterexamples if those formulas fail, the program could then respond, "3."

Or going back to the first response by the program ("The domain of F
isn't A"), the student might say, "So?" The program could then move a step

toward the root (the original statement of the conditions) and say, "Then F
is not a map from A into 5." The student might then again say, "So?" to

which the program could respond, "F is not a bijection from A onto B."

The highly structured information in the verification tree provides the

semantic base for a dialogue with the student in which the program can explain

to the student what is wrong with the answer. It should be noted that more

complex forms of explanation are available. In particular, the program could

have said at the beginning, "Because 3 is not given a value by F, the domain

of F is not A and hence F is not a bijection from A onto J5."

Summary

A primary activity in mathematics is finding and presenting proofs. The
EXCHECK instructional system attempts to handle natural proofs—proofs

as they are actually done by practicing mathematicians—instead of requiring

that these proofs be expressed as derivations in an elementary system of first-

order logic. This objective requires the analysis of inferences actually made
and the design and implementation of languages and procedures that permit

such inferences to be easily stated and mechanically verified. Some progress

has been made in handling natural proofs in elementary mathematics, but

there is a considerable amount of work yet to be done.

References

See Blaine and Smith (1977), Smith et al. (1975), Smith and Blaine (1976),

and Suppes (1981).

D. OTHER APPLICATIONS OF AJ TO EDUCATION

THE ICAI programs described in this chapter teach various subjects. Learning,

however, does not always require teaching. Here, we discuss "learning by

doing" and how, with this approach, Artificial Intelligence can help construct

learning tools and provide a rich learning environment.

Learning by Doing

AI research has struggled repeatedly with the complexity of so-called

commonsense knowledge and reasoning. Yet children can learn many compli-

cated things without formal schooling. While some argue that much of this

knowledge (e.g., the basic structures of language) is innate, the great diversity

of human cultures and the observability of the learning process in children

suggest that children actually do learn on their own.

Recent work in developmental psychology has underscored how very dif-

ferent this kind of learning seems to be from what takes place in schools.

For example, Jean Piaget and his colleagues have amassed evidence that the

child's activity is the key—learning must take place by "doing" (Piaget, 1970;

Piaget and Inhelder, 1969). Accordingly, some educators have argued that this

insight ought to be applied more in schools (see, e.g., Ashton-Warner, 1963;

Holt, 1964), although others contend that it is fundamentally incompatible

with formal schooling and that formal schooling should therefore be abolished:

The totally destructive and constantly progressive nature of obligatory

instruction will fulfill its ultimate logic unless we begin to liberate ourselves

right now from our pedagogical hubris, our belief that man can do what

God cannot, namely, manipulate others for their own salvation. (Illich,

1971, p. 73)

There is little room for the traditional "teacher" role in learning by doing,

for the task provides its own feedback. Hence, the basic question in improving

learning efficiency becomes; What are good things for students to "do"? Any
activity is in some sense educational, but which activities pack the most value?

And what are the right "powerful tools" to give them? A good example

is "turtle geometry," which starts from the notion of curvature rather than

points and straight lines (Euclidean geometry) or coordinate systems (analytic

geometry) and results in a "discovery-rich" geometry from which one can gain

an intuitive notion of the important underlying ideas (like number theory and

topology) relatively quickly. (See Papert, 1980, Chap. 2; Abelson and diSessa,

1981.)

291

292 Applications-oriented AI Research: Education IX

The Status Quo and Why AI Can Help

Educators occasionally experiment with learning-by-doing methods, but

there are major hurdles to a more widespread use of such techniques:

1. A lot of careful thought goes into good "learning environments," espe-

cially into figuring out the real basics. A good example is arithmetic,

as demonstrated by BUGGY (Article DC.C7): Arithmetic has a set of

underlying issues, as reflected by "bugs," that should be addressed.

2. Such environments are expensive. "Doing" is only rarely compatible

with the standard educational technology of paper and pencil.

3. Such instruction is highly individualized: Students cannot be rigidly

controlled, the results are difficult to test, and the curricula are hard to

standardize.

Computers and AI can help overcome these problems; for example,

1

.

AI can help build a theory of knowledge for a domain—a theory of what

the "basics" are (see Papert, 1980, Chap. 6).

2. Computer and AI techniques are sufficiently general that the same

resource (the computer system) can serve many learning needs, thus

reducing the cost of innovative learning environments.

3. Because of its modeling flexibility and power, AI provides sophisticated

approaches to accommodating different needs within a single (possibly

mass-produced) program.

Thus, the computer and AI may help make previously "utopian" ideas like

Illich's possible.

AI for Learning Resources

This brings us to the possibilities of AI for constructing "powerful tools"

to help students learn by doing rather than by "being told." (It should be

noted that useful computer-based learning tools, e.g., turtle geometry, do not

necessarily require AI.)

Consider the effect of removing the tutoring components from SCHOLAR,
SOPHIE, or EXCHECK. (WEST and WUMPUS would not be AI programs if

their tutors were removed, but analogous, more interesting and complicated

games conceivably would be.) There might actually be advantages to these

truncated systems. Without tutoring, the students are freer to experiment,

not having to worry constantly whether they are "right" or "wrong." No
longer bound by what must inevitably be a narrow perspective of effective

system usage, they can "browse," leave tasks unfinished, jump between unre-

lated tasks, and so on. (The GUIDON system, Article DC.C6, encourages this

kind of browsing.) Suppose, for example, that students were allowed to go

D Other Applications of AI to Education 293

ahead and replace the wrong component in SOPHIE's "broken" circuit; the

demonstration that the measurements from the supposedly corrected circuit

are nearly unchanged may constitute more effective feedback than any ver-

bal warning. And since students are allowed to "do" more in such modified

systems, they may possibly learn more.

These examples fall short, however, in two respects. First, these ICAI

systems were not designed for "nontutorial" use, and, second, they emphasize

right-wrong distinctions inconsistent with teacherless learning. Better exam-

ples are operator-rich "learning environments" like LISP-based LOGO and its

best-known application, turtle geometry (Solomon and Papert, 1976),

message-passing SMALLTALK (Kay and Goldberg, 1977) and its constraint-

resolving extension THINGLAB (Borning, 1979), and Kahn's actor-based

DIRECTOR animation system (Kahn, 1976). In all of these, powerful

programming-language features are tied to sophisticated graphics facilities

that are not "frills" for motivational incentives but are central to the system

—

a means for presenting complicated ideas in the most efficient and accessible

form. Except for the graphics, these systems look much like other cooperative,

interactive AI systems, but with especially good tailoring to less sophisti-

cated users—with informal formats, flexible user-specifications, and a care-

fully thought-out set of basic operators.

A tutor is a learning resource, and "hybrids" between ICAI ideas and

learning-by-doing systems are possible. For instance, AI methods like parsing

(see Chap. IV, in Vol. i) or inductive inference (Chap. XIV, in Vol. Ill) may be

exploited to check, not whether the student is right or wrong, but whether his

behavior is consistent with his explicitly defined goals (Miller and Goldstein,

1977a; Miller, 1979; Rowe, 1978). Thus, a very broad range of behavior may
be allowed the student, yet tutorlike comments could be supplied as well.

AI Applied to Human Reasoning

One suspects that the more a student can "do" in a learning-by-doing

situation—that is, the richer and more lifelike the environment is for him

—

the better he will learn; the role of the student in a computer-based learning

environment should be mostly that of "programmer." The richer the environ-

ment becomes, the more the student can be seen as an integral part of the

system, rather than as an appendage. Since we claim that AI ideas can be

applied to modeling human reasoning (see Chap. XI, in Vol. Ill), we could make
general reasoning and programming methods (e.g., modular problem decom-

position, hierarchical organization, bugs, recursive problem solving) explicitly

available to the student "programmer" to use as tools to manipulate com-

plex systems (Papert, 1973, 1980, Chaps. 3 and 5; Howe and O'Shea, 1976).

Students can learn these tools and carry them away from the computer-based

learning environment. Furthermore, such tools can be applied naturally to

many things having nothing to do with computers (see, e.g., Austin, 1974:

294 Applications-oriented AI Research: Education DC

Bamberger, 1974). Thus, thanks to AI, we can teach problem solving as such

more effectively, extending Polya's (1957) approach.

Applications of Education to AI

Finally, we can turn the tables and recognize that an approach to learn-

ing that proves to be particularly effective tells us something itself about the

structure of what is being learned. For instance, if identifying the "bug types"

of BUGGY makes it easier for students to learn arithmetic, this confirms that

BUGGY's model of arithmetic as a set of procedures may be an important

insight into arithmetic itself. Similarly, if students learn mathematical ideas

better with turtle geometry than with Euclidean or Cartesian geometry, per-

haps turtle geometry reflects better the "deep structure" of mathematics.

Thus, we can think of educational applications as a laboratory for testing the

epistemologies of various domains, including AI theories.

References

The books by Abelson and diSessa (1981) and Papert (1980) are highly

recommended. See also Papert (1972a, 1972b).

Chapter X

Automatic Programming

CHAPTER X: AUTOMATIC PROGRAMMING

A. Overview / 297

B. Methods of Program Specification / 306

C. Basic Approaches / 312

D. Automatic Programming Systems / 326

1. PSI and CHI / 326

2. SAFE / 336

3. The Programmer's Apprentice / 343

4. PECOS/350
5. DEDALUS / 355

6. Protosystem I /
7. NLPQ / 370

8. LIBRA / 375

A. OVERVIEW

AUTOMATIC PROGRAMMING (AP) is the automation of some part of the

programming process. As an application of Artificial Intelligence, AP research

has achieved some success with experimental systems that help program-

mers manage large programs or that produce small programs from some

specification of what they are to do (besides the code itself). Such specifica-

tions could be examples of the desired input/output behavior or a "higher level

language" specification of the program, for example, in English. However, the

importance of automatic-programming research in AI goes well beyond even-

tually relieving the plight of human programmers. In a sense, all of AI is a

search for appropriate methods of automatic programming.

What Is Automatic Programming?

Programming can be defined as specifying the method for doing something

the computer can do in terms the computer can interpret. In the simplest case,

programmers code the steps of algorithms they want the machine to perform

in terms of its hard-wired primitives for adding, subtracting, and moving

numbers. But very few programmers really program that way any more. With

the introduction of compilers—programs that translate a specification of an

algorithm from a higher level language into the machine's primitive codes

—

programming became a much more reasonable task, since the activity took

place at something closer to the human level than it did with the primitive

machine code. For instance, in higher level languages, normal algebraic

notation, such as (N + 4)
2

, could be used to specify what is a substantially

more involved procedure at the primitive level.

The first step toward automatic programming was, in fact, the devel-

opment of compilers. The first FORTRAN compiler was even billed as an

"automatic programming" system (Backus and Herrik, 1954; Backus, 1958).

To reiterate, then, programming is the process of specifying what is to be done

so that the computer can do it, and automatic programming uses another

program, the AP system, to assist in this process, in particular, to raise the

level at which instructions are specified. It is in this sense that AI itself can be

viewed as automatic programming: There are some things that computers just

cannot do, like flying. There are others, like becoming the world-champion

chess player, that a computer might do if we could find a way of specifying

the steps to winning chess games (see, however, Chap. II, in Vol. i).

There is a connection between AI and AP that is still deeper than this

similarity of goals. At the core of AI is the ability of programs to reason about

297

298 Automatic Programming X

what they do—to reason about themselves as programs. This is why, for

example, the ability to manipulate programs as data in LISP is so important

(Chap. VI). And the ability to understand and reason about programs is the

central research goal of automatic programming—an important open research

problem in AI.

Returning to the more practical view of AP systems as programs that help

people write programs, let us consider how the AP researchers themselves

define the field. Since most of the research was begun in the 1970s, it is

not surprising that there is some diversity of opinion as to the definition,

scope, and direction of the endeavor. One definition says simply that AP
is something that will spare people the chores of programming (Biermann,

1976a). Another states that an AP system carries out part of the programming

activity currently performed by a human in constructing a program written

in some machine-executable language, given the definition of the problem

to be solved; here, the essence of an AP system is that it assumes some

responsibilities otherwise borne by a human and thereby reduces the size of

the person's task (Hammer and Ruth, 1979). Yet another definition states that

AP means having the computer help write its own programs (Heidorn, 1977).

AP is the application of a computing system to the problem of effectively

utilizing that system or another computing system to perform a task specified

by the user (Balzer, 1973b).

Other, more extensive definitions have been suggested. One definition

(Balzer, 1973b) rates AP systems according to a measure of merit, which

includes the following factors:

1. The time and effort required of the programmer to formulate and specify

the desired program, which is determined in part by the system's infor-

mality, that is, the degree that the user's statements can be ambiguous or

incomplete; its language level, that is, the degree to which the AP system

can accept specifications in a terminology natural to the problem area

under consideration; and its execut ability, that is, the degree to which the

user need specify only what is wanted rather than how to obtain it;

2. The efficiency of the decisions made by the system in designing the

program and, consequently, the overall efficiency of the program that is

produced by the system;

3. The ease with which future modifications can be incorporated into the

program;

4. The reliability and ruggedness of the program;

5. The computer resources, including time and memory, required by the

system to produce that program;

6. The range, as well as the complexity, of the tasks that can be handled

by the system.

A Overview 299

Motivations for Automatic Programming

As mentioned above, the term automatic programming in the early days of

computing meant writing a program in a high-level language (e.g., FORTRAN)
and having a compiler transform the program into machine-language code.

At that time, "real" programming referred to writing a program in machine

or assembly language. Today, when most programming is done in high-

level languages, AP implies programming in an even more advanced software

environment.

In a general way, the forces responsible 20 years ago for FORTRAN are

still the pragmatic reasons for developing AP systems today. Programmers

were burdened with the need to specify many details, with the need to keep

track of the many relations between these details, and with a programming

environment that was not, perhaps, natural to the way in which they thought

about the problem they were writing a program to solve. It was believed that

new programming environments might be the answer and that the software

technologies required for such environments might be feasible.

The situation with programming environments today seems even more

critical. Software is costly and unreliable. Much time, money, and effort are

currently being expended, with even greater expenditures forecast. Software

is seldom produced within budget or on time. Quite often the supposedly

finished product, when delivered, fails to meet specifications. As programming

applications of increasingly greater complexity are addressed, not only does

reliability become more difficult to achieve, but the costs of software, in terms

of time, money, and effort, spiral upward.

To help alleviate these problems, AP aims at a general goal, namely,

to restyle the way in which the programmer specifies the desired program.

This restyling should allow the programmer to think of the problem at a

higher and more natural level. AP would like to relieve the programmer

of mundane portions of programming, that is, the need to keep track of

inordinate amounts of detail. By improving the programming environment,

AP could allow programmers to construct with greater ease and accuracy the

programs of the present and to attempt with confidence the more complex

programs of the future.

Characteristics of AP Systems

Automatic programming research in AI, then, refers to systems that

assist humans in some aspect of programming. Each of these systems has

four identifying characteristics: a specification method, a target language, a

problem area, and an approach or method of operation.

Specification method. Programming involves some means or method

for conveying to the computer the desired program. A variety of specification

methods have been used in experimental AP systems.

300 Automatic Programming X

Formal specification methods are those that might be considered to be

very high level programming languages. In general, the syntax and semantics

of such methods are precisely and unambiguously defined. Formal methods

also tend to be complete; that is, the specification completely and precisely

indicates what it is that the program is to accomplish, though, of course, the

specification may not indicate the form of the program or how the program is

to accomplish its task. On the one hand, many formal specification methods

are not usually interactive, which is to say, the system does not interact

with the user to obtain missing information, to verify hypotheses, or to

point out inconsistencies in the specification. For example, it is comparable

to the passive acceptance of a program's specification by a compiler of a

high-level language (e.g., FORTRAN). On the other hand, there are some

formal specification methods that are interactive (see McCune, 1979, which

emphasizes interactive, formal specification techniques as a natural extension

of incremental compiling).

Specification by examples is simply giving examples of what the desired

program is to do—sufficient examples to allow the AP system then to construct

it. The specification might consist of examples of the input/output behavior of

the desired program, or it might consist of traces of how the program processed

the input. There are many difficulties involved in specification by examples

(or traces); for instance, this kind of specification is rarely complete, since a

few examples will not fully describe the behavior of the desired program in

all cases.

Natural language (e.g., English) is another method of specification. The
user specifies "in so many words" what the desired program is to do. This

method is often interactive—checking hypotheses, pointing out inconsisten-

cies, and asking for further information (cf. Articles X.Dl on PSI and X.D7 on

NLPQ).

A more detailed discussion of specification, including some advantages

and disadvantages of the various methods, is presented in Article X.B.

Target language. The language in which the AP system writes the

finished program is called the target language. The target languages of the AP
systems described later in this chapter are high-level languages such as LISP,

PL/1, and GPSS. In other words, the user of an AP system, possibly using

examples of what he wanted the program to do, would expect the system to

produce a program in, say, LISP that would do the right thing on the examples

he used.

Problem area. Another characteristic of an AP system is its problem

area, or area of intended application. For some AP systems, the scope of

the problem area is relatively precise. For example, for the NLPQ system it

is simple queuing problems, whereas for the Protosystem I project it is all

input/output-intensive data-processing systems (including inventory control,

payroll, and other record-keeping systems) and for the PSI system it is all

symbolic computation (including list processing, searching and sorting, data

A Overview 301

storage and retrieval, and concept formation). The problem area of a system

can have a bearing on the method of specification, introducing relevant ter-

minology, influencing the method of operation or approach used by the AP
system, and so forth.

Method of operation. Because AP is a young research area, the cate-

gorization of the methods used by existing systems is difficult. Article X.C

discusses some of the more clear-cut approaches, including theorem proving,

program formation, knowledge engineering, automatic data selection, tradi-

tional problem solving, and induction.

In the theorem-proving approach, the user specifies the conditions that

must hold for the input data (to the desired program) and the conditions that

the output data should satisfy: The conditions are specified in some formal

language, often the predicate calculus (see Article III.CI, in Vol. i). A theorem

prover is then asked to prove that, for all given inputs, there exists an output

that satisfies the output conditions, and the proof yields as a side effect the

desired program (Article XII.A, in Vol. III).

The program-transformation approach refers to transforming a specifica-

tion or description of a program into an equivalent description of the program.

The reason for the transformation might be to convert a specification that

can be easily written and read into one that is more complicated but more

efficient; alternately, the goal might be to convert a very high level description

of the program into a description closer to a target-language implementation.

Knowledge engineering, applicable to many areas of AI besides AP, refers

to identifying and codifying expert knowledge (see Article VILA), and it often

means encoding the knowledge as specific, rule-type data structures that can

be added to or removed from the knowledge base of a system (Article III.C4,

in Vol. I).

Traditional problem solving, also a general AI technique, refers to the use

of goals to direct the choice and application of a set of operators.

These approaches overlap, and many systems utilize a method that may,

in part, draw on elements from several. While it is hard to categorize the

approaches of AP systems, there are now enough systems to be able to identify

some common issues.

Basic Issues

Partial information pertains to systems whose methods of specification

allow for partial or fragmentary descriptions of the desired program: Not

all of the required information is present in the specification, or, where it is

present, it may not be explicit. Systems that accept incomplete specifications,

for example, natural-language specifications, are very much concerned with

partial information. The NLPQ, PSI, and SAFE systems fall in this category.

A classification of the different kinds of missing information that might occur

in a natural-language specification is given in Article X.D2 on SAFE.

302 Automatic Programming X

Usually going hand in hand with the problem of partial information is

the problem of consistency. Incomplete methods of specification often permit

inconsistency between different parts of the same specification. In such cases,

the system must check for inconsistencies and, if they are found, resolve them.

In trying to fill in missing information in one part of the specification or

checking for consistency between different parts and resolving any discovered

inconsistencies, the system may use information that occurs either explicitly or

implicitly in other parts of the specification. Also, it might utilize a knowledge

base containing information about the problem area. Finally, the system may
consult the user in an attempt to gain the sought-for information. One of

the explicit devices for making use of such information is constraints. For

examples of these, see Article X.Dl on PSI and especially Article X.D2 on SAFE.

Transformation is, simply, changing a program description, or part of

a program description, into another form. All AP systems use transfor-

mation, if only to convert an internal description of the program into a

target-language implementation (description). Even a compiler of high-level

languages (e.g., FORTRAN, PL/1, ALGOL) will often transform a program

description several times, taking it through several internal representations,

the last of which is the machine-language description.

However, a compiler differs from an AP system in that it applies the trans-

formations in a rigid, predetermined manner; in an automatic-programming

system, the application of transformations may depend on an analysis and

exploration of the results of applying various transformations. Systems that

use extensive transformation on the program description, like DEDALUS and

PECOS, have a knowledge base with many transformation rules that convert

parts of a higher level description into a lower level description, closer to a

target-language implementation. Such rules are repeatedly applied to parts

of the program description with the goal of eventually producing descriptions

within the target language. These systems develop a tree of possible descrip-

tions of the program, with each descendant of a node being the result of a

transformation. One of the goals, then, in developing the tree is to find a

description that is a target-language implementation of the desired program.

Another goal might be to find an efficient target-language implementation.

Other AP systems may use transformation rules in various ways. For

instance, in the NLPQ system, transformation rules parse the natural-language

input from the user, to generate natural-language output to the user and to

generate the target-language program from an internal description.

Efficiency of the target-language implementation is another general con-

cern of AP systems. The two systems described here that deal especially with

this issue are Protosystem I and the PSI subsystem called LIBRA (Article X.D8).

While the Protosystem I approach to creating efficient programs combines

AI with the mathematical technique of dynamic programming, the LIBRA
approach uses a more extensive range of AI techniques, employing a variety

A Overview 303

of heuristics, cost estimates, and other kinds of knowledge to guide its search

for an efficient program.

When it is said that an AP system optimizes a program for efficiency, it

does not mean that the system finds the absolutely most efficient implemen-

tation; combinatorial explosion makes such a task impossible, since there are

usually many equivalent target-language implementations of any program.

Rather, optimizing means making some reasonable choices in the implemen-

tation to achieve a relatively efficient program.

The basic concern of one of the systems described below, the Program-

mer's Apprentice, pertains more to understanding the program than it does

to the issues discussed previously. In this situation, understanding a program

might be defined as a system's being able to talk about, analyze, modify, or

write parts of a program. It is the intention of the Programmer's Apprentice,

though it should be kept in mind that this system is not yet operational, to

bring about program understanding through the explicit use of plans. A plan

represents one particular way of viewing a program, or part of a program (for

a more detailed explanation, see Article X.D3). Understanding in the other

systems is relatively implicit and does not reside in any one particular class

of structure.

Overview of AP Research

The projects described in Section X.D cover much of the current research

in AP and span the four basic issues discussed above, namely, transformation

rules, search for efficiency, handling of partial information, and explicit under-

standing.

NLPQ is the first AP system to utilize natural-language dialogue as a

specification method. The user specifies part of a simple queuing-simulation

problem in English, and then the system, as necessary, answers questions

posed by the user and queries the user to fill in missing information or to

resolve inconsistencies. The partial knowledge that the system has obtained

about the desired program is represented as a semantic net that is eventually

used to generate the program in the target language, GPSS. Transformation

rules analyze the user's natural-language specification, build and modify the

semantic net, produce natural-language responses, and finally generate the

target-language program.

The PSI system consists of many subsystems; it stresses the integration

of a number of different processes and sources of knowledge. The problem-

application area is symbolic (nonnumeric) programming, including informa-

tion retrieval, simple sorting, and concept formation. The user can specify

the desired program with a mixture of examples and mixed-initiative, natural-

language dialogue; for an easier and more natural interaction with the user,

the system maintains and utilizes a tree of the topics that occur during the

304 Automatic Programming X

specification dialogue. Through such a dialogue, PSI creates a complete, con-

sistent description of the desired program. In the last phase, the system

explores repeated application of transformation rules to convert the descrip-

tion into a target-language implementation. This last phase, the synthesis

phase, is carried out by two subsystems: PECOS provides suitable transfor-

mation rules and LIBRA directs and explores the application of the rules,

with the goal of obtaining an efficient target implementation. The PECOS
and LIBRA subsystems are described separately in Articles X.D4 and X.D8.

Both PECOS and DEDALUS are examples of full-fledged, dynamic trans-

formation systems. They each start out with a complete specification of

the desired program. Each has a knowledge base of many transformation

rules that are repeatedly applied to the specification. These repeated applica-

tions produce a sequence of specifications that eventually terminate with a

specification that is a target-language implementation. Because more than

one transformation rule can apply in some cases, each system actually devel-

ops a tree of specifications, with eventually one or more of the leaf nodes of

the tree being a program implementation within the target language. Some of

the differences between these two systems stem from the fact that DEDALUS is

concerned with the logic of such programming concepts as recursion and sub-

routine. On the other hand, PECOS is more concerned with the multiplicity

of implementations of very high level programming constructs and operations,

because that is its task within the PSI system.

The SAFE system (Article X.D2) contains an extensive description of con-

straints and their use in handling partial information. SAFE processes a

variety of constraints to fill in different kinds of information in the specification

of the desired program and employs different methods of processing these con-

straints. There are constraints related to the type of object referenced in the

specification, as well as some related to sequencing of steps. Constraints are

processed by backtracking and by carrying out a form of symbolic execution.

One of the ideas of the SAFE project is that a completely specified pro-

gram satisfies a very large number of constraints. Information in the user's

partial, fragmentary specification (partial and fragmentary, since the specifi-

cation does not mention all objects explicitly, or partially mentions other

objects and may not specify explicit sequencing of actions) combined with the

many constraints that a formal program satisfies (and possibly with informa-

tion from a knowledge base of the application area or, in special cases, from

information obtained from queries to the user) fully determine a complete and

formal description of the program. No other system deals in so central a way

with partial information and constraints.

The LIBRA and Protosystem-I projects are concerned with the efficiency

of the target-language implementation. LIBRA uses an AI approach, while

Protosystem I uses a combination of some AI with primarily the mathematical

approach of dynamic programming. Dynamic programming, modified by

A Overview 305

approximations and heuristics, produces an optimized target-language imple-

mentation. On the other hand, LIBRA guides the application of the trans-

formation rules furnished by the PECOS subsystem of PSI and directs the

growth of the resulting tree (see the discussion of PECOS, above) with the

goal of finding an efficient target implementation. LIBRA determines and uti-

lizes estimates of what it is likely to achieve by exploring the development

of a particular node. LIBRA has knowledge about how its own allocation

of space and time should influence its strategy in searching for an efficient

implementation. Though both Protosystem I and LIBRA are concerned with

producing efficient implementations, they approach the problem in different

contexts. The first explores configurations of a data-processing program and

the second explores applications of transformation rules.

The Programmer's Apprentice is not necessarily intended to write pro-

grams automatically but, instead, to function as an apprentice to the user,

assisting with such tasks as writing parts of the program, checking for con-

sistency, explaining pieces of the program, and helping the user modify pro-

grams. The central concern of this project is understanding, through the

explicit device of plans. A plan may be thought of as a template that expresses

a viewpoint. Matching the plan to a part of a program description corresponds

to understanding the part in that way. Several plans can match the same part

of a program, corresponding to different ways of understanding that part.

Plans can also be built up in a hierarchical fashion. The goal is that the

Programmer's Apprentice, with the understanding gained through plans, can

assist the programmer in correcting mistakes, writing parts of the program,

and making modifications.

All of these are still research projects: Much work remains before most of

these systems can be of use to programmers.

References

See Balzer (1973b), Biermann (1976a), Green (1975b, 1976b), Green and

Barstow (1977a), Hammer and Ruth (1979), and Heidorn (1976, 1977).

B. METHODS OF PROGRAM SPECIFICATION

THE MEANS or method employed to convey to the AP system the kind of

program the user wants is called program specification. The specification

of the desired program might entail describing the program fully in some

formal programming language or possibly just specifying certain properties of

the program from which the AP system can deduce the rest. Alternately, it

might involve providing examples of the input and the output of the desired

program, giving formal constraints on the program in the predicate calculus,

or interactively describing the program in English at increasing levels of detail.

Specification by Examples

Some simple programs are most easily described by giving examples of

what the program is supposed to do.

Examples of input/output pairs. In this specification method, the

user gives examples of typical inputs to the program he (or she) desires

along with the corresponding outputs he expects. Consider describing, to

someone who is unfamiliar with the concept of concatenation, a program that

concatenates two lists. It might be most straightforward to use an example,

CONCAT[(ABC), (DE)} = (ABODE),

which states that when the input of the function CONCAT consists of the two

lists (ABC) and (D E), the corresponding output is (ABC DE).
Given certain commonsense assumptions, this sample input/output pair

should suffice to specify what it is that the desired program is to do. In

slightly more complicated cases, where the commonsense assumptions are not

sufficient, more examples must be given to specify the program uniquely. For

instance, the example above could be misinterpreted as a "constant" program

that always gives (ABC DE) as output:

CONCAT[x,2/] = (ABCDE).

In such a case, giving an additional example

CONCAT[(LM), (NOP)} = (LMNOP),

would probably clear up any confusion.

306

B Methods of Program Specification 307

Another type of specification by examples is illustrated by the following

specification of the function PRIME using a subset of its input/output pairs:

PRIME(l) = 1

PRIME(2) = 2

PRIME(3) = 3

PRIME(4) = 5

prime(5) = 7

prime(6) = 11.

Generic examples of input/output pairs. In certain cases, generaliza-

tions of specific examples, or generic examples, are more useful in avoiding the

problems inherent in partial specifications. For instance, the generic example

REVERSE [(x 1X2X3 . . . xn)]
= (xn . . . X3X2X1)

describes a list-reversal function. Here, the x\ , X2, . .
.

, xn are variables and the

list (X1X2X3 . . . xn) corresponds to any list of arbitrary length—a generic list.

This specification is still partial but is more complete than any specification

of this function given by nongeneric examples of input/output pairs.

Specification by program traces. Traces of the desired program's

operation on sample data allow more imperative specifications than do sample

input/output pairs alone. A sorting program, for example, may be specified

with input/output pairs (e.g., Green et al., 1974), as in

SORT[(314 2)] = (12 3 4),

but it would be hard to specify a program that specifically uses, say, an

insertion sort algorithm in the same way. However, a program trace could

express such a program as follows:

SORT[(314 2)] -+ ()

(14 2) -(3)

(4 2) -(13)

(2) -(13 4)

()-(1234).

Another example of specification by traces might be

GCD(12, 18) —
(6,12)-

(0,6)-

6

308 Automatic Programming X

illustrating the operation of a program that uses the Euclidean algorithm to

compute the greatest common divisor. An example of using a trace to specify

part of a concept-formation program is presented in Article X.D1.

More formally, a trace may be defined as follows. A programming domain

can be thought of as consisting of a set of abstract objects, a set of possible

representations (called data structures) for these abstract objects, a basic set

of operators to transform these representations, and a class of questions or

predicates that can be evaluated on these data structures. A programming

domain thus characterizes a class of programs that might be constructed to

operate on representations of the set of abstract objects in the domain. For

a given program operating on some data objects in the domain, a trace is a

sequence of changes of these data structures and control-flow decisions that

have caused these changes during execution of the program.

Traces are usually expressed in terms of domain operators and tests

(or functional compositions of these). Traces are classified as complete if

they carry all information about operators applied, data structures changed,

control decisions taken, and so forth; otherwise, they are incomplete. An
interesting subclass of the latter is the class of protocols, in which all data

modifications are explicit but all control information (e.g., predicate evalua-

tions that determine control flow) is omitted. A protocol is then a sequence

of data-structure state snapshots and operation applications (for a more com-

plete definition, see Article X.C).

Generic traces. Like generic examples of input/output pairs, generic

traces of program operation can be used for specification. In general, there is a

whole spectrum of trace specifications for a given program, depending on how
much imperative information and descriptive information is presented. For

instance, the traces above are completely descriptive, while traces that contain

function applications or sequencing information tend to be more imperative.

Advantages and disadvantages of specification by examples. As

stated above, generic examples are less ambiguous than are nongeneric exam-

ples. Traces are less ambiguous than input/output pairs and allow some

imperative specification of the flow of control. On the other hand, to specify a

trace, the user must have some idea of how the desired program is to function.

Specification by examples can be natural and easy for the user to for-

mulate (Manna and Waldinger, 1977). Examples have the limitations inherent

in informal program specifications: The user must choose examples so as to

specify unambiguously the desired program. The AP system must be able to

determine when the user's specification is consistent and complete and that

the system's "model" of what the user wants is indeed the right program.

Formal Specifications

Formal methods of specifying programs are often used in conjunction with

the theorem-proving-based approach to AP (Article X.C; see also Article III.Cl,

B Methods of Program Specification 309

in Vol. i). Here one might specify a program as

V«i.(P(«i)Dl|.fl(«i,<i)), (1)

which states that for all values of input variables to the program, si , for which

the predicate P(s\) is true, there are output variables, 82, such that Q(s\, 82)

is true. The input predicate (or input specification) P(s\) gives the conditions

that the inputs, Si, can be expected to satisfy at the beginning of program

execution. The output predicate Q(s2) gives the conditions that the outputs,

S2, of the desired program are expected to satisfy.

For example, a program that computes the greatest common divisor of

two integers x and y might be specified by taking P(x, y) as the condition

that x and y are positive, and Q(x, y, z) as the condition that z is the greatest

common divisor. P(x, y) could be written as

x > and y > ,

and Q(x, y, z) could be written as

DIVIDE(z, x) and DIVIDE^, y) and

Vr. ((r > and DIVIDE(r, x) and DIVIDE(r, y)) D z > r)
;

that is, z divides both x and y and any r that also divides them is smaller

than z.

Substituting these values for the predicates P and Q in expression (1)

would produce a formula stating that for all positive integers x and y, there

is a z such that z is their greatest common divisor. This expression would

then be given to a theorem prover that produces a proof of the statement

from which a program can be extracted as a side effect (see Chap. XII, in

Vol. III). One is required to give to the theorem prover enough facts concerning

any predicates and functions that occur in P and Q so that expression (1) is

provable. Thus, in the above, one would have to specify a number of facts

concerning the predicates DIVIDE, <, and > over the integers.

A similar method of specification is used with the program-transformation

and very high level language approaches to AP (see Article X.c). This specifica-

tion method stresses the use of entities that are not immediately imple-

mentable on a computer, or at least not implementable with some desired

degree of efficiency. There is considerable leeway in this classification. For

instance, in some program-transformation systems the entities may be quite

abstract, without any hint of the desired algorithm. In other systems, the

algorithm most naturally suggested by the specification of the program could

be inefficient, but the AP system will produce an efficient, if perhaps con-

voluted, program.

One example of a specification in program transformation is

GCD(x, y): compute MAX{z: DIVIDE^, x) and DIVIDE^, y)}

where x and y are nonnegative integers greater than zero.

310 Automatic Programming X

This expression states that the greatest common divisor of x and y is the

maximum of all those z such that z divides x and y. Furthermore, it is

assumed that x and y are nonnegative integers, one of which is nonzero. By
successive transformations of this definition of GCD, the system would produce

an efficient recursive program (see Article X.D5). Another example (Darlington

and Burstall, 1973, p. 280) is

FACTORIAL(x): if (x = 1) then 1 else TIMES(x, FACTORIAL^ - 1)) .

The system, then, by various transformations produces a more efficient non-

recursive, though more tortuous, program.

Advantages and disadvantages of formal specifications. Specifi-

cation by input and output predicates based on formal logic is completely

general: Anything can be specified. On the other hand, the user must have

a sufficient understanding of the desired behavior of the program to give a

complete, formal description of the input and output. This understanding can

sometimes be difficult to attain, even for simple programs. Also, the present

state of theorem provers and problem-reduction methods makes synthesis of

longer programs difficult.

The second type of formal specification, which is used with the program-

transformation approach, does not have such arbitrary generality. However,

the terminology in the specification often is closer to our way of thinking about

a particular subject, and so it should be easier to create such specifications.

While some formal methods are arbitrarily general and others are not,

they all are complete: The specification of the desired program fully and

completely specifies what the program is to do. This is not true of some

of the other methods, like specification by examples, where the specification

does not uniquely determine what the program is to do. With such methods it

becomes a concern whether the program produced by the system is actually

what the user desires. Sometimes a system employing such a specification

method may need to verify whether the program it produces is the program

that the user wants (see Sibel, Furbach, and Schreiber, 1978).

Natural-language Specifications

Given an appropriate conceptual vocabulary, English descriptions of algo-

rithms are often the most natural method of specification. Part of the reason is

that natural language allows greater flexibility in dealing with basic concepts

than do, say, very high level languages. This flexibility requires a fairly

sophisticated representational structure for the model, with capabilities for

representing the partial (incomplete) and often ambiguous descriptions that

users provide. In addition, it may be necessary to maintain a database

of domain-dependent knowledge for certain applications. Experience with

implemented systems, such as SAFE (Article X.D2), suggests that the relevant

B Methods of Program Specification 311

issues are not in the area of natural-language processing but in how the

specifications are modeled in the system and what "programming knowledge"

the system must have.

Specification by Mixed-initiative Dialogue

A generalization of the entire concept of program specification involves an

interaction between the user and the system as the system builds a model of

what the user wants and tries to fill in the details of the algorithm. In addition

to maintaining a model of the algorithm, interactive systems sometimes will

even maintain a kind of model of the user to help the system tailor the

dialogue to a particular user's idiosyncracies. Various techniques mentioned

previously, such as examples or traces, could be incorporated into the dialogue

as a description of some part of the algorithm. The system might be designed

to allow users to be as vague or ambiguous as they please in the initial

specification, since it ultimately takes the initiative and asks enough questions

to fill in the model.

This method is probably the closest to the usual, natural method of pro-

gram specification, allowing both the specifier and the programmer to make
comments and suggestions. Users do not have to keep every detail in mind, nor

need they present the specification in a certain order. The system will even-

tually question the user for missing details or ambiguous specifications. On
the other hand, this method requires a system that deals with many problems

of natural-language translation, generation, and representation. A versatile

representation is also required for the system's model of the desired program.

The PSI system (Article X.Dl) and the NLPQ system (Article X.D7) explore

interactive program specification. Floyd (1972) and Green (1977) give hypo-

thetical dialogues with such a system, illustrating the problems that research-

ers have encountered with this approach.

References

See Biermann (1976a) and Heidorn (1977).

C. BASIC APPROACHES

THIS ARTICLE describes the basic approaches of automatic-programming

systems to synthesizing desired programs from user specifications. There is

not always a clear distinction between synthesis and specification paradigms.

Furthermore, as will be seen in the articles in Section X.D describing important

AP systems, some follow primarily one approach, while others have more

elaborate paradigms that involve several approaches.

Theorem Proving

The theorem-proving approach is appropriate for the synthesis of pro-

grams whose input and output conditions can be specified in the formalism

of the predicate calculus. As described in Article X.B, the user specifies the

desired program as an assertion to be proved, which might take the following

form (Green, 1969):

VSl .(P(5l) D 3s 2 .Q(Sl ,s 2)),

where P is a condition that the input variables to the program, Si, will

satisfy and Q is the predicate that the output variables, 52, are to satisfy

after execution. The theorem prover must also have enough axioms about

any other predicates appearing in this expression to be able to prove it.

The desired program is extracted as a by-product of the proof produced

by the theorem prover. For instance, certain constructs in the proof will

produce conditional statements, others will give sequential statements, and

occurrences of induction axioms may produce loops or recursion. There are

several variant methods of accomplishing these results (see Waldinger and

Levitt, 1974; Kowalski, 1977; Clark and Sickel, 1977).

Although any interesting example would be far too long to work out in full

detail here, it may be worthwhile to show how such a problem is set up. The
interested reader is referred to Green (1969) for a more complete development

of the following example. Consider the very simple problem of sorting in LISP

the dotted pair of two distinct numbers (see Article VI.B on LISP). The axioms

about LISP expressions that would prove useful for this synthesis would be:

1. x = CAR(CONS(x, y))

2. y = CDR(CONS(z, y))

3. x = NIL D COND(x, y, z) = Z

4. x ?£ NIL D COND(x, y,z) = y

5. Vx, y. (LESSP(x, y) 7^ NIL = x < y) .

312

C Basic Approaches 313

The specification of the desired sorting program, that is, the theorem to

be proved, would be:

Vx. 3y. [CAR(x) < CDR(x) D y — x] A

[CAR(x) > CDR(x) D CAR(x) = CDR(y) A CDR(x) = CAR(y)}
,

which says that for every dotted-pair input, x, there is a dotted-pair output,

y, such that if x is already sorted, then y is the same as x, and if x is not

sorted, then y is the interchange of the two elements of x. Using, for example,

a resolution theorem prover (see Article XII. B, in Vol. Ill), we would obtain the

following program:

y = COND(LESSP(CAR(x), CDR(x)), x, CONS(CDR(x), CAR(x))) .

One of the major problems that synthesizing less trivial programs intro-

duces is that some form of iteration or recursion is required. To form a

recursive program, one needs the proper induction axioms for the problem.

A general schema for the induction axiom sufficient for most programs is that

of Green (1969):

[P(/i(NIL), NIL) A Vx. [ATOM(x) A P(/i(CDR(x)), CDR(x)) D P{h(x), x)]]

DVz.[P(h(z),z)],

where P is any predicate and h is any function. Somehow, this predicate

and function must be determined. Requiring the user to supply the induc-

tion axioms for each program to be synthesized somewhat defeats the pur-

pose of automating the synthesis, since it might be a lot easier to specify

the entire program some other way. Because having the system randomly

generate induction axioms until one of them works is out of the question,

combinatorially, AP systems with this approach usually attempt to determine

P and h by means of various heuristics that limit search (see Chap. II, in

Vol. I).

There are several constraints inherent in the theorem-proving approach.

First, for more complicated programs, it is often more difficult to specify

correctly the input and output predicates of the program in the predicate

calculus than it is to write the program itself. Second, the domain must be

axiomatized completely; that is, one must give enough axioms to the theorem

prover to make it possible for any statement that is true of the various func-

tions and predicates in the specification of the program to actually be proved

from the axioms—otherwise, the theorem prover may fail to produce a proof

and thereby fail to produce the program. Third, present theorem provers

lack the power to produce proofs for the specification of very complicated

programs.

It should be noted that this approach does not lend itself to partial

specification: Users cannot specify the program partially and have the sys-

tem help them fill in details. On the other hand, when a theorem prover

314 Automatic Programming X

does succeed in producing a proof of the specification, the correctness of

the extracted program is guaranteed. Thus, AP systems might incorporate

theorem proving either where it is convenient or where correctness is an impor-

tant requirement.

The Program-transformation Approach

The transformation approach is suitable for converting automatically an

easily written, easily understood program into a more efficient, but perhaps

convoluted program. One such system, described by Darlington and Burstall

(1973), removes recursion, eliminates redundant computation, expands proce-

dure calls, and takes discarded list cells into use.

Recursion removal transforms a recursive program into an iterative one,

which is generally more efficient, avoiding the overhead of the stacking mech-

anism. Candidates for recursion removal are determined by performing pat-

tern matching of the parts of the program against a recursive-schema input

pattern. If the match is successful and if certain preconditions are met, the

program is replaced by an iterative schema. A simple example of such a

transformation rule is the following:

input pattern: f(x): if a then b else h(d, /(e))

;

precondition: h is associative, x does not occur free in h
;

result pattern: f(x): if a

then result <— b

else begin

result <— d
;

x <— e;

while not a

do begin

result +— h (result,d);

x «— e

end;

result <— h (result, b)

end

where a, 6, d, e, /, and h in the input pattern are matched against arbitrary

expressions in the candidate functions. For example, the function

FACTORIAL(x): if (x = 1) then 1 else TIMES(x, FACTORIAL^ - 1))

would match the above input pattern with / <— FACTORIAL, a <— (x = 1),

b <— 1, h <— TIMES, d <— x, and e <— (x — 1).

Eliminating redundant computations includes traditional subexpression

elimination as well as combining loops that iterate over the same range.

C Basic Approaches 315

Implicit iteration is part of the latter. Thus, if A, B, and C are represented

as linked lists, the sequence

X +- INTERSECTION^, B)

Y «- INTERSECTION^, C)
,

is really two implicit iterations, each over the set A. A suitable transformation

rule would convert these into a single iteration over the set A.

Expanding procedure calls generally involve substituting the body of a

procedure for each of the calls to it. The potential benefit arises from simpli-

fications made possible by use of the local context. This technique is the

starting point for a general class of transformations explored by Burstall and

Darlington (1975) and Wegbreit (1975a).

Program transformation also converts very high level specifications into

target-language implementations (see Articles X.D4 and X.D5).

Knowledge Engineering

AP systems are said to be knowledge based when they are built by iden-

tifying the knowledge or expertise that is appropriate for program synthesis

and understanding (i.e., the ability to manipulate and analyze programs)

and by encoding this knowledge explicitly in some knowledge representation.

Many of these systems use large amounts of many kinds of knowledge to

analyze, modify, and debug large classes of programs. While the distinction is

relative, it is possible to divide this knowledge into two types: programming

knowledge and domain knowledge.

Programming knowledge includes both programming-language knowledge

about the semantics of the target language in which the system will write

the desired program and general programming knowledge about such general

computation mechanisms as generators, tests, initialization, loops, sorting,

searching, and hashing. Programming knowledge includes optimization tech-

niques, high-level programming constructs (loops, recursion, branching), and

strategy and planning techniques.

Domain knowledge is the information required for a system to infer how
to go from the problem description or specification of a program in a certain

program class (e.g., symbolic computation) to what needs to be done to

solve the problem. This know-how includes how to structure the concepts

in the domain or problem area and find their interrelationships. It must also

include knowledge about how to achieve certain results in the problem domain

(cf. HACKER's learning of procedures, Article XIV.D5c, in Vol. III). Moreover,

it should be able to find alternative ways to define the problem and to solve

the task—such knowledge represents an "understanding'
1

of the domain.

Knowledge-based systems need a method of reasoning. Since they are not

restricted to the traditional formalisms of logic, they often supply their own

316 Automatic Programming X

flexible reasoning techniques for guiding the synthesis. Some of these tech-

niques are inference, program simplification, illustration and simplification for

the user, decision trees, problem-solving techniques, and refinement.

The basic concern in representing the knowledge is that it be structured

in such a way that the search for relevant facts not cause a combinatorial

explosion. Various appropriate representations include

—

1. PLANNER-like procedural experts (Article VI.C2);

2. Refinement rules (Article X.D4);

3. Modular, frame-like experts (OWL, Martin, 1974; BEINGS, Lenat, 1975);

4. Semantic nets (Article X.D7);

5. Amorphous systems that try several ad hoc techniques (BiggerstafT, 1976).

Methods of accessing knowledge bases include

—

1. Pattern invocation (Article X.D4);

2. "When needed" (Sussman, 1975);

3. Frame relations and assertions, including filling in process models (Mar-

tin, 1974; Green, 1969; Lenat, 1975; see Articles X.D7, X.D1, and X.D2);

4. Subgoal or case analysis (Green, 1977; see Article X.D5).

Automatic Data-structure Selection

Automatic data-structure selection refers to the selection of efficient, low-

level data-structure implementations for a program specified in terms of high-

level, abstract information structures (e.g., sets, real numbers). Generally,

programming languages with abstract data types employ default implemen-

tations that are a compromise between all likely uses of the data type; these

choices may be far from efficient in any particular program. But a system

with automatic data selection would choose, from a collection of possible

implementations, one that is most efficient for the particular program under

consideration.

For example, the abstract data-type set could be represented in low-level

implementations as a linked list, a binary tree, a hash table, a bit string,

or property-list markings. Some operations on sets are easier in one repre-

sentation than in another—for example, the intersection of sets represented

with bit strings is simply a logical AND operation, while iteration over a set is

easier when it is represented as a linked list. Some implementations may not

even be applicable in a given case (e.g., bit strings require that the domain of

set elements be fixed and reasonably small, since one bit position is used for

each possible element). Also, some representations may not permit all needed

operations (e.g., the only way to enumerate the items in a set represented with

property markings is to go through all the data in the system looking for ones

C Basic Approaches 317

with the appropriate property markings). By tailoring the representation to

the particular programmer's intention, it is possible to produce much better

code.

One such system that performs data-structure selection for the user is

described by Low (1974, 1978). This system handles simple programs written

in LEAP, a sublanguage of SAIL (Article VI. C4). It selects representations for

sets, sequences, and relations from the fixed library of low-level data structures

available in LEAP. The selection is guided by the goal of minimizing the

product of the memory and time required to execute the resulting program.

Low's system begins with an information-gathering phase that searches

out the relevant characteristics of the program's data structures, such as their

expected size, their number, the operations performed on them, and their

interactions. Some of this information is obtained by questioning the user and

some by monitoring the actual execution of the program on typical data, with

default representations for each structure. Then the system partitions into

equivalence classes the variables whose values will be of the same type of data

structure. The system employs a method similar to hill climbing to determine

a (locally) optimal assignment of data structures to the equivalence classes

(i.e., the representations assigned to the equivalence classes are repeatedly

varied, one at a time, to see if an improvement will result).

Other AP systems are also concerned with the selection of an efficient set

of data structures or file structures, but this concern is part of the general

goal of writing an efficient program (see Articles X.D6 and X.D8).

Traditional Problem Solving

Traditional problem solving refers to using subgoals to direct the applica-

tion of operations in a problem-reduction space (see Chap. II, in Vol. i). The
Heuristic Compiler (Simon, 1972) regards the task of writing a program as a

problem-solving process that applies heuristic techniques, like those of GPS
(Article II.D2, in Vol. I). This pioneering work recognized the value of both a

state language, to describe problem states and goals, and a process language,

to represent the solver's actions.

In the Heuristic Compiler, the State Description Compiler is quite similar

to later work on synthesis from examples. The program being synthesized

is defined by specifying input/output conditions on the memory cells that

it affects. The difference between the current state and the desired state is

looked up in a table that specifies which operators to apply to transform the

contents of the cells appropriately. The Functional Description Compiler is an

important precursor to later work in automatic modification and debugging

of programs. It uses a means-ends analysis to transform a known (compiled)

routine into a new (desired) routine.

HACKER, a system built by Sussman (1975), adds to Simon's work,

detecting and generalizing new differences (bugs) and defining appropriate

318 Automatic Programming X

operators to resolve them (patches). This system uses many significant AI

techniques and language features: learning through practice how to write

and debug programs; modular, pattern-invoked expert procedures (chunks of

procedural knowledge); and hypothetical world models for subgoal analysis.

Sussman's emphasis on generalizing from experience (trying old techniques in

new situations), acceptance of the fact that users have an incomplete under-

standing of the desired program, and his goal-purpose annotation technique

are all interesting directions in the development of automatic programming

and learning systems (see Article XTV.D5c, in Vol. III).

However, HACKER 's preference for ruthless generation of "buggy" code

without detailed planning led to inadequate handling of subgoal conflicts.

Training sequences had to be carefully ordered and, even so, the system

exhaustively searched its base of world facts and programming knowledge.

Such systems must constrain the problem of searching large knowledge bases.

Other attempts to distribute knowledge among interacting specialists have

encountered the same difficulty (Lenat, 1975).

Systems such as HACKER, which have been designed to operate like

human programmers, promise a moderate degree of success compared to

knowledge-impoverished formal methods. However, these systems are still

often hampered by the rigid formalism that governs their application: In

what order are operators to be applied? How can domain-specific information

be specified as differences? The formalisms used to incorporate the various

knowledge sources in these systems seem too methodical; the method is space

and time bound because it is based on search.

Induction

Induction, or inductive inference, is the system's "educated guess" at

what the user wants on the basis of program specifications that only partially

describe the program's behavior. Such specifications are often the examples of

input/output pairs and the program traces, in both regular and generic form

(see Article X.B). For each of these kinds of specification, the corresponding

AP system must determine the general rules on the basis of a specification

that contains only a few examples (or in the generic specifications, a limited

class of examples) of the program behavior.

The work in program synthesis from examples had its origin in research

dealing with grammatical inference, in which the objective was to infer a

grammar that described a language, given several examples of strings of the

language (Feldman et al., 1969; Biermann and Feldman, 1970). In a natural

way, this research was associated with the inference of finite-state machines

from the sequence (string) of states that the machine passes through dur-

ing execution. The association was natural in that finite-state machines are

intimately related to the grammar that generates the strings of states repre-

senting legal behavior of the machine (Biermann and Krishnaswamy, 1974;

C Basic Approaches 319

also Article IV.Cl). This research opened up two new avenues of investigation

in automatic programming: synthesis from examples and synthesis from traces.

The crucial issue for program synthesis from examples is the development

of a generalized program, that is, one that can account for more than the

examples given in the program specification. To do this, these programs break

down the input, looking for recursively solvable subparts (Shaw, Swartout,

and Green, 1975) or computation repetitions that can be fitted into a known
program scheme (Hardy, 1975).

The work in program synthesis from trace specifications seeks to invert

the transformations observed in a trace protocol to create abstractions that

generalize into loops and variables (Bauer, 1975). Of all the induction-based

synthesis paradigms, this is the one that is closest to grammatical inference.

Biermann and Krishnaswamy (1974) have built a system that interprets traces

as directions through a developing flowchart. Phillips (1977) has implemented

a system for the inference of very high level program descriptions from a

mixture of traces and example pairs in the context of a large automatic-

programming system (see Article X.Dl).

All inductive inference systems rely on a good axiomatization of opera-

tions. In other words, the system must know about all the possible primitive

operations that can be applied to the data structures if it is to construct,

by composition of these primitives, the desired program. Furthermore, a har-

monious relation between the nature of the constructs in the specification and

the most basic constructs in the target language is essential; for example,

in Siklossy and Sykes (1975), the tasks of tree traversal and repetitive robot

maneuvers are directly translatable into LISP recursion. Moreover, these pro-

grams are required to know quite a bit about generalization. After synthesiz-

ing the program, they test it on other examples, sometimes by generating test

cases and sometimes by asking the user for approval.

The importance of induction from examples and from traces lies in the fact

that, for certain classes of programs, examples and traces provide a natural

way for the user to specify what the desired program is to do. These induction

techniques are described in more detail below.

Program Induction from Examples of Input/Output Pairs

The synthesis of programs from a specification consisting of instances of

input/output pairs strongly depends on the problem domain to which these

programs belong (e.g., sorting, concept formation). A set of program schemas

characterizes the entire class of programs for the domain. These schemas are

like program skeletons and define the general structure of a program, omitting

some details. The synthesis of a program thus amounts to (a) selecting a

given schema that is representative of the program specified by the set of

example pairs and then (b) using the information present in the examples

to instantiate the unfilled slots of the schema. Thus, there are two steps:

320 Automatic Programming X

a classification process, which selects the general structure (schema) of the

target program, and an instantiation process, which completes the details of

the target program.

What does the classification process require? Every schema defines a

subclass of programs in the problem domain. Every set of example pairs

defines a family of programs in the domain. Thus, the classification process

must associate this set of example pairs with one of the subclasses of programs

in the domain. To accomplish this task, a set of characteristics is associated

with each schema (subclass) that, if present in the set of example pairs,

guarantees that the set specifies a program of this type. Usually this task

is accomplished by (a) providing a set of difference measures to be applied

to the inputs and outputs of an example pair, as well as to different example

pairs in the input collection (if it consists of more than one), and (b) providing

a set of heuristics for each program schema that determine a fit measure of

the example set that accompanies it. The task of classifying the example set

is then reduced to choosing the schema with the highest value for fit.

During the instantiation process, in addition to the difference and fit

metrics described above, every schema has an associated set of rules for filling

its empty slots through the extraction of necessary features from the examples.

For instance, in the domain of list-manipulation functions, cases in which the

output list contains all elements in the input and cases where the output list

contains only every other element, and so on, suggest different methods of

constructing the output incrementally from the input. In the first case, the

function maps down the input list; in the second case, it maps down the input

with the LISP CDDR function. Slots are instantiated by these rules in terms

of primitive operators of the domain and their functional compositions (in the

above case, the basic LISP functions and their compositions).

Once a schema has been selected and instantiated, the synthesis algorithm

must validate its hypothesis. This task is usually done either by generating

some new examples for the program, evaluating the synthesized program on

the example set, and checking the results with the user, or by presenting the

program to the user and letting him (or her) verify its correctness.

In summary, the basic algorithm is as follows:

1. Apply the difference measures to the example set;

2. Based on this application, classify the set into a particular schema class;

3. Using heuristics associated with the particular schema, hypothesize a

complete instantiation of the selected schema;

4. Validate this hypothesis.

In this basic algorithm, if there is a single input/output pair in the specifica-

tion, the difference measures are just a set of feature-detecting heuristics.

If there are more than one pair, the pairs may be ordered according to the

complexity of the input. Difference measures will fall into two classes: those

C Basic Approaches 321

that associate the structure of a pair with a schema class and those that

find differences between pairs. The latter are perhaps more crucial in the

inference of a program. From these differences, a theory for the operation

of the program is inductively inferred or, what is the same, a formation rule

is derived. This operational theory might take the form of a certain schema

class or of a recurrence equation that, in turn, specifies a schema class. In

the classification phase it may be necessary to apply the classification rule to

all pairs to infer the corresponding schema correctly. When several different

schemas have been inferred, a decision rule is required to select the correct

one.

An alternate approach is to reduce the whole problem to another para-

digm for synthesizing programs. For example, if the problem domain has

been formalized, so that there is a set of operators for the domain, it is

possible to use a traditional problem solver to generate a solution to the

input/output pair (considered as initial-state, goal-state) in the form of a

sequence of operators that carry the input into the output. The solution so

obtained can be considered a trace of the program to be synthesized and a

trace-based paradigm may be employed (see below).

Specification by examples is suitable for synthesizing a program only in

those cases where the task domain is small and easily axiomatized. It may
also be a feasible approach in cases where the domain is repetitious enough

that a small set of pairs is sufficient to specify the program, which is almost

never the case in practical programming domains. Such a specification method

tends to be quite limited and does not lend itself to useful generalization to

large domains. Nevertheless, the power of examples for clarifying concepts

is unquestionable. It seems that the main application that this specification

formalism will have in future automatic-programming systems is restricted to

the annotation and clarification of more formal program descriptions.

Program Induction from Traces

Inferring a program from a set of traces is, as mentioned earlier, very

similar to inferring a description of a finite-state machine from a set of sequen-

tial states that the machine might pass through. The basic approach for syn-

thesizing a program from a set of traces is to generate, in order of increasing

complexity, the possible programs constructed from the programming-domain

operators and tests and their functional compositions and then, after each

new program is generated, to validate the given traces against the program.

If the generated program accounts for the traces, it is the required solution.

Notice that some kind of complexity measure is needed for the enumeration,

such as program size (e.g., number of instructions in the program).

This basic approach suffers from the problems inherent to search in a large

search space and thus admits improvement, in the form of reduction of the

combinatorial explosion, by the use of heuristics to prune and guide the search

322 Automatic Programming X

process. It is thus not generally practical and suited only to the inference of

small programs in very simple domains. Nevertheless, it has been applied

with moderate success to the inference of programs from memory traces.

Usually consisting of register assignments, tests, and memory-modification

instructions, such programs and their traces are not very complex. Programs

as complex as Hoare's FIND algorithm have been synthesized in this manner

(Petry and Biermann, 1976). Though these systems tend to be knowledge

impoverished, Phillips (1977) incorporates a methodology to compensate for

this by utilizing problem-domain knowledge in the inference process. There

are certain other special inference paradigms for particular classes of traces.

Program inference from protocols. Usually, traces mix information

about operations applied to data objects, results of tests as to whether predi-

cates hold at certain points during program execution, state snapshots of data

values, and other information. Different classes of traces arise if restrictions

are placed on the kind of information that may appear in them. Protocols

are one such class, in which only operation applications and data-structure

changes may appear and in which there is no information about control deci-

sions that have been taken during the particular program execution reflected

in the trace. An example of a typical protocol for a function that reverses a

list would be:

input X

X = (ABC)
Y = (A)

X = (B C)

Y = (B A)

X = (C)

Y = (C B A)

output Y .

Notice that the only information present in the protocol is operation applica-

tions and variable-state changes. All control information is omitted.

The inference of a program from a collection of protocols involves two

phases: (a) constructing a program description that captures the nature of a

program that could have generated a subset of the input protocols and then

(b) modifying the program description as more protocols become available in

order to validate them.

A natural algorithm would then be to hypothesize, by some feature-

classification process or with the aid of a domain knowledge base, an initial

description and debug it by forcing a unification of the protocol family with

the description. The construction of the initial program description can be

described as follows:

1. Match the protocols; that is, find common segments as well as differences

by matching their structure.

Basic Approaches 323

Find substitutions that unify these protocols. Protocols may differ in

variables that have different names, in the same data objects (at the

same place in the protocols) having different values, and in differences in

the operations that occur. The matching phase produces a set of such

differences. The substitution phase finds substitutions that remove these

differences. For example, if two protocols refer with different variable

names to the same data object, this phase would propose a common
name for the two variables. Such substitutions usually take the form:

constant — variable or variable-name — variable-name.

Inductively form loops by detecting repeated equivalent subprotocols.

Loop formation is the basic inductive step of this approach. For example,

protocol string: ABCDABCD.
hypothesized loop:

while <condition>

do begin

A;

B;

C,

D

end,

Since there are infinitely many loop hypotheses for a given protocol, one

of the tasks of the system designer is to provide a good set of heuristics

to guide the search process during loop formation. For example, one

such possible heuristic could be to consider first the loops with minimal

nesting level.

4. Generalize remaining constants to variables.

At this stage, then, a description has been generated where all data-object

snapshots have an associated variable name and where loop structures in the

program have been inferred. The result of this matching, unification, and

abstraction (generalization) process is a semantic-net representation of the

program.

The next stage is to verify that the hypothesized program description

agrees with any additional protocols and, if this is not the case, to modify it.

This correction (debugging) phase can be described as follows:

1. Try to validate new protocols against the program representation—that

is, to symbolically execute the program description to see if it can account

for the given protocol.

2. Find any differences between predicted and actual protocol. The process

of symbolic evaluation generates a set of differences that are due to the

protocol's not matching the program description. This set of differences

suggests the kinds of modifications that must be made to the description.

324 Automatic Programming X

3. Form a theory for the difference; that is, hypothesize a suitable change

to the program description that removes the particular difference. One
way of accomplishing this is to use a classification process similar to the

basic algorithm for inference from examples.

4. Modify the program representation accordingly.

This synthesis paradigm works only for complete protocols, that is, proto-

cols in which all data-structure changes appear explicitly. Phillips (1977) has

proposed a procedure for handling incomplete protocols in a unified framework

for synthesis from examples and synthesis from traces or protocols. This

procedure is basically as follows: For those segments of a protocol in which

operations are missing, that is, in which two states of a data structure appear

without intervening operations, the examples component of the system infers

a piece of program description (i.e., a sequence of operations) that can take

the data object from one state to the other. This program description is

nothing but the sequence of missing operation applications. Merging all such

sequences with the original incomplete protocol transforms it into a complete

protocol, and the algorithm given above for dealing with complete protocols

can be used.

Problem-solver-generated traces. If the domain is fully axiomatized,

as may be the case for simple domains like those for robots, it may be possible

to synthesize programs from example pairs by using a problem solver that

produces a solution to the input pair in the form of a trace:

1. With the problem solver, synthesize a trace from an example pair.

2. Using the trace, a set of program schemas for the domain, and a set

of schema-selection and schema-instantiation heuristics that operate on

trace steps, produce a program in terms of domain operators and domain

predicates that explain the example pair.

All these paradigms work only for complete traces and protocols. The

problem of program inference from incomplete specifications is still under

investigation. It is possible that the techniques outlined may be extended to

cover the incomplete case by coupling the program synthesizer to a domain-

based theory-formation module that could, so to speak, fill in the missing

elements from the original specification. At this point, then, the methodology

discussed above could be used.

Traces have the limitations inherent in informal program specifications,

namely, the difficulty of specifying the required program uniquely with respect

to the limited amount of information conveyed to the synthesizer. Thus,

the problem of choosing a good description is left, as a burden, to the user.

This problem might be alleviated by providing greater domain expertise—to

produce the program that more nearly resembles the user's desired result.

Traces, and informal specification methods in general, promise to be useful

for algorithm description and correction in future automatic-programming

C Basic Approaches 325

systems. The reason is clearly that these methods reflect closely the form in

which humans understand and describe programs.

References

For theorem proving, see Green (1969), Waldinger and Levitt (1974),

Kowalski (1977), and Clark and Sickel (1977); for program transformation,

Darlington and Burstall (1973) and Wegbreit (1975a); for knowledge engineer-

ing, Martin (1974), Lenat (1975), Biggerstaff (1976), Sussman (1975), and

Green (1977); for automatic data selection, Low (1978); for traditional prob-

lem solving, Simon (1972) and Sussman (1975); for induction from input/

output pairs, Amarel (1972), Green (1975a), Hardy (1975), Shaw, Swartout,

and Green (1975), Siklossy and Sykes (1975), and Summers (1977); for induc-

tion from traces, Bauer (1975), Biermann (1972a, 1976a), Petry and Biermann

(1976), Phillips (1977), and Siklossy and Sykes (1975); and for induction from

examples, Biermann and Feldman (1970) and Feldman, Gips, Horning, and

Reder (1969).

D. AUTOMATIC PROGRAMMING SYSTEMS

Dl. PSI and CHI

THE PSI system was developed by Cordell Green and his colleagues at

Stanford University and at Systems Control, Inc. The design goal of PSI

was the integration of the more specialized methods of automatic program-

ming into a total system. This system, then, would incorporate knowledge

engineering, model acquisition, program synthesis, efficiency analysis, and

specification by examples, traces, or interactive natural-language dialogue.

The research was directed toward determining the organization of such a sys-

tem, the amount and type of knowledge such a system would require, and the

representation of this knowledge. This research is continuing at the Kestrel

Institute in Palo Alto where a successor system, CHI, has been developed by

Green and his colleagues to extend the work in the direction of a supportive

programming environment (see below).

PSI

In PSI, a program is specified by means of an interactive, mixed- initiative

dialogue, which may include partial specifications by examples of input/output

pairs or by traces (see Article X.B). It is planned also to allow program

specification by means of a loose, very high level language. When the specifi-

cation method is an interactive dialogue, the user furnishes both a description

of what the desired program is to do and an indication of the overall control

structure of the program.

The PSI system deals with programs in the general class of symbolic

computation, including list processing, searching and sorting, data storage and

retrieval, and concept formation programs. It is a knowledge-based system

organized as a set of closely interacting modules, called experts. At present,

these experts are the following:

1. PARSER/INTERPRETER

2. DIALOGUE MODERATOR
3. EXPLAINER

4. EXAMPLE/TRACE INFERENCE

5. TASK DOMAIN
6. PROGRAM-MODEL BUILDER

7. CODING

8. EFFICIENCY.

326

Dl PSI and CHI 327

The overall operation of the system, illustrated in Figure Dl-1, may be

divided into two phases: (a) acquisition of a specification of the desired pro-

gram and (b) synthesis of the program code. During the acquisition phase,

several modules of the system—including the PARSER/INTERPRETER,

EXPLAINER, DIALOGUE MODERATOR, and EXAMPLE/TRACE INFERENCE—will

jointly interact with the user to construct a network data structure, called the

program net, that describes the desired program. Then the PROGRAM-MODEL
BUILDER module converts the net into a complete, consistent description of the

program, called the program model. Afterwards, during the synthesis phase,

the CODING and EFFICIENCY modules, interacting with each other, convert

the program model, through repeated transformations, into an efficient imple-

mentation in the target language.

There were three reasons for separating the operation into acquisition

and synthesis phases. First, the problems of designing such a system are

more tractable with such a separation. Second, it was thought that code

generators for different target languages and domain experts for different

problem areas could be implemented to achieve a versatile, modular system.

Third, acquisition requires interaction with the user, whereas, in PSI, synthesis

does not.

In the overall operation, two of the primary interfaces within the PSI

system are the program net and the program model. Both are very high

level languages for describing programs and data structures. The program

net forms a looser description of the program than does the program model.

Fragments of the program net can be accessed in order of occurrence in the

dialogue, rather than in order of eventual execution, which allows a less

detailed, local, and partial specification of the program. Since these frag-

ments correspond rather closely to what the user says, they ease the burden

of the PARSER/INTERPRETER as well as of the EXAMPLE/TRACE INFERENCE
module. The PROGRAM-MODEL BUILDER, on the other hand, includes com-

plete, consistent, and interpretable, very high level algorithmic and informa-

tion structures.

The remainder of this article describes briefly the PSI modules and then

goes through several examples (Figs. Dl-2 through Dl-5) of the acquisi-

tion phase, including a specification by interactive natural-language dialogue,

showing the resulting program net and program model, and a specification by

trace.

The PARSER/INTERPRETER expert. In the acquisition phase, the

PARSER/INTERPRETER expert (Ginsparg, 1978) first parses sentences and then

interprets these parses into less linguistic and more program-oriented terms,

which are then stored in the program net. This expert efficiently handles a

very large English grammar and has knowledge about data structures (sets,

records, etc.), control structures (loops, conditionals, procedures, etc.), and

more complicated algorithm ideas (interchanges between the user and the

desired program, set construction, quantification, etc.). It can sometimes

328 Automatic Programming

English Sentences

Parser

Explainer

.

Parses

User

Loose, Very High-Level

Language Statements

Interpreter

Dialogue Moderator

Loose, Very

High-Level

Language
Expert

Program Net

Program Model

Input-Output Pairs

and Traces

•Trace and Example
Inference Expert

Domain
' Expert

•Program Model Builder

Coder

\
Efficiency Expert

High-Level Language Program

•Conventional

Compiler

Machine Language Program

Figure Dl-1. Major paths of information flow in PSI.

Dl PSI and CHI 329

assign a concept to an unknown word on the basis of the context in which the

word appears.

The DIALOGUE MODERATOR expert. This expert (Steinberg, 1980)

models the user, the dialogue, and the state of the system and selects appro-

priate questions and statements to present to the user. It also determines

whether the user or the system has the initiative, and at what level on what

subject, and attempts to keep PSI and the user in agreement on the current

topic. It provides review and preview when the topic changes. The DIALOGUE
MODERATOR decides which of the many questions being asked by the other

experts should be passed on to the user. Since experts phrase questions in

an internal form based on relations, the DIALOGUE MODERATOR expert gives

questions to the EXPLAINER expert, which, in turn, converts them into English

and presents them to the user.

The EXPLAINER expert. The EXPLAINER expert, developed by

Richard Gabriel (1981), phrases questions in terms that the user finds mean-

ingful, that is, in terms related to the problem domain and the previous sen-

tences in the dialogue, rather than the more programming-oriented terms of

the program net or the model builder. For example, rather than asking for

the definition of "A0018," PSI asks what it means for "a trial set to fit a

concept" (see Fig. Dl-2). The EXPLAINER also generates English descriptions

of the program net.

The EXAMPLE/TRACE expert. PSI also allows specification by traces

and examples, since these are useful for inferring data structures and simple

spatial transformations. This expert, developed by Jorge Phillips (1977),

handles simple loop and data structure inference and incorporates several of

the techniques discussed in Articles X.B and X.C (see also the example below).

The TASK DOMAIN expert. The TASK DOMAIN expert, also developed

by Phillips, uses knowledge of the application area to help the PARSER/

INTERPRETER and EXAMPLE/TRACE experts fill in missing information in the

program net.

The PROGRAM-MODEL BUILDER expert. The PROGRAM-MODEL
BUILDER (McCune, 1977) applies knowledge of what constitutes a correct

program to the conversion of the program net into a complete and consistent

program model, which then will be transformed during the synthesis phase

into the target-language implementation. The PROGRAM-MODEL BUILDER

completes the model by filling in the various pieces of required information

and by analyzing the model for consistency; it checks to see that the model's

parts are legal both with respect to each other and with respect to the

semantics of the program-modeling language. Information is filled in by

default, by inference mechanisms (which are in the form of rules and make
use of consistency requirements), or by queries to other experts, which may
eventually result in a query to the user.

For example, suppose that the program net contains "x part of j/" and

that the PROGRAM-MODEL BUILDER needs to fill in whether "part of is to

330 Automatic Programming X

mean set membership, subset inclusion, component of y, or the image of x

under some correspondence relation with y, or whether there might be an

unspecified intervening subpart. Such information may be deducible from the

structures of x and y, if and when these structures become known.

The PROGRAM-MODEL BUILDER also corrects minor inconsistencies, adds

cross-references, and generalizes parts of the program description so that the

synthesis phase has more freedom in looking for a good implementation. Thus,

if the program net specifies that a certain object is to be a set of ordered

pairs, the program model may, if appropriate, indicate that the object is to

be a correspondence (i.e., a functional mapping).

The CODING and EFFICIENCY experts. These two experts are

responsible for the synthesis phase (Barstow and Kant, 1977). The CODING
expert's knowledge base contains rules that transform parts of a program

description to forms closer to the target language. It is the goal of the

EFFICIENCY expert to guide the choice of the different rules, so that an efficient

target-language implementation eventually results. These two experts, also

known as the systems PECOS and LIBRA, are discussed in detail separately

in Articles X.D4 and X.D8, respectively.

Example of Specification by Interactive Dialogue

Figure Dl-2 illustrates an interactive, natural-language dialogue held

with the PSI system in which the user specifies a simple program, to be called

CLASS. It includes many programming constructs necessary for more complex

programs.

The user intends that the CLASS program input a sample set of items

(e.g., a list of job qualifications) and then repeatedly input a trial set (e.g., the

qualifications of an applicant), each time testing whether the sample set is a

subset of the trial set and printing "FIT" or "DIDN'T FIT," accordingly. The
user further intends that a person will be able to terminate CLASS simply by

typing the word "QUIT," instead of a new trial set.

Based on its understanding of the dialogue, the PARSER/INTERPRETER
expert produces the program net, which is summarized in Figure Dl-3 (the

algorithmic part of the net is shown in an ALGOL-like notation). Then the

PROGRAM-MODEL BUILDER expert creates the very high level, complete, and

consistent model of Figure Dl-4. After repeated application of transforma-

tion rules during the synthesis phase, the CODING and EFFICIENCY experts

will convert this model into an efficient target-language implementation.

An Example of Program Specification by Trace

Traces are another method of specification allowed by the PSI system.

Figure Dl-5 shows the use of a trace to specify part of the behavior of

Dl PSI and CHI 331

What is the name of the program you want to write?

** CLASS.

Does CLASS have a special program type?

** Classification.

Please describe CLASS.

** CLASS first inputs a concept. Then it repeatedly accepts an

input trial set from the user, classifies it based on whether

or not it fits the concept, and outputs this classification to

the user.

What is the structure of the concept?

** A concept is a collection of relations. Each relation is just

a string.

What is the exit test of the loop?

** Stop when the user types "QUIT" instead of a trial set.

What is the structure of the trial set?

** The same as the concept.

Please define what it means for a trial set to fit a concept.

** A trial set fits a concept if all the relations in the concept

are in the trial set.

What is the format of the classification output?

** Output "FIT" if the trial set fit, "DIDN'T FIT" if it didn't.

Are we finished?

** Yes.

Figure Dl-2. Specification by interactive natural-language dialogue: CLASS.

a program called TF ("Theory Formation"—a simplified version of Patrick

Winston's concept-formation program; see Winston, 1975). TF builds and

updates an internal model of a concept. A concept is a collection of "may" and

"must" conditions. TF builds and updates the model by repeatedly reading

in a trial set, guessing whether the trial set is an instance of the concept,

332 Automatic Programming

A2 is either a set whose generic element is a string

or a string whose value is "QUIT."

Al is a set whose generic element is a string.

A4 is the generic element of Al

.

A3 is either TRUE or FALSE.

Bl is a variable bound to A2

B2 is a variable bound to Al

B3 is a variable bound to A4

CLASS

PRINT ("Ready for the CONCEPT")

Al READO
L00P1

:

PRINT ("Ready for the TRIAL SET")

A2 « READO
IF EQUAL (A2, "QUIT") THEN GOTO EXIT1

A3 «- FIT(A2,A1)

CASES: IF A3 THEN PRINT ("FIT")

ELSE IF NOT (A3) THEN PRINT ("DIDN'T FIT")

GOTO L00P1

EXIT1:

FIT(B1,B2)

FORALL B3 IMPLIES (MEMBER (B3.B2) .MEMBER (B3.B1)

)

Figure Dl-3. Summary of the program net.

verifying with the person using TF whether the guess was correct or incorrect,

and updating the model of the concept accordingly. The trace in Figure Dl-5
shows the specification for only a part of the behavior of TF, the part that

describes how TF is to update the model, given that a trial set does or does not

fit a concept. The other parts of TF can be specified by trace or by natural-

language dialogue. From this specification, the EXAMPLE/TRACE INFERENCE
expert generates the following information about the desired program: If the

trial set fits the concept, add to the concept all relations in the trial set but

not present in the concept and mark them with "may." Otherwise, if the trial

set does not fit the concept, change the marking of all relations marked "may"

in the concept and not appearing in the trial set from "may" to "must."

Dl PSI and CHI 333

program CLASS
;

type

a0032 : set of string
,

a0053 : alternative of [string = "QUIT" , a0032]
;

vara

aOOll , a0014 , a0035 , a0036 : a0032
,

a0055 , m0080 : a0053
,

m0095 : string = "DIDN'T FIT"
,

m0092 : string = "FIT"
,

m0091 : Boolean
,

m0081 : string = "QUIT"
;

procedure a0067(a0036 , a0035 : a0032) : Boolean
;

a0035 C a0036
;

procedure a0065(a0055 : a0053) : Boolean
;

a0055 = "QUIT"
;

begin

aOOll *- input(a0032 , user , "READY FOR CONCEPT"
,

"Illegal input. Input again: ")
;

until A0051

repeat

begin

mOOSO «- input(a0053 , user , "READY" , "Illegal input. Input again: ")

if a0065(m0080) then assert- exit-condition(A0051)
;

aOOU <- m0080
;

m0091 <- a0067{a0014
,
aOOll)

;

case

^m0091 : inform-user("DIDN'T FIT")
;

m0091 : inform-user{"FIT")
;

endcase
end

finally

A0051 :

endloop
end

;

Figure Dl-4. The program model.

CHI

Work on the PSI system, which included developing a fully operational

system that could produce LISP code from some English specifications, has led

to the design and implementation of the CHI knowledge-based programming

system at the Kestrel Institute. Automatic-programming research in general,

334 Automatic Programming

Concept:

Trial set: [(block a)(block b)(on a b)]

Result of fit: True

Updated concept: [((block a) may)((block b) may)((on a b) may)]

Concept: [((block a) may)((block b) may)((on a b) may)]

Trial set: [(block a)(block b)]

Result of fit: False

Updated concept: [((block a) may)((block b) may)((on a b) must)]

Concept: [((block a) may)((block b) may)((on a b) must)]

Trial set: [(block a)(block b)(block c)(on a b)]

Result of fit: True

Updated concept: [((block a) may)((block b) may)((block c) may)

((on a b) must)]

Figure Dl-5. A specification by trace.

including the PSI project, has concentrated on methods for compiling pro-

grams expressed in a very high level language. The goal in CHI is to provide

not only a knowledge-based synthesis system, but also a supportive, high-

level programming environment that includes knowledge-based specification

acquisition, consistency checking, debugging, editing, and maintenance. In

fact, the idea of a programming environment has been extended to include

tools for aiding the human interactions necessary for the management of pro-

gramming projects. The CHI system uses a common knowledge base about

the programming process to support all of these activities.

The CHI knowledge-based programming environment emphasizes the use

of a very high level, wide-spectrum language called "V" for specifying both

programs and programming knowledge and for interacting with the program-

ming environment. The V language includes constructs for sets, mappings,

relations, predicates, enumerations, state-transformation sequences, program-

synthesis rules, and control meta-rules. Rules are expressed more cleanly in

CHI than in PSI.

One design goal is that CHI be a very adaptable and extensible environ-

ment. To this end, a self-description of the CHI environment itself is being

produced in its own high-level language V. This high-level self-description

is useful not only for self-compilation but also for modifying and extending

the environment itself. In particular, the rule-compiler portion of CHI has

been described in V, and CHI has compiled this description into efficient code.

The compact, high-level description of the rule compiler is more easily com-

prehended, and is manipulable by the environment itself and so is more easily

reasoned about, extended, or modified.

Dl PSI and CHI 335

Research has progressed in developing program-refinement rules for han-

dling data-structure selection and enumeration constructs and in produc-

ing concurrent programs from very high level program descriptions. A new
research emphasis is on building tools for the more complex and creative

part of the programming process, namely, algorithm design. An example of a

powerful and frequently useful principle for structuring algorithm derivations

is the incorporation of constraints or other operators into generators. Methods

for incorporating constraints have been codified and applied to produce hand

derivations of several prime-finding and shortest-path algorithms. Some of

the methods were formalized and introduced into the CHI knowledge base

and used in derivations of an efficient program for finding even, perfect-square

numbers.

Key contributors to CHI, besides the project leader, Cordell Green, have

been Jorge Phillips, who developed the philosophy of adaptable, self-described

environments and shaped the V language and the knowledge base; Stephen

Westfold, who implemented a structure-based editor for V and described

the rule compiler in high-level V; Beverly Kedzierski, who is developing the

project-management and communication aspect of the environment; Steve

Tappel, who developed principles of algorithm design and applied them to

diverse algorithms; and Tom Pressburger, who implemented some of those

principles in CHI and developed a self-description of the knowledge base.

References

A short summary of the PSI work is given in Green et al. (1979). More

detailed discussions of PSI are Green (1976b, 1977) and Green and Barstow

(1977a); see also Barstow (1977a), Barstow and Kant (1977), Gabriel (1981),

Green and Barstow (1978), Kant (1977), McCune (1977), and Phillips (1977).

A very short overview of the CHI research is found in Green et al. (1981a).

A collection of reports that describe the research in more detail is found in

Green et al. (1981b). The self-description of the rule compiler is found in

Green and Westfold (1982). The project-management and communication-

support aspect is presented in Kedzierski (1982).

D2. SAFE

THE SAFE system, developed at the Information Sciences Institute (ISI) of

the University of Southern California by Robert Balzer, Neil Goldman, David

Wile, and Charles Williams, accepts a program specification consisting of

preparsed English, with limited syntax and vocabulary, including terms from

the problem domain. The phrases and sentences of this specification, however,

may be ambiguous and may fail to provide explicitly all the information

required in a formal program specification. Therefore, using a large number of

built-in constraints (which must be satisfied by any well-formed program), any

specified constraints from the problem domain, and an occasional interaction

with the user, SAFE resolves ambiguities, fills in missing pieces of information,

and produces a high-level, complete program specification. To decide on

missing pieces of information, SAFE employs a variety of techniques, including

backtracking and a form of symbolic execution.

The SAFE system views the task of automatic programming as the

production of a program from a description of the desired behavior of that

program. There are four major differences between a conventionally specified

program (a list of instructions for a "machine" to "execute") and a program

described in terms of its desired behavior.

1. Informality: The behavioral description is informal. It has ambiguities

(alternative interpretations yielding distinct behaviors) and "partial"

constructs (constructs with missing pieces of information that must be

supplied before any interpretation is possible). A conventionally specified

program, on the other hand, is formal; its meaning is completely and

unambiguously defined by the semantics of the programming language.

2. Vocabulary: The primitive terms in the behavioral description are those

of the problem domain. General-purpose programming languages, on

the other hand, provide a primitive vocabulary that is independent of

particular problem areas.

3. Executability: Informality aside, it is possible, and sometimes desirable,

to describe behavior in terms of relationships between the desired and

the achieved states of a process, rather than by rules that specify how to

obtain the desired state. Conventionally specified programs must give

an algorithm for reaching the desired state.

4. Efficiency: Conventionally specified programs contain many details of

operation beyond the desired input/output behavior. Among these are

data representation, internal communication protocols, store-recompute

decisions, and so forth, that affect a program's efficiency (utilization of

time and computer resources). In general, these details do not appear

in the description of the program's input/output behavior.

336

D2 SAFE 337

When one writes a program in the conventional manner, one must formalize

the behavioral specification, translate the terms of the problem domain into

those of a general programming language, guarantee that the specified algo-

rithms actually achieve the desired results, and make a myriad of decisions

for the sake of an efficient implementation.

The ISI group has attempted to split the task of creating a program into

two separate parts by designing a formal, complete specification language

(Balzer and Goldman, 1979) that allows behavioral specifications to be stated

in terms specific to the problem domain while avoiding efficiency and repre-

sentational concerns. This formal specification language acts as an interface

between one project that deals with the first issue, translation from informal

to formal specifications, and a second project that deals with the last issue,

optimization of a formal specification. The former project is the subject of

this article, while the latter is described elsewhere (Balzer, Goldman, and

Wile, 1976). The issues of domain-specific vocabulary and executability are

addressed within the formal specification language.

The SAFE project has concentrated on only the first of these specification

issues: producing automatically a formal description from an informal descrip-

tion. It is not, therefore, a complete automatic-programming system. The
user of the SAFE system provides a behavioral description in a preparsed,

limited subset of English, including terms from the problem area. SAFE then

seeks to determine a way of resolving all ambiguities and of filling in all missing

information in a way that satisfies the system's knowledge of the constraints

that all programs must satisfy. The result is a complete, unambiguous, very

high level program specification in a language called AP2.

Partial Descriptions

After studying many examples of program specifications that had been

written in English, the SAFE research group concluded that the main seman-

tic difference between these specifications and their formal equivalents is that

partial descriptions rather than complete descriptions were used. When such

partial descriptions were used, it was because the missing information could

be determined from the surrounding context. These partial descriptions have

some of the useful properties of natural-language specifications that are lack-

ing in formal languages. They focus both the writer's and the reader's atten-

tion on the relevant issues and condense the specification. Furthermore, the

extensive use of context almost totally eliminates bookkeeping operations from

the natural-language specification.

A partial description may have zero, one, or more valid interpretations in

a given context. If a single valid interpretation is found for a description, it

is unambiguous in that context. Multiple valid interpretations indicate that

there is not sufficient information from the context to complete the description

338 Automatic Programming X

and that interaction with the user is required to resolve the ambiguity. If a

partial description has no valid interpretation, it is inconsistent within the

existing context.

The SAFE system allows the most prevalent forms of partial descriptions

encountered in natural-language specifications:

1. Partial sequencing: Operations are not always described in the order of

execution. While sequencing may sometimes be described explicitly, it

is frequently implicit in the relationships between operations. Example:

"Output generated while compiling is sent to a scratch file. This file

must be opened in write only mode." (The file should, of course, be

opened before compiling commences.)

2. Missing operands: The operands of operations are frequently omitted

because they are recoverable from context. Recovering them may involve

considering the operation's definition, other operands, and the proce-

dural context. Example: "Do not mount a tape for a job unless the tape

drive has been assigned" (to that job).

3. Incomplete reference: A description of an object may match several

objects, whereas it was intended to refer to only one or possibly a subset

of these objects. A complete description may be recovered by methods

similar to the one for missing operands. Example: "When the mail pro-

gram starts, it opens the file named MESSAGE" (in the directory of the

job running the program).

4. Type coercions: Often, people using natural language do not precisely

specify the object intended but instead specify an associated object or a

subpart of an object. This situation can be recognized by a mismatch

between the type of object actually specified and the type of object

expected. Example: "Information messages are copied to each logged-in

user" (i.e., to the terminal of the job of each logged-in user).

Operation of SAFE— Constraints on Programs

The goal of SAFE is to complete the various partial descriptions in the

user's specification to produce a formal specification of the desired program.

SAFE goes through several phases, but in all phases the system applies a

variety of constraints to complete the partial descriptions. These include the

built-in criteria that any formal program must meet (e.g., information must

be produced before it is consumed) and the built-in heuristics that "sensible"

programs will meet (e.g., the value of a conditional must depend on the

program data), as well as any known or discovered constraints particular to

a program's domain (e.g., each file in a directory has a distinct name). In

fact, since programs are highly constrained objects, there are a large number

of constraints that any "well-formed" program must satisfy, and this is one

reason that programs are hard to write.

D2 SAFE 339

In general, each partial description has several different possible comple-

tions. Based on the partial description and the context in which it occurs, an

ordered set of possible completions is created for it. But one decision cannot

be made in isolation from the others; decisions must be consistent with each

other and the resulting program must make sense as a whole, satisfying all

the criteria for well-formed programs.

The problem of finding viable completions for a collection of partial

descriptions provides a classical backtracking situation, since there are many
related individual decisions that, in combination, can be either accepted or

rejected on the basis of the constraints. SAFE utilizes the constraints so that

early rejection possibilities can be realized.

The operation of SAFE consists of three sequential phases: linguistic,

planning, and meta-evaluation. The cumulative effect of these phases is

to produce a formal specification composed of declarative and procedural

portions. The declarative part, or domain model, specifies the types of objects

manipulated by the process, the different ways they may relate to each other,

the actions that may be performed on various object types, and other global

regularities of the problem domain. The procedural portion specifies the

controlled application of actions to objects.

The linguistic phase, using production rules, transforms the parse trees of

the English specification into fragments that retain the semantic content while

discarding the syntactic detail. The production rules capture many context-

sensitive aspects of natural language, such as the various uses of the verb to be

and of quantifiers. The production rules may also add declarations to the

domain model, with user approval, when this is required for interpretation

of the input. This procedure is accomplished by distinguishing two sets of

conditions on each rule: those relating to the linguistic form of the phrase

being processed and those relating a form to the domain model. If the

linguistic-form conditions are not satisfied (e.g., a clause with a transitive

verb) but the domain-model conditions are (e.g., the verb names an action

in the problem domain that has operands of types compatible with the verb

arguments), the domain-model conditions are assumed.

The planning phase determines the overall sequencing of the operations

in the program. It also determines which fragments belong together and how
they are to interact. It does this by using explicit sequencing information in

the description, such as A is executed immediately after B and A is invoked

whenever the condition C becomes true, as well as static flow constraints on

well-formed processes such as:

1. Before information is consumed (used by one fragment), it must be

produced (created by the same or another fragment).

2. Expected outputs of the whole program or of a subprogram must be

produced somewhere within that program.

340 Automatic Programming X

3. The results of each described operation must be used or referenced

somewhere.

The final phase, meta- evaluation, uses dynamic constraints to help deter-

mine the proper completion of partial descriptions. Dynamic constraints are

those that apply, or at least relate, to the program during execution. Examples

of such constraints are:

1. It must be possible (in general) to execute both branches of a conditional

statement. (Otherwise, why would the user have specified a conditional?)

2. The constraints of a domain must not be violated.

Since no actual input data are available for testing the execution of

the program and since the program must be well formed for all allowable

inputs, inputs are represented symbolically. Instead of being actually exe-

cuted, the program is symbolically executed on the inputs, which provides a

much stronger test of the constraints than would execution on any particular

set of inputs. The result is a database of relationships between the symbolic

values and, implicitly, a database of relationships between program variables

that are bound to these values.

All decisions concerning the proper interpretation of partial descriptions

that affect the computation to some point in the execution (but not beyond)

must be made before these dynamic criteria can be tested at that point in the

execution. Thus, decisions are made as they are needed by the computation

of the program, and the symbolic state of the program is examined at each

stage of the computation. This arrangement allows the dynamic state-of-

computation criteria to be used to obtain early rejection of infeasible alter-

natives.

There is a further point worth noting: Representing the complete state

of a computation during symbolic execution is very difficult (e.g., it is quite

hard to determine the state after execution of a loop or conditional state-

ment) and more detailed than necessary for testing the constraints. Therefore,

the SAFE system employs a weaker form of symbolic interpretation, meta-

evaluation, which only partially determines the program's state as the com-

putation proceeds (e.g., loops are executed only once for some "generic"

element).

Notice that symbolic execution requires that the sequential relationships

between the fragments be known; therefore, the meta-evaluation phase must

follow the planning phase.

Finally, the global referencing constraints (e.g., the body of a procedure

must make use of the procedure's parameters) test the overall use of names

within the program and, thus, cannot be tested until all decisions have been

made. These criteria can be tested only after the meta-evaluation is complete.

D2 SAFE 341

Status

The prototype system has successfully handled the 7 5- to-200-word specifi-

cations of three quite distinct programs. In these cases, the SAFE output

of a completed specification, including domain-structure definition, requires

approximately two pages. One example concerned part of a system for

scheduling transmissions in a communications network. Given a table contain-

ing entries for various network subscribers (SOL) and for various unassigned

time slots (RATS), a schedule of absolute times when a particular subscriber

could broadcast on the network was tabulated. The input specification to

SAFE is shown in Figure D2-1.

((THE SOL)

(IS SEARCHED)

FOR

(AN ENTRY FOR (THE SUBSCRIBER)))

(IF ((ONE)

(IS FOUND))

((THE SUBSCRIBER'S (RELATIVE TRANSMISSION TIME))

(IS COMPUTED) ACCORDING TO ("F0RMULA-1")))

((THE SUBSCRIBER'S (CLOCK TRANSMISSION TIME))

(IS COMPUTED) ACCORDING-TO ("FORMULA-2"))

(WHEN ((THE TRANSMISSION TIME)

(HAS BEEN COMPUTED))

((IT)

(IS INSERTED)

AS (THE (PRIMARY ENTRY))

IN (A (TRANSMISSION SCHEDULE))))

(FOR (EACH RATS ENTRY)

(PERFORM)

(:((THE RATS'S (RELATIVE TRANSMISSION TIME))

(IS COMPUTED) ACCORDING TO ("FORMULA- 1"))

((THE RATS'S (CLOCK TRANSMISSION TIME))

(IS COMPUTED) ACCORDING TO ("FORMULA-2"))))

((THE RATS (TRANSMISSION TIMES))

(ARE ENTERED)

INTO (THE SCHEDULE))

Figure D2-1. Input (in preparsed English) for network

scheduler.

342 Automatic Programming X

In formalizing this description, SAFE encountered and resolved the fol-

lowing characteristics of informal specifications:

Number of missing operands = 7

Number of incomplete references = 12

Number of implicit type-coercions = 3

Number of implicit sequencing decisions = 4

The robustness of the system has been increased by processing a num-

ber of perturbations of each of the major examples. These have involved

specifying the same process but varying the syntax and vocabulary, the partial

descriptions, and the formal knowledge about the problem domain.

Future Developments

The key technical restrictions of the prototype system appear to be (a) the

sequential application of the three phases, which prohibits adequate interac-

tions between the expertise embodied in each, and (b) the backtracking within

the meta-evaluation phase, which corresponds to restarting the symbolic exe-

cution from an earlier point with much unnecessary search as a possible con-

sequence. To correct these limitations, a reformulation of the SAFE system's

architecture, along the lines of the HEARSAY-II speech-understanding system

(see Article V.Cl, in Vol. i), is currently in progress. This framework consists

of a number of cooperating knowledge sources or experts interacting through

a global blackboard database.

Simultaneously, the system is being scaled up to handle larger specifica-

tions (approximately 20 pages). Eventually, the project will consider the

formalization of incremental informal specifications, so that it can also provide

help during both specification formulation and maintenance activities.

References

See Balzer, Goldman, and Wile (1976, 1977, 1978) and Balzer and Gold-

man (1979).

D3. The Programmer's Apprentice

THE PROGRAMMER'S APPRENTICE is an interactive system for helping

programmers with the task of programming. It is being designed and imple-

mented at the Massachusetts Institute of Technology by Charles Rich, Howard
Shrobe, and Richard Waters. The intent of the Apprentice is that the pro-

grammer will do the difficult parts of design and implementation, while the

Apprentice will act as a junior partner and critic, keeping track of details

and assisting the programmer in the documentation, verification, debugging,

and modification of his (or her) program. To cooperate with the programmer

in this fashion, the Apprentice must be able to "understand" what is going

on. From the viewpoint of Artificial Intelligence, the central development of

the Programmer's Apprentice project has been the design of a representation,

called a plan, for programs and for knowledge about programming that serves

as the basis for this understanding. Developing plans and reasoning about

them are the central activity of the Programmer's Apprentice.

The plan for a program represents the program as a network of operations

connected by links explicitly representing data flow and control flow. The
advantage of this aspect of the plan formalism is that it is a level of abstraction

away from the specific syntactic constructs for control flow and data flow

used by various programming languages. The most novel aspect of the plan

formalism is that it goes beyond the specific level to create a vehicle for

expressing the logical relationships in a program, as follows.

First, a plan is not just a graph of primitive operations. Rather, it is

a hierarchy of segments within segments, where each segment corresponds

to a unit of behavior and has an input/output specification that describes

features of this behavior. The plan specifies how each nonterminal segment

is constructed from the segments contained within it. This segmentation is

important because it breaks the plan into localities that can be understood in

isolation from each other.

Second, the behavior of a segment is related to the behavior of its sub-

segments. This relationship is represented by explicit dependency links that

record the goal-subgoal and prerequisite relationships between the input/

output specification for a segment and those for its subsegments. Taken

together, the links summarize a proof of how these specifications for a seg-

ment follow from the specifications of its subsegments and from the way the

subsegments are connected by control flow and data flow.

A final aspect of the plan formalism is that there may be more than

one plan for a given segment of a program, with each plan representing a

different point of view on the segment. The data structures in a program are

represented by specifying their parts, their properties, and the relationships

343

344 Automatic Programming X

between them in a method similar to data abstraction (Zilles, 1975; Liskov

et al., 1977).

Knowledge about programming in general is also represented by plans and

data-structure descriptions. This knowledge is stored in the Programmer's

Apprentice in a database of common algorithms and data-structure implemen-

tations called the plan library. The Apprentice's understanding of a program

is embodied in a hierarchical plan for it. In general, the subplan for each

individual segment in terms of its subsegments will be an instance of some

plan stored in the plan library. This structure gives the Apprentice access to

all of the information stored in the plan library about the particular subplan

as soon as it can make a guess as to what the subplan is.

A Scenario of Interaction with the Programmer's Apprentice

The following hypothetical conversation between a programmer and the

Programmer's Apprentice is presented to illustrate the intended operation of

the system. (Currently, most, but not all, of the modules that comprise the

Apprentice system are running.) Commentary on the scenario is printed in

italics. The scenario illustrates the following four basic areas in which the

Apprentice can assist a programmer:

1. Documentation. One of the primary services the Apprentice provides is

automatic, permanent, and in-depth documentation of the program. It

remembers not only explicit commentary supplied by the programmer

with the code, but also a substantial body of derived information describ-

ing the logical structure underlying the program, such as the dependency

relationships between parts of the program.

2. Verification. The development of a program is accompanied by the

construction of a sequence of plans at various levels of abstraction. At

each step, the Apprentice attempts to verify that the current plan is

both consistent and sufficient to accomplish the desired goal. As more

information is specified, the Apprentice's reasoning about these plans

approaches a complete verification of the program.

3. Debugging. Any discrepancy between the Apprentice's understanding of

the programmer's intent and the actual operation of the program is

reported to the programmer as a potential bug.

4. Managing modification. Perhaps the most useful aspect of the Apprentice

is that it can help a programmer modify his program without introducing

new bugs. Based on its knowledge of the logical relationships between

parts of a program, the Apprentice is able to determine what parts

of a program can be affected by a proposed change and how they can

be affected. It can use this information to warn the programmer of

impending difficulties.

The scenario presented below traces the design, coding, and subsequent

modification of a program that deletes an entry from a hash table. The

D3 The Programmer's Apprentice 345

scenario picks up in the middle of a session, at a point where the program-

mer has already made many design choices and communicated them to the

Apprentice. In particular, the user has stated the input/output specifications

for the subroutine DELETE and chosen the basic data structures to be used.

The hash table is implemented as an array of linked lists called buckets. Each

of the entries in a bucket is a dotted pair whose CAR is the key for the entry

(see Article VLB on LISP).

Programmer: The plan for the routine DELETE has three main steps:

The first one hashes the input key to get an index, the second one

fetches the bucket corresponding to that index from the table, and the

third splices out the entry in the bucket whose key part is equal to the

input key.

The only feature of this scenario that is not a current research goal of the

Programmer's Apprentice project is the use of English dialogue. Although

the system should be able to support a sophisticated, natural-language

"front end," no work has been done on this to date. As a result, the

programmer would actually type in something like the following:

(subsegments-of -DELETE stepl-step2-step3)

(specif ications-for-stepl (inputs-key 1) (outputs -index)

(assert- (=-index- (hash-keyl)))) ...

From the programmer's outline of the design, the Apprentice builds a

plan representing the program's intended structure. References to basic

programming techniques such as splicing out (deleting elements from a

linked list) trigger the retrieval of possibly appropriate plans from the plan

library.

Apprentice: I can't verify that this plan satisfies the specifications for

DELETE. In particular, when the input key is equal to the key part

of the first entry in a bucket, I can't prove that the entry is no longer

in the table after DELETE is executed. Note that in this situation,

the bucket after splicing out entries has a different initial cell from

the bucket before splicing out entries and that therefore the table isn't

changed.

After constructing a plan, the Apprentice uses its reasoning abilities to

check for bugs. Above, it found one and reported it to the programmer. In

general, it is the responsibility of the programmer to supply corrections.

Below, the programmer corrects the plan by issuing semantically based

editing commands to the Apprentice.

Programmer: Modify the plan as follows. Add a final step that compares

the bucket after splicing with the bucket before splicing and stores the

new bucket in the table under the index if the two initial cells are not

identical.

Apprentice: OK, the plan now seems correct.

346 Automatic Programming

The programmer then types in the code for DELETE. In cases where the

programmer specifies the plan for a program as completely as he does

here, he could ask the Apprentice to write the code. It is expected that the

programmer will actually only write code in situations where it is easier

to write the code than to fully explain the plan.

Programmer:
(DEFUN DELETE (KEY) ; hash table delete routine.

(PROG (BKT1 BKT2)

(SETQ BKT1 (TBL (HASH KEY)) BKT2 (BKT-DELETE KEY BKT1))

(COND ((NOT (EQ BKT1 BKT2))

; check if first entry in bucket deleted.

(STORE (TBL (HASH KEY)) BKT1)))))

To construct a plan, the Apprentice analyzes the code written by the

programmer. Comparing this plan with the plan directly described by the

programmer, the Apprentice discovers an implementation bug: In the last

line of code, the user probably meant to store in the hash table not the

first bucket, BKT1, but the second bucket, BKT2.

Apprentice: This code is not consistent with your plan. When the first

entry is deleted, the code stores the bucket before splicing, rather than

the bucket after splicing. Did you mean

(STORE- (TBL- (HASH-KEY)) -BKT2) ?

Programmer: Yes, fix the code. Also, use the standard list-deletion

algorithm to code BKT-DELETE, so that it splices out of the bucket

all entries whose key equals the indicated value.

Apprentice:

(DEFUN BKT-DELETE (KEY BUCKET) ; list deletion routine coded by PA.

(PROG (CURRENT PREVIOUS)

(SETQ CURRENT BUCKET PREVIOUS NIL)

LP (COND ((NULL CURRENT) (RETURN BUCKET))

((EQUAL (CAAR CURRENT) KEY)

; if keypart equal, splice out entry.

(COND (PREVIOUS (RPLACD PREVIOUS (CDR CURRENT)))

(T (SETQ BUCKET (CDR BUCKET)))))

; special if first element deleted.

(T (SETQ PREVIOUS CURRENT)))

(SETQ CURRENT (CDR CURRENT))

(GO LP)))

The Apprentice is able to code a program like this itself, even though the

programmer did not specify a plan for it, because it is an implementation

of a standard algorithm that corresponds to a plan in the plan library.

D3 The Programmer's Apprentice 347

Code written by the Apprentice can be freely mixed with code written by

the programmer, and each can edit the other's work.

Sometime later, it is necessary to modify the representation of the buck-

ets. The Apprentice helps the programmer (perhaps a different person)

maintain consistency.

Programmer: I want to make a change in the representation of buckets

in the hashing programs. A bucket now has two parts: a count field

and a list of entries as before. The count field will contain an integer

equal to the length of the list of entries. Let a bucket be a dotted pair

whose CAR is the count and whose CDR is the list of entries.

When the Apprentice inspects the logical dependencies in the plans, it

discovers that a type requirement has been violated.

Apprentice: The proposed change will affect DELETE as follows: After

the bucket is fetched, it is passed to BKT-DELETE, which does the

actual deletion. However, BKT-DELETE requires a list of entries, while

in this new implementation, a bucket is no longer just a list of entries.

Programmer: Explain the plan for BKT-DELETE, please.

Apprentice: BKT-DELETE is implemented following the standard list-

deletion plan. The inputs are a key and a list of entries. The plan is a

search loop with two pointers: a pointer to the current entry, which is

initialized to the input list, and a trailing pointer, which is initialized

to NIL. On each iteration, the loop tests the key of the current entry.

If it is equal to the input key, the element is spliced out of the list by

RPLACDing the trailing pointer.

Acting in its documentation role, the Apprentice describes the structure

of BKT-DELETE by reporting the structure of its plan. The programmer

then decides how to modify BKT-DELETE.

Programmer: Change the specifications of BKT-DELETE, so that it

expects as input a bucket of the new type, rather than a list of entries.

Also change the initialization of the pointers to read:

(SETQ-PREVIOUS-BUCKET-CURRENT- (CDR-BUCKET)) .

The Apprentice reanalyzes the program to verify that this change fixes

the problem without causing any other problems. This analysis reveals

the presence of inaccessible code, which the Apprentice reports to the

programmer.

Apprentice: OK, this fixes the problem. However, now the special-case

tests in BKT-DELETE and DELETE are not necessary, since PREVIOUS
is never NIL and therefore elements are always deleted by side effect.

. . . and so the session continues with the Apprentice looking over the

programmer's shoulder.

348 Automatic Programming X

Operation of the System

The design of the Programmer's Apprentice is based on four modules

—

a surface analyzer, a recognizer, an interactive module, and a deductive

module—and two databases—the plan library and a scratch pad called the

design notebook. Only the first three modules have been implemented thus

far. As described above, the plan library contains the Apprentice's knowledge

of programming in general. The design notebook contains the Apprentice's

evolving knowledge of the particular program being worked on and serves

as the communication center for the system as a whole. The modules com-

municate with each other solely by making assertions in the design notebook.

Each module has predefined trigger patterns that cause it to perform specific

tasks (such as making a deduction or querying the user) whenever appropriate

assertions appear in the notebook. Every assertion added to the notebook is

also accompanied by a justification of its presence. These justifications make
it possible for the Apprentice to account for its actions.

The surface analyzer is used to construct simple surface plans for sections

of code written by the programmer. It is the only module whose implementa-

tion depends on the programming language. To date, surface analyzers have

been implemented for both LISP and FORTRAN.
The recognition module takes over where the surface analyzer leaves off, to

construct a detailed plan for a piece of code. It first breaks up the surface plan

by identifying weakly interacting subsegments that can be further analyzed

in isolation from each other. It then compares these subsegments with the

plans in the library to determine more detailed plans for the program.

The interactive module is the communication link between the Apprentice

and the programmer. It converts the programmer's input (which can consist

of code, direct specification of a plan, or various requests) into assertions in

the design notebook and decides what to say to the programmer based on the

information currently in the notebook.

The deductive module operates in the background in cooperation with

all of the other modules. It performs the deductions necessary to verify a

proposed match between a program and a plan, to detect bugs in a plan, and

to determine the ramifications of a proposed modification to a program or

plan.

At a given moment, the design notebook holds the sum total of what

the Apprentice knows about the program being worked on. This information

triggers additional activity by the modules. If the recognizer and deductive

modules are strong enough and the program is simple enough, this process

will culminate in a complete understanding and verification of the program.

However, this will typically not be the case, and some questions (such as the

exact plan for a segment or the correctness of a specification) will remain un-

resolved in the notebook. The flexible architecture chosen for the Apprentice

makes useful partial performance possible in this situation. The Apprentice

D3 The Programmer's Apprentice 349

can ignore what it does not understand and work constructively with what it

does understand. The programmer can be called upon to fill in the gaps.

Current Status of the Programmer's Apprentice

Rich and Shrobe (1976) laid out the basic idea of a plan and the initial

design of the Programmer's Apprentice. Since that time, Rich, Shrobe, and

Waters have been working together on further aspects of the theory along

with design and implementation of the Apprentice.

Rich's work (1979) centers on the plan library and the recognition process.

Using the plan representation, he is codifying a large body of common pro-

gramming strategies in the domain of nonnumerical programming. Rich is

also designing a recognition module that will identify instances of plans in the

library as they occur in combination in a programmer's program.

Shrobe (1978) has implemented a prototype deductive module that can

reason about programs as represented by plans. An important aspect of

its operation is that it maintains a record of the dependency relationships

embodied in its deductions. In doing this, it builds up some of the logical

structure that is a vital part of a plan for a program. Shrobe is currently

designing an improved version of this deductive module.

Waters (1976, 1978) has implemented a system that can analyze the code

for a program and produce the basic structure of a plan for the entire program.

The system corresponds to the surface-analysis module and the initial phase

of the recognition process. The basic idea in Waters' work is that plans for

typical programs are built up in a small number of stereotyped ways and that

features in the code for a program can be used to determine how the plan for

the program should be built up.

The immediate goal is to construct a prototype system that can perform

as shown in the scenario. To do this, an interactive module must be built,

and the other modules must be connected together into an integrated sys-

tem. Looking further ahead, additional modules (such as a simple program-

synthesis module, and one dealing with efficiency issues) will be added to the

Programmer's Apprentice, and the existing ones will be strengthened so that

the Apprentice can assume an even larger role in the programming process.

References

See Rich and Shrobe (1978); also, Rich (1979), Shrobe (1978), and Waters

(1978).

D4. PECOS

DEVELOPED by David Barstow (1979) and based on ideas presented in Green

and Barstow (1978), the automatic-programming system PECOS serves as the

coding expert of the PSI project (see Article X.Dl) at Stanford University.

Though it can act in conjunction with the PSI system, PECOS can also stand

on its own and interact directly with the user. The original problem area

of PECOS was symbolic programming, which includes simple list-processing,

sorting, database retrieval, and concept formation. This domain has been

extended to graph theory and simple number theory. Programs are specified

in terms of very high level constructs such as data structures (e.g., collections,

mappings) and operations (e.g., testing for membership in a collection, com-

puting the inverse image of an object under a mapping).

Knowledge about programming in the problem area has been codified

(i.e., made explicit and put into machine-usable form) primarily as transfor-

mation rules, which make up PECOS's knowledge base. Most of the rules

describe how constructs and operations can be represented or implemented in

terms of other constructs and operations that are closer to, or actually in, the

target language LISP. These rules can identify design decisions and can also

serve as limited explanations.

The operation of the system proceeds by the repeated selection and appli-

cation of the transformation rules in the knowledge base to parts of the

program. Also referred to as gradual refinement, this transformation process

reduces the high-level specification to an implementation fully within the

target language. Each application of a rule is said to produce a partial imple-

mentation, or refinement, of the program, and the transformation rules are

called refinement rules.

Conflict Resolution

At some points during the transformation process, a conflict may arise

because several rules apply to the same part of the program. The han-

dling of this conflict-resolution situation is important: The application of the

several rules ultimately results in different target-language implementations

that often vary significantly in terms of efficiency. There are three ways to

handle this situation:

1. If PECOS is interacting directly with the user, the user may select

which rule should be applied (and thus which implementation will be

constructed).

2. For the convenience of the user, PECOS can choose one of the applicable

rules, applying about a dozen heuristics to select the rule that leads to

350

D4 PECOS 351

the most efficient implementation. These heuristics handle about two-

thirds of the choices that typically arise.

3. When no heuristic applies and the user is uncertain about which rule

is "best" for his or her purposes, PECOS can apply each in parallel,

constructing a separate implementation for each.

When the PECOS system functions as the CODING expert of the PSI sys-

tem, choices between rules are made by an efficiency expert subsystem called

LIBRA (Article X.D8), which incorporates more sophisticated analytic tech-

niques than the simple heuristics of PECOS. The capability of developing

different implementations in parallel is used extensively in the interactions

between PECOS and LIBRA (Barstow and Kant, 1977).

The Knowledge Base of Refinement Rules

The system's knowledge base consists of about 400 rules dealing with a

variety of symbolic-programming concepts. The most abstract concepts are

those of the specification language (e.g., collection, inverse image, enumerat-

ing the objects in a collection). The implementation techniques covered by

the rules include the representation of collections as linked lists, arrays (both

ordered and unordered), and Boolean mappings, and the representation of

mappings as tables, sets of pairs, property-list markings, and inverted map-

pings (indexed by range element). As a natural by-product, these rules also

cover sorting within a transfer paradigm that includes simpler sorts such as

insertion and selection. While some of the rules are specific to LISP, about

three-fourths of the rules are independent of LISP or any other target lan-

guage.

Internally, PECOS's rules are represented as condition-action pairs (pro-

duction rules; see Article III.C4, in Vol. I). The conditions are particular

configurations of abstract operations and data structures that are matched

against parts of the developing program. Where the match is successful, the

actions replace parts of the abstract concepts with refinements of those parts.

In the system of refinement rules, intermediate-level abstractions play

a major role. One benefit of such intermediate-level concepts is a certain

economy of knowledge. Consider, for example, the construct of a sequential

collection: a linearly ordered group of locations in which the elements of a

collection can be stored. Since there is no constraint on how the linear ordering

is implemented, the construct can be seen as an abstraction (or generalization)

of both linked lists and arrays. Much of what programmers know about

linked lists is in common to what they know about arrays and hence can be

represented as one rule set about sequential collections. A further benefit of

these intermediate-level concepts is that they facilitate resolution of conflicts

between alternative rules: Attention can be focused on the essential aspects

of a choice while ignoring irrelevant details.

352 Automatic Programming X

The Programming Knowledge Base

Most of the currently available sources of programming knowledge

(e.g., books and articles) are too imprecise for effective use by a machine.

The descriptions are often informal, with details omitted and assumptions

unstated. Before this programming knowledge can be made available to

machines, it must be made more precise—the assumptions must be made
explicit and the details must be filled in.

PECOS 's rules provide much of this precision for the domain of elementary

symbolic programming. For example, consider the following rule (an English

paraphrase of PECOS's internal representation):

A collection may be represented as a mapping of objects to Boolean values; the

default range object is FALSE.

Most programmers know this fact: that a collection may be represented by

its characteristic function. Without knowing this rule, or something similar,

it is almost impossible to understand why a bit string can represent a set (or,

for that matter, why property-list markings work). Yet this rule is generally

left unstated in discussions of bit-string representations. As another example,

consider the following rule:

An association table whose keys are integers from a fixed range may be represented

as an array subregion.

The fact that an array is simply a way to represent a mapping of integers to

arbitrary values is well known and usually stated explicitly. The detail that

the integers must be from a fixed range is usually not stated. Note that if the

integers are not from a fixed range, an array is the wrong representation and

something like a hash table should be used.

PECOS's rules also identify particular design decisions that are part of

programming. For example, one of the crucial decisions in building an enumer-

ator of the objects in a sequential collection is selecting the order in which

they should be enumerated. This decision is often made only implicitly. For

example, the use of the LISP function MAPC to enumerate the objects in a

list assumes implicitly that the stored (or "natural") order is the right order

in which to enumerate them. While this is often correct, there are times

when some other order is desired. For example, the selector of a selection sort

involves enumerating the objects according to a particular ordering relation.

A second major decision in building an enumerator involves selecting a way

to save the state of the computation between calls to the enumerator. The

use of a location (e.g., index or list cell) to specify the current state is based

on knowing the following rule:

// the enumeration order is the same as the stored order, the state of an enumera-

tion may be represented as a location in the sequential collection.

D4 PECOS 353

Were the enumeration order different from the stored order (as in a selection

sort), some other state-saving scheme would be needed, such as deleting the

objects or marking them in some fashion.

Another interesting aspect of PECOS's rules is that they have a certain

kind of explanatory power. Consider, for example, a well-known trick for

computing the intersection of two linked lists of atoms in linear time: Map
down the first list and put a special mark on the property list of each atom;

then map down the second list, collecting only those atoms whose property

lists contain the special mark. This technique can be understood on the basis

of the following four PECOS rules (in addition to the rules about representing

collections as linked lists):

A collection may be represented as a mapping of objects to Boolean values; the

default range object is FALSE.

A mapping whose domain consists of atoms may be represented with property-list

markings.

The intersection of two collections may be implemented by enumerating the objects

in one and, while enumerating them, collecting those that are members of the other.

If a collection is input, its representation may be converted into any other repre-

sentation before further processing.

Given these rules, the trick works by first converting the representation of

one collection from a linked list to property-list markings with Boolean values

and then computing the intersection in the standard way, except that a

membership test for property-list markings involves a call to GETPROP rather

than a scan down a linked list.

Status

PECOS is able to implement abstract algorithms (i.e., a very high level

specification) in a variety of domains, including elementary symbolic pro-

gramming (simple classification and concept-formation algorithms), sorting

(several versions of selection and insertion sort), graph theory (a reachability

algorithm), and even simple number theory (a prime-number algorithm). In

each case, PECOS's knowledge about different implementation techniques per-

mitted the construction of a variety of alternative implementations, often with

significantly different efficiency characteristics.

The success of PECOS demonstrates the viability of the knowledge-based

approach to automatic programming. In developing this approach further,

two research directions seem particularly promising.

First, programming knowledge for other domains must be codified. In the

process, rules developed for one domain may be found to be useful in other

domains. With the hope of verifying the wider utility of PECOS's rules about

354 Automatic Programming X

collections and mappings, Yale University's Knowledge-based Automatic

Programming Project codified the programming knowledge needed for some

elementary graph algorithms (Barstow, 1978).

As an example, consider the common technique of representing a graph

as an adjacency matrix. To construct such a representation, only one rule

about graphs need be known:

A graph may be represented as a pair of sets: a set of vertices (whose elements are

primitive objects) and a set of edges (whose elements are pairs of vertices).

The rest of the necessary knowledge is concerned with sets and mappings

and is independent of its application to graphs. For example, to derive the

bounds on the matrix, one need know only that primitive objects may be

represented as integers, that a set of otherwise unconstrained integers may
be represented as a sequence of consecutive integers, and that a sequence

of consecutive integers may be represented as lower and upper bounds. To

derive the representation of the matrix itself, one need only know PECOS's

rules about Boolean mappings and association tables, plus the fact that a

table whose keys are pairs of integers in fixed ranges may be represented as a

two-dimensional matrix.

The second direction indicated by the PECOS research is that different

kinds of programming knowledge need to be codified. Two types seem par-

ticularly important: efficiency knowledge and strategic knowledge. LIBRA
(Article X.D8), which acts together with PECOS in PSI's synthesis phase,

embodies a large amount of efficiency knowledge; but much remains to be

done. Very little work on the use of general strategies (e.g., divide and con-

quer) in program synthesis has been done. The latter seems an especially

important direction, since such strategies appear to play a major role in pro-

gramming by humans.

References

See Barstow (1979); also, Barstow and Kant (1977) and Barstow (1978).

D5. DEDALUS

DEDALUS, the DEDuctive ALgorithm Ur-Synthesizer, developed by Richard

Waldinger and Zohar Manna at SRI International, accepts an unambiguous,

logically complete, very high level specification of a desired program and,

through repeated application of transformation rules, seeks to reduce it to

an implementation within a simple LISP-like target language. This target-

language implementation is guaranteed to be correct (i.e., logically equivalent

to the high-level specification) and to terminate. The knowledge that ulti-

mately relates the constructs of the specification language to those in the

target language is expressed in the transformation rules. But of special

importance are certain rules that express general programming principles that

are independent of the particular specification language and target language.

These rules, which have constituted a major component of the DEDALUS
effort, form conditional statements and recursive and nonrecursive procedures;

they also generalize procedures, construct well-founded orderings to guarantee

the termination of recursive calls, and write code that simultaneously achieves

two or more goals. These general programming principles are described below

in detail, with examples illustrating their application. As pointed out below

in the section on the status of the project, some of the principles are fairly

well understood, while others require further study. Not all the principles are

implemented in the current DEDALUS system.

The DEDALUS specification language can contain constructs that are close

to how the user actually thinks about the problem. Thus, the DEDALUS
specification of the program LESSALL(x /), which tests whether a number x

is less than every element of a list / of numbers, and the program GCD(x y),

which computes the greatest common divisor of two nonnegative integers x

and y, are specified as follows:

LESSALL(x /) <= compute X < ALL(Z)

where x is a number and / is a list of numbers,

GCD(x y) <= compute MAX{ z\ z\x and z
\ y}

where x and y are nonnegative, nonzero integers.

Elements of DEDALUS 's specification language, like the ALL construct in

P(ALL(7)), indicating that the condition P holds for all elements of the list /,

and the set constructor {u: P(u)}, indicating the set of elements for which

P is true, will eventually be converted into target-language code through the

repeated application of transformation rules. The specification language is

not fixed: New constructs can be introduced by modifying or adding trans-

formation rules.

355

356 Automatic Programming X

The operation of DEDALUS consists of the repeated application of trans-

formations to expressions to produce expressions that are closer to, or within,

the target language. In DEDALUS, the expressions that occur during the

transformation process specify not only programs, but also conditions to be

proved, as well as conditions to be made true. All these expressions are treated

as goals to be achieved: For an expression that specifies a program, the goal

is to convert that program into a target-language implementation; for an

expression that is a condition to be proved, the goal is to convert it to the

logical constant TRUE; for an expression that is a condition to be made true,

the goal is to construct a program that will make that condition true.

Transforming a subexpression into another subexpression requires rules

of the form

t => t'ifP,

the condition P being optional, indicating that the subexpression t can be

replaced by t' . If P is present, the rule can only be applied provided that

the system first proves that P is true; which is to say, before the rule can be

applied, the system must succeed in achieving the subgoal

Goal: prove P.

For example, consider

P(ALL(/)) => P(HEAD(/)) and P(AIX(TAIL(/))) if not empty (/)

,

which expresses the fact that a property P holds for every element of a

nonempty list / if it holds for the first element HEAD(/) and for every element

of the list TAIL(Z) of the other elements. Before the system can apply this rule

to some part of an expression, it would have to succeed in proving that / is

not empty.

The application of transformation rules results in a tree of goals and

subgoals. Initially, the top-level goals of this tree are established by program

specifications. Thus, the common form of program specification

f(x) <= compute P(x)

where Q(x)

establishes its output description as the top-level goal

Goal: compute P(x)
,

and in trying to achieve this goal, the system assumes the truth of Q(x). If

the top-level goals of trees are established by program specifications, most

D5 DEDALUS 357

subgoals are established as the result of transformations. Thus, by applying

the transformation rule

u
|

v and u\w => u\v and u\w — v

to the top-level goal of the GCD program,

Goal 1: compute MAX{z: z\x and z
\ y} ,

the system establishes

Goal 2: compute MAX{z: z
\
x and z\y — x}

as a subgoal. Such transformations express knowledge about specific con-

structs. In the DEDALUS system there is also knowledge of a more general

sort.

General Programming Principles

This section describes five general programming principles and presents

several examples to illustrate their application. The principles express knowl-

edge about how to form conditionals and procedures (recursive and nonrecur-

sive), how to replace two or more procedures by a generalized procedure, and

how to achieve simultaneous goals. (As explained later in the article, the

current implementation of DEDALUS does not incorporate the generalization

of procedures or the achievement of simultaneous goals.)

Conditional formation. Many of the transformation rules impose some

condition P (e.g., / is nonempty, x is nonnegative) that must be satisfied for

the rule to be applied. Suppose that, in attempting to apply a particular rule,

the system failed to prove or disprove the condition P, where P is expressed

entirely in terms of the primitive constructs of the target language; in such

a situation, the conditional-formation rule is invoked. This rule allows the

introduction of case analysis to consider separately the cases in which P is

true and in which P is false. Suppose the result is both a program segment

Si that achieves the goal under the assumption that P is true and another

program segment #2 that achieves the goal under the assumption that P is

false. The conditional-formation principle puts these two program segments

together into a conditional expression

if P then S\ else 5;2 j

which achieves the goal regardless of whether P is true or false. During the

generation of 52, the system could discover that a conditional expression was

unnecessary: The generation of 52 may not have required the assumption that

P was false. In such a case, the program constructed would be simply 52-

358 Automatic Programming X

Recursion formation. Suppose, in constructing a program with specifi-

cations

f(x) <= compute P(x)

where Q(x)
,

the system encounters a subgoal

Goal: compute P(t)
,

which is an instance of the output specification, compute P(x). Because

the program f(x) is intended to compute P(x) for any x satisfying its input

specification Q(x), the recursion-formation rule proposes achieving the subgoal

above by computing P(i) with a recursive call f(t). For this step to be

valid, it must ensure that the input condition Q(t) holds when the proposed

recursive call is executed. To ensure that the new recursive call will not cause

the program to loop indefinitely, the rule must also establish a termination

condition, showing that the argument t is strictly less than the input x in

some well-founded ordering. (A well-founded ordering is an ordering in which

no infinite, strictly decreasing sequences can exist.) This condition precludes

the possibility that an infinite sequence of recursive calls would occur during

the execution of the program.

One example of recursion formation in the DEDALUS system is the pro-

gram LESSALLfx /), which tests whether a given number x is less than every

element of a given list / of numbers. The specifications for this program are

LESSALL(x /) <= compute X < ALL(/)

where x is a number and / is a list of numbers.

In deriving this program, the system develops a subgoal

Goal: compute X < ALL(TAIL(/))

,

in the case that / is nonempty. This subgoal is an instance of the output

specification of the original specification, with the input I replaced by TAIL(/);

therefore, the recursion-formation principle proposes that the subgoal be

achieved by introducing a recursive call LESSALL(x TAIL(/)). To ensure that

this step is valid, the rule establishes an input condition that

x is a number and TAIL(Z) is a list of numbers

and a termination condition that the argument pair (x TAIL(Z)) is less than the

input pair (x I) in some well-founded ordering. This termination condition

holds because TAIL(7) is a proper sublist of /. As the final program, the system

obtains

LESSALL(x /) <= if EMPTY(/) then TRUE

else x < HEAD(Z) and LESSALL(x TAIL(/))

.

D5 DEDALUS 359

Procedure formation. Suppose that, while developing a tree for a

specification of the form

f(x) <= compute P(x)

where Q(x)
,

the system encounters a subgoal

Goal B: compute R(t)
,

which is an instance not of the output specification compute P(x) but of some
previously generated subgoal

Goal A: compute R(x) .

Then the procedure-formation principle introduces a new procedure, g(x),

whose output specification is

g(x) <= compute R{x)

.

In this way, both goals A and B can be achieved by calls g(x) and g(t) to a

single procedure. In the case where goal B has been derived from goal A,

the call to g(t) will be a recursive call; otherwise, both calls will be simple

procedure calls.

An example of procedure formation occurs in the specification of the

program CART(s t) to compute the Cartesian product of two sets, s and t:

CART(s t) <= compute {(x y): x £ s and y £ t}

where s and t are finite sets.

While deriving the tree for the program, the system obtains a subgoal

Goal A: compute {(x y): X = HEAD(s) and y £ t}
,

given that s is nonempty. Developing goal A further, the system derives

Goal B: compute {(x y)\ x = HEAD(5) and y G TAIL(£)}
,

given that t is nonempty. Goal B is an instance of goal A; therefore,

the procedure-formation rule proposes introducing a new procedure CART-

HEAD(s t) whose output specification is

CARTHEAD(s t) <= compute {(x y): x = HEAD(s) and y G t}
,

so that goal A can be achieved with a procedure call CARTHEAD(s t), and

goal B, with a (recursive) call CARTHEAD(s TAlh(t)).

360 Automatic Programming X

When the CARTHEAD procedure is constructed by the techniques already

described, the final system of programs becomes

CART(s t) <= if EMPTY(s) then { }

else UNION(CARTHEAD(s t) CART(TAIL(s) t))

,

CARTHEAD(s t) <= if EMPTY(t) then { }

else UNION({HEAD(s) HEAD(£)}

CARTHEAD(s TAIL(t))

.

Generalization. Suppose, in deriving a program, that we obtain two

subgoals

Goal A: compute R(a(x))

Goal B: compute R(b(x))
,

neither of which is an instance of the other, but both of which are instances

of the more general expression

compute R{y) •

In such a case, the extended procedure-formation rule proposes the introduc-

tion of the new procedure, whose output specification is

g(y) <= compute i%)

.

Thus, goal A and goal B can be achieved by procedure calls to g(a(x)) and

g(b(x)), respectively.

Generalization is used in the synthesis of the program REVERSE(/), which

reverses a list /. We first derive two subgoals:

Goal A: compute APPEND(REVERSE(TAIL(/))

cons(head(/)nil))

Goal B: compute APPEND(REVERSE(TAIL(TAIL(/)))

cons(head(tail(/))

cons(head(/)nil))) .

Each is an instance of the more general expression

compute APPEND(REVERSE(TAIL(/))

CONS(HEAD(/) m))

;

therefore, the extended procedure-formation rule proposes introducing a new
procedure REVERSEGEN(/ m), whose output specification is the more general

expression:

D5 DEDALUS 361

REVERSEGEN(/ m) *= compute APPEND(REVERSE(TAIL(/))

CONS(HEAD(/)m))

.

Although this procedure, which reverses a nonempty list / and appends the

result to m, is a more general problem than the original REVERSE program, it

turns out that REVERSEGEN is actually easier to construct. The final system

of programs obtained is

REVERSE(/) <= if EMPTY(/) then NIL

else REVERSEGEN(/ NIL)

REVERSEGEN(/ m) <= if EMPTY(TAIL(/)) then CONS(HEAD(/)?m)

else REVERSEGEN(TAIL(/) CONS(HEAD(/)m))

.

Simultaneous goals. To deal with operations that produce side effects

such as modifying the structure of data objects (e.g., assignment statements),

DEDALUS introduces constructs such as ACHIEVE P, to denote a program

intended to make the condition P true.

In constructing a program to achieve two conditions, Pi and P2, it is

not sufficient to decompose the problem by constructing two independent

programs to achieve Pi and P2. The concatenation of the two programs might

not achieve both conditions because the program that achieves P2 may in the

process make Pi false, and vice versa.

For example, suppose a program is desired to sort the values of three

variables x, y, and z—in other words, to permute the values of the variables

to achieve the two conditions x < y and y < z simultaneously. Assume the

given primitive instruction SORT2(it v), which sorts the values of its input

variables u and v. The concatenation

SORT2 (x y)

SORT2 (y z)

of these two segments will not necessarily achieve both conditions simul-

taneously; the second segment SORT2 (y z) may, by sorting y and 2, make
the first condition x < y false.

The simultaneous-goal principle, which was introduced to circumvent such

difficulties, states that to satisfy a goal of form

ACHIEVE Pi and P2 ,

a program F is first constructed to achieve Pi, and then F is modified

to achieve P2 while protecting Pi at the end of F. A special protection

mechanism (cf. Sussman, 1975) ensures that no modification is permitted that

destroys the truth of the protected condition Pi at the end of the program.

362 Automatic Programming X

To apply this principle to the goal

ACHIEVE x < y and y < z

in the sorting problem, for example, a system would first ACHIEVE x < y,

by using the segment SORT2 (x y). This program would then be modified to

achieve the second condition y < z. But adding SORT2 (y z) at the end of the

program will not work because it destroys the truth of the protected condition

x <y.
However, in general, a goal may be achieved by inserting modifications

at any point in the program, not merely at the end. Introducing the two

instructions

if y < x then SORT2 (x z)

if x < y then SORT2 (y z)

at the beginning of the program segment would simultaneously achieve both

conditions x < y and y < z. The resulting program would be

if y < x then SORT2 (x z)

if x < y then SORT2 (y z)

SORT2 (x y) .

Status

Currently, the DEDALUS implementation incorporates the principles of

conditional formation, recursion formation (including the termination proofs),

and procedure formation, but it does not include generalization or the for-

mation of structure-changing programs. The techniques for deriving straight-

line, structure-changing programs were implemented in a separate system (see

Waldinger, 1977).

Conditional formation and recursion formation are well understood. The
method for proving termination of ordinary recursive calls does not always

extend to the multiple-procedure case. The generalization mechanism and the

extended procedure-formation principle are just beginning to be formulated.

The derivation of straight-line programs with simple side effects is fairly

well understood, but much work remains to be done on the derivation of

structure-changing programs with conditional expressions and loops, as well

as on the derivation of programs that alter list structures and other complex

data objects.

The DEDALUS system is implemented in QLISP, an extension of INTER-

LISP that includes pattern-matching and backtracking facilities. The full

power of the QLISP language is available in expressing each rule, since the rules

are represented as QLISP programs in a fairly direct manner (see Chap. Vl).

D5 DEDALUS 363

The following are some representative programs constructed by the cur-

rent DEDALUS system:

Numerical programs:

—the subtractive GCD algorithm,

—the Euclidean GCD algorithm,

—the binary GCD algorithm,

—the remainder of dividing two integers.

List programs:

—finding the maximum element of a list,

—testing whether a list is sorted,

—testing whether a number is less than every element of a list of

numbers (LESSALL),

—testing whether every element of one list of numbers is less than

every element of another.

Set programs:

—computing the union or intersection of two sets,

—testing whether an element belongs to a set,

—testing whether one set is a subset of another,

—computing the Cartesian product of two sets (CART).

References

See Manna and Waldinger (1975, 1978) and Waldinger (1977).

D6. Protosystem I

PROTOSYSTEM I, an automatic-programming system designed by William

Martin, Gregory Ruth, Robert Baron, Matthew Morgenstern, and others of

the M.I.T. Laboratory for Computer Science, is part of a larger research

project aimed at modeling, understanding, and automating the writing of a

data-processing system. (Hereafter, the data-processing system is referred to

as a data-processing program, in accord with this chapter's terminology, which

refers to the output of an automatic-programming system as a program.)

A model of the larger research project was developed that has five phases.

The successive phases can be viewed as a series of transformations of the

descriptions of the target program, beginning with a global conceptual descrip-

tion of the problem at hand and progressing, through increasing specificity,

toward a detailed machine-level solution. The aim of the project is to develop

stages of an AP system where each corresponds to one of the five phases of

the model and each embodies the particular knowledge and expertise for that

phase.

Phase 1: Problem definition. The specification of the data-processing pro-

gram is expressed in domain-dependent terms in English.

Phase 2: Specification analysis and system formulation. The specification in

phase 1 is viewed as a data-processing problem. This problem

is solved, yielding a data-processing formulation of the desired

program.

Phase 3: Implementation. The procedural steps, data representation, and

organization of the target are determined by intelligent selection

from, and adaptation of, a set of standard implementation pos-

sibilities.

Phase 4: Code generation. The implementation of phase 3 is transformed

into code in some high-level language (e.g., PL/l).

Phase 5: Compilation and loading. The high-level code is transformed into

a form that can be "understood" and executed by the target

computer.

The first two phases involve such AI areas as natural-language comprehen-

sion, program-model formation, and problem solving. Since these areas of AI

research are still in the early stages of evolution, the development of the first

two phases has been deferred. At present, Protosystem I is limited to the

automation of phases 3 and 4, since these phases were considered to be much
more amenable to solution. Thus, the current system accepts a specification in

terms of abstract relations (in a very high level language called SSL), and then

364

D6 Protosystem I 365

it designs an optimized data-processing program and generates code for an

efficient implementation. In automatic programming, it is usually impossible

for a system to carry out a search for the absolutely optimal implementation;

instead, a system works at optimizing a program only to a degree.

The particular problem area of Protosystem I is that of data-processing

programs that are input/output intensive (file manipulation and updating)

and batch oriented. Included in this area are programs for inventory control,

payroll, and other record-keeping systems.

The specification method uses a description of the desired data-processing

program in the SSL language. An SSL specification consists of a data division

and a computation division. The data division gives the names of the data sets

(conceptual aggregations or groupings of data), their keys, and their period

of updating. The computation division specifies for each computed file the

calculations to be performed when it is computed.

Figure D6-1 illustrates an SSL specification of a data-processing program

for a warehouse inventory. In the proposed problem, the warehouse stocks

a number of different items that are sent out daily to various stores. The
data-processing program's task is to keep track of inventory levels, which

items and how many of each item should be reordered from the producer

(an item is reordered when less than 100 remain in stock), and how many
items are received from the producer. In the data division are data sets

(e.g., SHIPMENTS-RECEIVED, BEGINNING-INVENTORY, TOTAL-ITEMS), and in

the computation division are the computation steps that involve these data

sets (e.g., for each item, the beginning inventory is computed by adding the

shipments received to the final inventory from the previous day).

When it has received the SSL specification of the desired program, Proto-

system I transforms it into an efficient target-language implementation con-

sisting of a collection of PL/1 programs and its JCL ("Job Control Language")

for the IBM-360. To accomplish this transformation, the following specific

design decisions are made with the goal of achieving an efficient implementa-

tion:

1. Design each keyed file, deciding what are to be its data items, organiza-

tion (consecutive, index sequential, regional), storage device, associated

sort ordering, and number of records per block;

2. Design each job step, determining which computations the step is to

include, its accessing method (sequential, random, core table), its driving

data set(s), and the order (by key values) in which the records of its input

data sets are to be processed;

3. Determine whether sorts are necessary and where they should be per-

formed; and

4. Determine the sequence of job steps.

366 Automatic Programming

DATA DIVISION

FILE SHIPMENTS-RECEIVED FILE QUANTITY-ORDERED-BY-STORE
KEY IS ITEM KEY IS ITEM, STORE
GENERATED EVERY DAY GENERATED EVERY DAY

FILE BEGINNING-INVENTORY FILE TOTAL-SHIPPED
KEY IS ITEM KEY IS ITEM
GENERATED EVERY DAY GENERATED EVERY DAY

FILE TOTAL-ITEM-ORDERS FILE FINAL-INVENTORY
KEY IS ITEM KEY IS ITEM
GENERATED EVERY DAY GENERATED EVERY DAY

FILE QUANTITY-SHIPPED-TO-STORE FILE REORDER-AMOUNT
KEY IS ITEM, STORE KEY IS ITEM
GENERATED EVERY DAY GENERATED EVERY DAY

COMPUTATION DIVISION

BEGINNING-INVENTORY IS

FINAL-INVENTORY (from the previous day) + SHIPMENTS-RECEIVED

TOTAL-ITEM-ORDERS IS

SUM OF QUANTITY-ORDERED-BY-STORE FOR EACH ITEM

QUANTITY-SHIPPED-TO-STORE IS

QUANTITY-ORDERED-BY-STORE IF BEGINNING-INVENTORY IS

GREATER THAN TOTAL-ITEM-ORDERS

ELSE

QUANTITY-ORDERED-BY-STORE
* (BEGINNING-INVENTORY / TOTAL-ITEM-ORDERS)

IF BEGINNING-INVENTORY IS NOT
GREATER THAN TOTAL-ITEM-ORDERS

TOTAL-SHIPPED IS

SUM OF QUANTITY-SHIPPED-TO-STORE FOR EACH ITEM

FINAL-INVENTORY IS BEGINNING-INVENTORY - TOTAL-SHIPPED

REORDER-AMOUNT IS 10C0 IF FINAL-INVENTORY IS LESS THAN 100.

Figure D6-1. SSL relational description for a data-processing program.

D6 Protosystem I 367

These design decisions, especially the central ones of determining the final

target data sets, computation steps, and sequencing of computation steps, are

made by exploring the different ways of combining data sets and computation

steps. The system carries out these explorations with the goal of minimizing

the number of file accesses made during the run time of the target implemen-

tation. Sometimes, as explained below, the system also will seek to minimize

a more detailed cost estimate of the target implementation.

Described in greater detail in the next section, the method employed by

Protosystem I for achieving an efficient implementation does not rely solely

on heuristics but uses instead what is essentially a dynamic-programming

algorithm with heuristics added to the algorithm so that it can finish in a

reasonable amount of time. An advantage of dynamic programming is that

it can provide a good handle on global optimization when the results of

individual decisions have far-reaching and compounding effects throughout

the design of the data-processing program.

Operation of the System

Although the actual optimization process is performed by the optimizer

module, several other modules provide preparatory and support services.

First, the structural- analyzer module generates predicates for the operations

in the SSL computation division. These predicates indicate the conditions

under which data items in a data set will be either accessed or generated

during an operation. For example, the condition

(DEFINED A(ki)) = (OR (DEFINED £(fci))(DEFINED C(fci)))

would indicate that there is a record in data set A for a value of the key, k\
,

only when at least one of the data sets B or C has a record for that value of

the key. The structural analyzer also produces candidate driving-data-sets for

each operation in the computation division. A driving data set of an operation

is a data set whose records are "walked through" once in the order of their

occurrence and the operation is executed once at each step (record).

The predicates produced by the structural analyzer are then used by the

question-answering module to provide information to the optimizer about the

average number of input/output accesses implied by tentative configurations

(i.e., tentative choices for the data sets and computation steps) of the target

implementation. The question-answering module maintains a knowledge base

consisting of the predicates, characteristics of the data, and information

obtained from interaction with the user, such as average data-set size or the

probability of a predicate fragment's being true. This knowledge, along with

knowledge about the probability calculus, is used to answer questions about

the size of a data set and about the average number of items in the data

set that are likely to satisfy a certain predicate (e.g., an access predicate).

368 Automatic Programming X

When the knowledge is insufficient to answer an optimizer question, the

question answerer initiates a dialogue with the user to elicit enough additional

information to proceed.

The optimization process itself is performed by the optimizer module.

This module intermittently obtains information from the question answerer

about input/output accesses of tentative configurations of parts of the data-

processing program, to explore the effects of such design parameters as the

number of records per block, the file organization, the data items that are col-

lected into a single data set, and the computations that are performed during

a single reading of a file or files. Since the problem area of Protosystem I is

that of input/output-intensive programs, the optimizer explores the various

design parameters with the goal of minimizing the number of file accesses in

their target-language implementation. Sometimes, however, after a number

of more important design decisions have been made, the optimizer will further

explore design alternatives by computing a more detailed cost estimate that

attempts to approximate the charging structure of the particular installation

on which the target system is to run (e.g., disk space, core-residency charges,

explicit input/output).

The central part of the optimization process is concerned with the explo-

ration of various ways of setting up data sets and computation steps. Basically,

the optimization module starts with the data sets and computation steps in

the data division and computation division of the SSL specification. Then, to

minimize the number of file accesses, the module looks at data-processing pro-

grams that use various aggregations of these initial data sets and computation

steps (an aggregation of two or more data sets is a data set that has all the

data items of the original data sets, while an aggregation of several computa-

tion steps is a computation step that performs the functions of the original

steps). The optimizer explores the aggregating data sets and the aggregating

computation steps and develops and utilizes constraints on the sort order of

both data sets and computation steps (an example of a sort-order constraint

on a data set would be having the data-set records sorted first on a particular

key).

To avoid the problem of combinatorial explosion, the module uses a

form of dynamic programming with heuristics. Loosely speaking, dynamic

programming is a set of parameterized recursive equations, which, in this

case, express the cost of optimized longer segments of the program in terms of

optimized shorter segments. A pure dynamic-programming algorithm, though

it would find the absolute optimum target implementation, would require an

excessive amount of time to do so. Therefore, for the algorithm to finish

in a reasonable time, a number of heuristics are employed in the algorithm,

including decoupling decisions where possible (and sometimes even where it is

not completely possible) and carrying out local optimizations before making

adjustments for global concerns. A full explanation of the algorithm is found

in Morgenstern (1976).

D6 Protosystem I 369

Status

The SSL specification language has been completely defined, and there is

an operational implementation of Protosystem I in MACLISP on a PDP-10
computer at M.I.T. The system is capable of producing acceptable target-

language implementations. From a larger perspective, the Protosystem I

project has developed a five-phase model of the process of writing a data-

processing program (system), from its conception to its implementation as

executable code. Twenty years ago, the fifth phase, compilation and loading,

was automated. At present, a preliminary theory for and automation of

the third and fourth phases, the generation of the system and translation

into high-level code, are embodied in Protosystem I. Within the next decade,

the theory and automation of the remaining two phases, including problem

definition, specification analysis, and system formulation, should easily fall

within the realm of presently developing AI technologies.

References

See Baron (1977), Morgenstern (1976), Ruth (1976a, 1978), and Hammer
and Ruth (1979).

D7. NLPQ

THE NLPQ project (Natural Language Programming for Queuing Simula-

tions) was begun by George Heidorn at Yale University in 1967 for a doctoral

dissertation and completed at the Naval Postgraduate School during the years

1968-1972. The research area is that of simulation programs for simple

queuing problems. The queuing problem's specification takes place during

an interactive dialogue in English in which the user and the NLPQ system

each can furnish information to, and request information from, the other.

From this dialogue, the NLPQ system creates and maintains a partial internal

description of the queuing problem. This partial description provides the basis

for answering any questions that the user may ask, for generating questions

that are to be asked of the user, and eventually, when completed by the

dialogue activity, for generating the implementation of the simulation program

in the target language GPSS. The system's processing—including creating the

problem description and generating the GPSS program, as well as translating

and generating sentences—is specified by production rules (see Article III.C4,

in Vol. I).

Program Specification

In the English dialogue that constitutes NLPQ's method of specification,

the user can make statements, give commands, ask questions, and answer

questions. During this process, the system can ask and answer questions and

respond to commands. In the brief dialogue of Figure D7-1, most of the

features of the specification method are illustrated in a simple way (other,

more complex dialogues are presented in Heidorn, 1972, 1974, 1975b, and

1976). In the dialogue, line numbers have been added for reference, and the

lowercase typing was done by the user, while the uppercase typing was done

by the computer.

This example concerns a queuing problem about cars that arrive at a

station, get serviced, and leave. The user initially volunteered some informa-

tion about how often the cars arrive and about the sequencing of actions, in

lines 1 and 2, and then asked the system what other information was needed

to complete the queuing model, in line 3. In lines 4 through 9, the system

asked questions about times and actions, which the user answered, until the

problem statement was complete, in line 10. Then, in line 11, the user asked

a specific question about the queuing model concerning the mean time needed

to service a car, a question that the system answered in line 12. In line 13, the

user told the system to produce a description of the entire problem in English

for verification purposes, which it did, in line 14. Finally, in response to the

370

D7 NLPQ 371

1 every 6 minutes a car arrives at a station.

2 after arriving, it is serviced at a pump.

3 is the problem statement complete?

4 HOW LONG ARE THE CARS SERVICED AT THE PUMP?

5 from 3 to 7 minutes.

6 AFTER BEING SERVICED AT THE PUMP, WHAT DO THE CARS DO?

7 they leave the station.

8 HOW LONG SHALL THE SIMULATION BE RUN?

9 10 hours; use 1 minute as the basic time unit.

10 THE PROBLEM STATEMENT IS COMPLETE.

11 what is the mean of the time to service cars?

12 THE MEAN OF THE UNIFORM DISTRIBUTION IS 5 MINUTES.

13 describe the problem in english.

14 THE CARS ARRIVE AT THE STATION EVERY 6 MINUTES.

AFTER ARRIVING AT THE STATION, THE CARS ARE SERVICED AT THE

PUMP. THE TIME FOR THE CARS TO BE SERVICED AT THE PUMP IS

UNIFORMLY DISTRIBUTED, WITH A MEAN OF 5 MINUTES AND A

HALF-RANGE OF 2 MINUTES. AFTER BEING SERVICED AT THE PUMP,

THE CARS LEAVE THE STATION. THE SIMULATION IS TO BE RUN

FOR 10 HOURS, USING A BASIC TIME UNIT OF 1 MINUTE.

15 write the gpss program.

16 SIMULATE

STAT1 EQU l.F,Q

PUMP2 EQU ? 2,F,Q

CAR1 EQU l.T

1

*

TABLE Ml, 1,1,

2

THE CARS ARRIVE AT THE STATION.

GENERATE 6

ASSIGN 1 , CAR1

* THE CARS ARE SERVICED AT THE PUMP.

ACT1 QUEUE PUMP2

SEIZE PUMP2

DEPART PUMP2

ADVANCE 5 ,

2

RELEASE PUMP2

*

* THE CARS LEAVE THE STATION.

ACT3 TABULATE PI

TERMINATE

*

* TIMING LOOP

GENERATE 600

TERMINATE 1

START 1

END

Figure D7-1. A brief NLPQ dialogue.

372 Automatic Programming X

user command in line 15, the system produced the GPSS program, in line 16,

complete with English comments (preceded by *) and meaningful symbolic

names.

Operation of the System

The processing to be done by NLPQ is specified by sets of production

rules written in a language designed especially for the system. Decoding rules

specify how strings of English text are to be converted into records in a

semantic net, and encoding rules specify how records are to be converted into

text. These are basically phrase-structure grammar rules (see Article 1V.C1, in

Vol. i), but they are augmented by arbitrary conditions and structure-building

actions (Heidorn, 1975a).

The representation of the internal description of the simulation problem,

as well as the representation of the syntactic and semantic structures, is in

the form of a semantic network (Article III.C3, in Vol. i). A network consists

of records that represent such things as concepts, words, physical entities,

and probability distributions. Each record is a list of attribute-value pairs,

where the value of an attribute is usually a pointer to another record but may
sometimes be simply a number or character string.

Prior to a queuing dialogue, the system is given a network of about 300

"named" records containing information about words and concepts relevant

to simple queuing problems. Also, it is furnished with a set of about 300

English-decoding rules and 500 English and GPSS encoding rules. As the

dialogue progresses, the system uses the information it obtains from the

English dialogue to build and complete a partial description of the desired

simulation, a description that is in the form of a network called the Internal

Problem Description (IPD).

Basically, an IPD network describes the flow of mobile entities, such as

vehicles, through a queuing system consisting of stationary entities, such as

pumps, by specifying the actions that take place in the system and their

interrelationships. Each action is represented by a record whose attributes

furnish such information as the type of action, the entity doing the action

(i.e., the agent), the entity that is the object of the action, the location where

it happens, its duration, its frequency of occurrence, and what happens next.

For example, the action The men unload the truck at a dock for two hours

could be represented by the record:

Rl: Type unload

Agent men
Object truck

Location dock

Duration 2 hours

D7 NLPQ 373

The NLPQ system must obtain from the English dialogue all the informa-

tion needed to build the IPD. Thus, the user must describe the flow of mobile

entities through the queuing model by making statements about the actions

that take place and about the relations between these actions. Each mobile

entity must "arrive" at or "enter" the model. Then it may go through one or

more other actions, such as "service," "load," "unload," and "wait." Then,

typically, it "leaves" the model. The order in which these actions take place

must eventually be made explicit by the use of subordinate clauses beginning

with such conjunctions as after, when, and before, or by using the adverb

then. If the order of the actions depends on the state of the queuing model,

an "if" clause may be used to specify the condition for performing an action;

a sentence with an "otherwise" in it is used to give an alternative action to

be performed when this condition is not met.

The information needed to simulate the problem, including the various

times involved, must also be furnished by the specification dialogue. It is

necessary to specify the time between arrivals, the time required to perform

each activity, the length of the simulation run, and the basic time unit to

be used in the GPSS program. Activity times and times between events

may be given as constants or as probability distributions, such as uniform,

exponential, normal, or empirical. The quantity of each stationary entity

should also be specified, unless 1 is to be assumed.

The user may either furnish this information in the form of a complete

problem statement or he may state some part of it and then let the system

ask questions to obtain the rest of the information, as was done above in

lines 1 through 10 of Figure D7-1. The latter method results in a scan of the

partially built IPD for missing or conflicting information and the generation

of appropriate questions. Each time the system asks a question, it is trying

to obtain the value of some specific attribute that will be needed to generate

a GPSS program. To furnish a value for the attribute, the question may be

answered by a complete sentence or simply by a phrase.

The user may ask the system specific questions about the queuing model,

and the system will respond by generating the answers from the information

in the appropriate parts of the IPD. To check the entire IPD as it exists

at any time, the user may request that an English problem-description be

produced. Such a description consists of all the information in the IPD as

it is converted into English by the encoding rules (see line 14 of Fig. D7-1).

Specifically, for each action in the IPD, the system generates one or more

statements describing the type of action; its agent, object, and location; what

action, if any, follows (if none, a new paragraph is started); and, if applicable,

an inter-event time or duration. Conditional successor actions may result in

two sentences, with the first one having an "if" clause in it and the second one

beginning with "otherwise." After all of the actions have been described, a

374 Automatic Programming X

separate one-sentence paragraph is produced with the values of the run time

and the basic time unit.

After the dialogue is finished and all the required information is obtained,

NLPQ uses the IPD and the GPSS encoding rules to produce the desired

program in the GPSS target language. Such a program was listed in line 16

of Figure D7-1. At the beginning of the program, the definitions for the

stationary entities, mobile entities, and distributions are given. Then, for each

action, a comment consisting of a simple English action-sentence is produced,

followed by the GPSS statements appropriate to this action. For example, an

"arrive" usually produces a GENERATE and an ASSIGN, a "leave" produces

a TABULATE and a TERMINATE, and most activities produce a sequence like

QUEUE, SEIZE, DEPART, ADVANCE, and RELEASE. These are usually followed

by some sort of TRANSFER, depending upon the type of value that the action's

successor attribute has. Finally, the GPSS program closes with a "timing

loop" to govern the length of the simulation run.

Status

An NLPQ prototype system was demonstrated several times on a variety

of problems. Although the capabilities of the prototype system are limited,

the research did establish an overall framework for such a system and useful

techniques were developed. Sufficient details were worked out to allow the

system to carry out interesting interactions, as evidenced by the longer, more

complicated dialogues shown in the first four references below. More details

of the processing done by this system can be found in any of the references,

especially Heidorn (1972).

References

See Heidorn (1972, 1974, 1975a, 1975b, 1976).

D8. LIBRA

LIBRA, the EFFICIENCY-ANALYSIS expert of the PSI system (Article X.Dl),

was developed by Elaine Kant in conjunction with the PSI project at Stanford

University. The PSI system, through interaction with the user, constructs

a very high level program specification called the program model. LIBRA,

working together with the PECOS CODING expert (Article X.D4), converts

the program model into a target-language implementation. The PECOS sys-

tem supplies the transformation or refinement rules that can convert the pro-

gram model into alternative target-language implementations. Using global

efficiency analysis (with access to the entire program, as opposed to only a

local segment), LIBRA directs and explores the application of the transforma-

tion rules to produce an efficient implementation.

The transformation process consists of repeated applications of trans-

formation rules to parts of the program, in which every application results

in a specification closer to a target-language implementation. Each such

application of a rule is said to produce a partial implementation, or refinement,

of the program. Thus, refinement rules applied to refinements produce further

refinements. Because more than one refinement rule may be applicable to

the same part of a refinement, the transformation process produces a tree of

possible refinements (the actual situation is slightly more complicated, since

the order in which the rules are applied can affect the tree that is produced).

To avoid the problem of combinatorial explosion, LIBRA develops only part

of the tree.

Operation of the System

It is LIBRA'S function to analyze and guide the development of the refine-

ment tree to achieve an efficient implementation. LIBRA determines which

parts of the program to expand next and which parts not to expand at all.

In particular, when more than one refinement rule is applicable, LIBRA may
decide to apply them all, so that the resulting refinements can be considered

in greater detail, or it may decide to apply only one of the rules. In the latter

case, the refinement is implemented directly in the current node of the tree,

and the other possibilities are permanently forgone.

One of the most important ways in which LIBRA attacks the problem

of combinatorial explosion is by estimating the efficiency of possible target-

language implementations. For each refinement in the tree, LIBRA maintains

two cost estimates in the form of symbolic algebraic expressions that give the

time and space requirements for executing a certain kind of target-language

implementation. The first estimate is the default cost that might result

375

376 Automatic Programming X

if all the constructs and operators in the refinement were assigned default

implementations. The second is the optimistic cost estimate that might

result assuming (a) that certain efficient implementation techniques that have

worked in similar situations will prove successful in the present situation and

(b) that LIBRA expends enough of its own resources of time and space to carry

out these implementation techniques.

Treating these two costs as upper and lower bounds on the costs of possible

target-language implementations of the refinement, LIBRA obtains important

guidance in directing the growth of the refinement tree. These upper and

lower bounds can be used to prune a branch of the refinement tree (without

further consideration of the branch) or to calculate the effect of a partial

implementation decision on the global program cost. As discussed below in

the section on rules, the upper and lower bounds help direct attention to

high-impact areas, those areas in which effort is likely to yield the greatest

increases in overall efficiency.

Another feature of the LIBRA system, a feature implicit in the above

discussion, is the knowledge LIBRA has about the use and limits of its own
resources of time and space. This feature is important because no system can

devote unlimited effort to finding an efficient implementation—effort must

be allocated. The way in which LIBRA performs this allocation is to assign

available resources to high-impact areas, where the resources will do the most

good.

When new high-level constructs (such as new types of sorts, or trees)

are added to a program, new efficiency knowledge is needed to analyze these

concepts (their subparts, running times, data-structure accesses, etc.). LIBRA
has a model of programming concepts that is consulted when new concepts are

added. Some of the necessary information can be deduced automatically, and

the user is asked specific questions to obtain the rest. To help construct these

estimation functions, LIBRA provides a semiautomatic procedure for deriving

cost-estimation functions from the set of cost functions for the target-language

constructs.

The knowledge for managing resources, computing upper and lower cost

estimates, directing attention to different parts of the tree, making implemen-

tation decisions, and, in general, analyzing and directing the growth of the

tree is in the form of rules. Each rule consists of a condition and an action to

be performed if the condition is met. The knowledge that a rule expresses can

easily be modified since the rules are replaceable and can be added, deleted, or

altered without requiring that the system itself be modified (see Article III.C4,

in Vol. I, on production systems).

Rules—LIBRA'S Knowledge Base

The rules in LIBRA'S knowledge base generally can be divided into three

groups:

D8 LIBRA 377

1. attention and resource-management rules,

2. plausible-implementation rules, and

3. cost-analysis rules.

Attention and resource-management rules describe when to shift attention

to other nodes in the tree and also how to set priorities for refining the

different constructs and operations within a refinement node. Some of the

more important of these rules determine how LIBRA'S own resources of time

and space are to be allocated, on the basis of where they will have the greatest

impact. One of the ways of determining impact is to consider the difference

between the upper bound cost estimate (assuming default implementations)

and the optimistic lower bound cost estimate (assuming both the successful

application of efficiency techniques that have worked in similar situations and

the sufficient expenditure of resources to carry the techniques to completion).

Other rules in this group state how to shift attention among nodes. These

rules (a) cause complex programs to be expanded early to see what decisions

are involved, (b) postpone trivial decisions until important ones are made,

(c) look at all refinements in the tree and select for development the one

whose optimistic cost estimate is lowest (when resources for developing a

particular refinement are exhausted), and (d) apply a form of branch and

bound stating that (when resources allocated for considering a particular

decision are exhausted) attention should be directed to the whole tree and that

all nodes whose optimistic cost estimate is worse than the default estimate of

some other node should be eliminated. As described later, when cost-analysis

rules compare estimates, they take into account the degree of uncertainty in

the estimate.

Plausible-implementation rules express heuristics about when to limit

expansion of nodes, by making a decision about some part of an implementa-

tion. For example, when the question of how to represent a set first arises,

LIBRA performs a global examination of the program to determine all uses of

the set. If there are many places where the program checks for membership

in the set, a hash-table representation may be suggested. In general, plausible

implementation rules express knowledge derived by human or machine anal-

ysis of commonly occurring situations, such as which sorting techniques are

best for different-sized inputs. These rules also contain heuristics to make
quick decisions. Thus, if LIBRA is running out of resources, heuristics that

are not as dependable as the one just described are used to make decisions on

the spot, without creating any new nodes. These heuristics generally express

defaults, such as Use lists rather than arrays if the target language is LISP;

they are used to make the less important decisions or to make all decisions if

the total resources for writing a program are nearly exhausted.

Cost-analysis rules express how to compute, update, and compare upper

and lower bound estimates of the cost of the final implementation. The cost

estimates are in the form of symbolic algebraic expressions that may involve

378 Automatic Programming X

variables representing set sizes. The cost estimates are not computed once and

for all: Whenever a partial implementation in the refinement tree is further

refined, the cost estimates associated with that partial implementation are

incrementally updated to produce estimates that are more accurate in view

of the new information.

Cost estimates are constructed from a knowledge base that includes infor-

mation on upper and lower bounds on costs for use of time and space by indi-

vidual constructs and operations and on how to combine such cost estimates

for composite programs. The knowledge needed to incrementally update

the cost estimates is contained in rules corresponding to the particular con-

struct or operation. The method of comparing the cost estimates of different

refinements involves the addition of a bonus to the refinement that has a

greater degree of completion and that consequently has a greater certainty in

its cost estimates (default and optimistic). This feature favors a nearly com-

plete refinement with a slightly worse lower bound over a less complete (more

abstract) refinement with a slightly better lower bound. Such a preference is

desirable, since the cost estimate of the more abstract refinement is less cer-

tain and therefore may not be achievable. By giving a bonus for the degree of

completion, the cost-analysis rules take into account the likelihood of being

able to achieve the low cost.

An Example—A Simple Sort Program

Suppose that a SORT is specified as a transfer of elements from a SOURCE
sequential collection to a TARGET sequential collection that is ordered by

some relation such as LESS-THAN. After the application of some preliminary

refinement rules that do not require any decisions as to alternative choices,

three choice points remain: choosing a transfer order, and choosing repre-

sentations for SOURCE as well as for TARGET.

Since the transfer order is selected as the most important decision, LIBRA
directs attention first to that choice point. A heuristic rule is applied that

suggests the use of either an insertion sort from list to list or array to array,

or a selection sort from list to array. The different refinement possibilities are

added to the tree accordingly. Each of the branches is given a limited amount

of resources and told to focus attention only on the parts of the program

directly relevant to the transfer-order decision.

After these branches are refined within the limits of the assigned resources,

the nodes of the tree are compared. The branch and bound method does not

eliminate any of the alternatives here, but the insertion branch is selected as

it has the best lower bound (taking into account factors related to uncertainty

of estimates).

Refinement then proceeds in that node. The choice of a list or array

representation for the TARGET is made by a heuristic that says that lists are

easier to manipulate than arrays in LISP. This heuristic was applied because

D8 LIBRA 379

much of the time and space resources allocated for finding an implementation

had been consumed in the above tasks and a quick decision was required.

The choice of a list representation for TARGET forces a list representation

for SOURCE because of a suggestion made under the transfer-order heuristic.

Thereafter, the refinement process is basically straightforward, though several

choices of whether to store or recompute local variables are made.

Status

LIBRA has guided the application of the PECOS refinement rules to pro-

duce efficient implementation of several variants of simple database-retrieval,

sorting, and concept-formation programs (see Article X.Dl for an example of

a concept-formation program). Current plans include extending the problem

area to include simple algorithms for finding prime numbers and for reaching

nodes in a graph. For an efficiency expert to be of use in a complete automatic-

programming system, a good deal more research is needed. Higher level

optimizations, extended symbolic analysis and comparison capabilities, and

more domain expertise are some obvious extensions. Automatic bookkeeping

of heuristics and perhaps even automatic generation of heuristics from an

analysis of symbolic cost estimates of target-language concepts are some long-

range goals.

To write more complex programs such as compilers or operating systems,

additional efficiency rules would have to be provided, rules about concepts

such as bit packing, machine interrupts, and multiprocessing. However, even

with such additions, the efficiency techniques employed by the LIBRA system

should be significant in controlling the problem of combinatorial explosion

that arises during the search for efficient implementations.

References

See Kant (1979); also, Barstow and Kant (1977) and Kant (1977, 1978).

Bibliography

List of Abbreviations

ACM Association for Computing Machinery

AFIPS American Federation of Information Processing Societies

AMS American Mathematical Society

CACM Communications of the Association for Computing Machinery

IEEE Institute for Electrical and Electronic Engineers

IFIPS International Federation of Information Processing Societies

IJCAI International Joint Conferences on AI

SIGART ACM Special Interest Group on AI

SIGCSE ACM Special Interest Group on Computer Science Education

SIGCUE ACM Special Interest Group on Computer Uses in Education

SIGGRAPH ACM Special Interest Group on Graphics

SIGPLAN ACM Special Interest Group on Programming Languages

TINLAP Workshops on Theoretical Issues in Natural Language Processing

BIBLIOGRAPHY

Abelson, H., and diSessa, A. 1981. Turtle geometry: The computer as a medium for

exploring mathematics. Cambridge, Mass.: MIT Press.

Aikins, J. 1980. Prototypes and production rules: A knowledge representation for

computer consultations. Rep. No. STAN-CSD-80-814, Computer Science Dept.,

Stanford University. (Doctoral dissertation.)

AIM Workshop Proceedings. Proceedings of the Annual AIM Workshops. 1975-1981.

Computer Science Dept., Rutgers University.

Allen, J. 1978. Anatomy of LISP. New York: McGraw-Hill.

Amarel, S. 1972. Representation and modeling in problems of program formation.

In B. Meltzer and D. Michie (Eds.), Machine Intelligence 6. New York: American

Elsevier, 411-466.

Ashton-Warner, S. 1963. Teacher. New York: Simon and Schuster.

Atkinson, R. C. 1972. Ingredients for a theory of instruction. American Psychologist

27:921-931.

Atkinson, R. C, and Wilson, H. A. (Eds.). 1969. Computer- assisted instruction. New
York: Academic Press.

Austin, H. 1974. A computational model of the skill of juggling. Al Memo 330,

AI Laboratory, Massachusetts Institute of Technology.

Backus, J. W. 1958. Automatic programming-properties and performance of

FORTRAN systems I and II. Proceedings of the Symposium on the Mechanisation of

Thought Processes. Teddington, Middlesex, England: National Physical Laboratory.

Backus, J. 1978. Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs. CACM 21:613-641.

Backus, J. W., and Herrick, H. 1954. IBM 701 Speedcoding and other automatic

programming systems. Proceedings of the Symposium on Automatic Programming for

Digital Computers, Office of Naval Research, Washington, D. C.

Balzer, R. M. 1973. A global view of automatic programming. IJCAI 3, 494-499.

Balzer, R. M., and Goldman, N. 1979. Principles of good software specification and

their implications for specification languages. Proceedings of the IEEE Specification

of Reliable Software Conference, Cambridge, Mass.

Balzer, R. M., Goldman, N., and Wile, D. 1976. On the transformational implemen-

tation approach to programming. Second International Conference on Software En-

gineering, 337-344.

Balzer, R. M., Goldman, N., and Wile, D. 1977. Informality in program specifi-

cation. IJCAI 5, 389-397.

Balzer, R. M., Goldman, N., and Wile, D. 1978. Informality in program specifica-

tions. IEEE Transactions on Software Engineering SE-4 2:94-103.

Bamberger, J. 1974. The luxury of necessity. AI Memo 312, AI Laboratory, Massa-

chusetts Institute of Technology.

383

384 Bibliography

Baron, R. V. 1977. Structural analysis in a very high level language. Master's thesis,

Massachusetts Institute of Technology.

Barr, A. 1979. Meta-knowledge and cognition. IJCAI 6, 31-33.

Barr, A., and Atkinson, R. C. 1977. Adaptive instructional strategies. In H. Spada

and W. F. Kempf (Eds.), Structural models of thinking and learning. Bern: Hans

Huber.

Barr, A., Beard, M., and Atkinson, R. C. 1975. A rationale and description of a CAI

program to teach the BASIC programming language. Instructional Science 4:1-31.

Barr, A., Beard, M., and Atkinson, R. C. 1976. The computer as a tutorial lab-

oratory: The Stanford BIP project. International Journal of Man-Machine Studies

8:567-596.

Barstow, D. 1977. A knowledge based system for automatic program construction.

IJCAI 5, 382-388.

Barstow, D. 1978. Codification of programming knowledge: Graph algorithms.

Rep. No. TR-149, Computer Science Dept., Yale University.

Barstow, D. 1979. Knowledge-based program construction. Amsterdam: Elsevier.

Barstow, D. R., and Kant, E. 1977. Observations on the interaction between cod-

ing and efficiency knowledge in the PSI system. In Proceedings of the Second

International Conference on Software Engineering. Long Beach, Calif.: Computer

Society, Institute of Electrical and Electronics Engineers, Inc., 19-31.

Bauer, M. 1975. A basis for the acquisition of procedures from protocols. IJCAI 4,

226-231.

Bennett, J. S., Creary, L. A., Engelmore, R. M., and Melosh, R. E. 1978. SACON:
A knowledge-based consultant in structural analysis. Heuristic Programming

Project Rep. No. HPP-78-23, Computer Science Dept., Stanford University.

Biermann, A. W. 1972a. Computer program synthesis from computation traces.

Symposium on Fundamental Theory of Programming, Kyoto University, Kyoto, Japan.

Biermann, A. W. 1972b. On the inference of Turing machines from sample com-

putations. Artificial Intelligence 3:181-198.

Biermann, A. W. 1976. Approaches to automatic programming. In M. Rubinoff

and M. C. Yovits (Eds.), Advances in computers (Vol. 15). New York: Academic

Press, 1-63.

Biermann, A. W., and Feldman, J. A. 1970. On the synthesis of finite-state accep-

tors. AI Memo 114, AI Laboratory, Stanford University.

Biermann, A. W., and Krishnaswamy, R. 1974. Constructing programs from ex-

ample computations. Rep. No. OSU-CISRC-TR-74-5, Computer and Information

Science Research Center, Ohio State University.

BiggerstafT, T. J. 1976. C2: A super-compiler approach to automatic program-

ming. Tech. Rep. 76-01-01, Computer Science Dept., University of Washington.

(Doctoral dissertation.)

Blaine, L. H., and Smith, R. L. 1977. Intelligent CAI: The role of curriculum in sug-

gesting computational models of reasoning. Proceedings: 1977 Annual Conference,

ACM, Seattle.

Blum, R. L., and Wiederhold, G. 1978. Inferring knowledge from clinical data

banks: Utilizing techniques from artificial intelligence. In Proceedings of the Second

Bibliography 385

Annual Symposium on Computer Application in Medical Care, IEEE, Washington, D.C.,

303-307.

Bobrow, D. G. 1972. Requirements for advanced programming systems for list

processing. CACM 7:618-627.

Bobrow, D. G., and Wegbreit, B. 1973. A model and stack implementation of

multiple environments. CACM 10:591-602.

Bobrow, D. G., and Winograd, T. 1977. An overview of KRL, a knowledge repre-

sentation language. Cognitive Science 1:3-46.

Borning, A. 1979. THINGLAB: A constraint simulation laboratory. Rep. No. CS-
79-746, Computer Science Dept., Stanford University. (Doctoral dissertation.)

Brown, G. P. 1977. A Framework for processing dialogue. Rep. No. TR-182, Lab-

oratory for Computer Science, Massachusetts Institute of Technology.

Brown, H., and Masinter, L. 1974. An algorithm for the construction of the graphs

of organic molecules. Discrete Mathematics 8:227.

Brown, H., Masinter, L., and Hjelmeland, L. 1974. Constructive graph labeling

using double cosets. Discrete Mathematics 7:1.

Brown, J. S. 1977. Uses of artificial intelligence and advanced computer technology

in education. In R. J. Seidel and M. Rubin (Eds.), Computers and communications:

Implications for education. New York: Academic Press, 253-270.

Brown, J. S., and Burton, R. R. 1978a. Diagnostic models for procedural bugs in

basic mathematical skills. Cognitive Science 2:155-192.

Brown, J. S., and Burton, R. R. 1978b. Multiple representations of knowledge for

tutorial reasoning. In D. G. Bobrow and A. Collins (Eds.), Representation and

understanding: Studies in cognitive science. New York: Academic Press, 311-349.

Brown, J. S., Burton, R. R., and Bell, A. G. 1974. SOPHIE: A sophisticated instruc-

tional environment for teaching electronic troubleshooting (an example of AI in

CAI). BBN Rep. No. 2790, Bolt Beranek and Newman, Inc., Cambridge, Mass.

Brown, J. S., Burton, R. R., and de Kleer, J. In press. Knowledge engineering and

pedagogical techniques in SOPHIE I, II, and III. In D. Sleeman and J. S. Brown

(Eds.), Intelligent tutoring systems. London: Academic Press.

Brown, J. S., Burton, R. R., Hausmann, C, Goldstein, I., Huggins, B., and Miller, M.

1977. Aspects of a theory for automated student modelling. BBN Rep. No. 3549,

Bolt Beranek and Newman, Inc., Cambridge, Mass.

Brown, J. S., Burton, R. R., and Larkin, K. M. 1977. Representing and using

procedural bugs for educational purposes. Proceedings: 1977 Annual Conference,

ACM, Seattle, 247-255.

Brown, J. S., Collins, A., and Harris, G. 1978. Artificial intelligence and learning

strategies. In H. O'Neil (Ed.), Learning strategies. New York: Academic Press,

107-140.

Brown, J. S., and Goldstein, I. P. 1977. Computers in a learning society. Testimony

for the House Science and Technology Subcommittee on Domestic and International

Planning, Analysis, and Cooperation.

Brown, J. S., Rubinstein, R., and Burton, R. 1976. Reactive learning environment

for computer assisted electronics instruction. BBN Rep. No. 3314, Bolt Beranek

and Newman, Inc., Cambridge, Mass.

386 Bibliography

Brown, J. S., and Traub, J. F. 1971. On Euclid's algorithm and the computation

of polynomial greatest common divisors. J. ACM 18:505-514.

Brown, J. S., and VanLehn, K. 1980. Repair theory: A generative theory of bugs in

procedural skills. Cognitive Science 4:379-426.

Buchanan, B. G. 1976. Scientific theory formation by computer. Proceedings of

NATO Advanced Study Institute on Computer Oriented Learning Processes, Noordhoff,

Leydon, 515-530.

Buchanan, B. G., and Feigenbaum, E. A. 1978. DENDRAL and Meta-DENDRAL:
Their applications dimension. Journal of Artificial Intelligence 11:5-24.

Buchanan, B. G., Smith, D. H., White, W. C., Gritter, R. J., Feigenbaum, E. A.,

Lederberg, J., and Djerassi, C. 1976. Applications of artificial intelligence for

chemical inference XXII. Automatic rule formation in mass spectrometry by

means of the Meta-DENDRAL program. Journal of the American Chemical Society

98:6168-6178.

Buchanan, B. G., Sutherland, G. L., and Feigenbaum, E. A. 1969. Heuristic DEN-
DRAL: A program for generating explanatory hypotheses in organic chemistry.

In B. Meltzer and D. Michie (Eds.), Machine Intelligence 4- Edinburgh: Edinburgh

University Press, 209-254.

Buchanan, B. G., Sutherland, G. L., and Feigenbaum, E. A. 1970. Rediscovering

some problems of artificial intelligence in the context of organic chemistry. In

B. Meltzer and D. Mitchie (Eds.), Machine Intelligence 5. Edinburgh: Edinburgh

University Press, 253-280.

Buchs, A., Delfino, A. B., Dufrleld, A. M., Djerassi, C., Buchanan, B., Feigenbaum,

E. A., and Lederberg, J. 1970. Applications of artificial intelligence for chemical

inference VI. Approach to a general method of interpreting low resolution mass

spectra with a computer. Helvetica Chemica Acta 53:1394.

Burstall, R. M., Collins, J. S., and Popplestone, R. J. 1968. The POP-2 papers.

Edinburgh: Edinburgh University Press.

Burstall, R. M., Collins, A., and Popplestone, R. J. 1971. Programming in POP-2.

Edinburgh: Edinburgh University Press.

Burstall, R. M., and Darlington, J. 1977. A transformation system for developing

recursive programs. J. ACM 24:44-67.

Burton, R. R. 1976. Semantic grammar: A technique for efficient language understanding

in limited domains. Doctoral dissertation, Computer Science Dept., University of

California, Irvine.

Burton, R. R., and Brown, J. S. 1976. A tutoring and student modelling paradigm

for gaming environments. SIGCSE Bulletin 8:236-246.

Burton, R. R., and Brown, J. S. 1979a. An investigation of computer coaching for

informal learning activities. International Journal of Man-Machine Studies 11:5-24.

Burton, R. R., and Brown, J. S. 1979b. Toward a natural-language capability for

computer-assisted instruction. In H. O'Neil (Ed.), Procedures for instructional sys-

tems development. New York: Academic Press, 273-313.

Carbonell, J. R. 1970a. AI in CAI: An artificial intelligence approach to computer-

aided instruction. IEEE Transactions on Man-Machine Systems MMS-ll(4):190-202.

Carbonell, J. R. 1970b. Mixed-initiative man-computer instructional dialogues.

BBN Rep. No. 1971, Bolt Beranek and Newman, Inc., Cambridge, Mass.

Bibliography 387

Carbonell. J. R., and Collins, A. 1973. Natural semantics in artificial intelligence.

IJCAI3, 344-351.

Carhart, R. E, and Smith, D. H. 1976. Applications of artificial intelligence for

chemical inference XX. Intelligent use of constraints in computer-assisted struc-

ture elucidation. Computers and Chemistry 1:79.

Carhart, R. E., Smith, D. H., Brown, H., and Djerassi, C. 1975. Application-

of artificial intelligence for chemical inference XVII. An approach to computer-

assisted elucidation of molecular structure. Journal of the American Chemical Society

97:5755-5762.

Carr, B., and Goldstein, I. 1977. Overlays: A theory of modeling for computer aided

instruction. AI Memo 406, AI Laboratory, Massachusetts Institute of Technology.

Chang, C. L. 1978. DEDUCE 2: Further investigations of deduction in relational

databases. In H. Gallaire and J. Minker (Eds.), Logic and databases. New York:

Plenum, 201-236.

Charniak, E., Riesbeck, C, and McDermott, D. 1979. Artificial intelligence program-

ming. Hillsdale, N.J.: Lawrence Erlbaum.

Church, A. 1941. Calculi of lambda conversion. Princeton, N.J. : Princeton University

Press.

Clancey, W. J. 1978. An antibiotic therapy selector which provides for explana-

tions. Heuristic Programming Project Memo HPP-78-26, Computer Science Dept ..

Stanford University.

Clancey, W. J. 1979a. Dialogue management for rule-based tutorials. IJCAI 6, 155—

161.

Clancey, W. J. 1979b. Transfer of rule-based expertise through a tutorial dialogue.

Rep. No. STAN-CS-769, Computer Science Dept,, Stanford University. (Doctoral

dissertation.)

Clancey, W. J. 1979c. Tutoring rules for guiding a case method dialogue. Interna-

tional Journal of Man-Machine Studies 11:25-49.

Clancey, W. J. In press-a. The epistemology of a rule-based expert system: A
framework for explanation. Submitted to Artificial Intelligence.

Clancey, W. J. In press-b. Methodology for building an intelligent tutoring system.

To appear in W. Kintsch-(Ed.), Methods and tactics in cognitive science.

Clancey, W. J., and Letsinger, R. 1981. NEOMYCIN: Reconfiguring a rule-based

expert system for application to teaching. IJCAI 7, 829-836.

Clark, K., and Sickel, S. 1977. Predicate logic: A calculus for deriving programs.

IJCAI 5, 419-420.

Clocksin, W. F., and Mellish, C. S. 1981. Programming in PROLOG. New York:

Springer-Verlag.

Codd, E. F., Arnold, R. S., Cadiou, J. M., Chang, C. L., and Roussopoulos. N.

1978. RENDEZVOUS version 1: An experimental English-language query formula-

tion system for casual users of relational databases. Rep. No. RJ-2 144(29407).

Computer Sciences Dept., Thomas J. Watson Research Center, IBM. Yorktown

Heights, N.Y.

Collins, A. 1976. Processes in acquiring knowledge. In R. C. Anderson, R. J. Spiro.

and W. E. Montague (Eds.), Schooling and the acguisition of knowledge. Hillsdale.

N.J.: Lawrence Erlbaum, 339-363.

388 Bibliography

Collins, A. 1978a. Fragments of a theory of human plausible reasoning. TINLAP-2,

194-201.

Collins, A. 1978b. Reasoning from incomplete knowledge. In D. G. Bobrow and

A. Collins (Eds.), Representation and understanding: Studies in cognitive science. New
York: Academic Press, 383-415.

Collins, A., Warnock, E. H., and Passafiume, J. J. 1974. Analysis and synthesis

of tutorial dialogues. BBN Rep. No. 2789, Bolt Beranek and Newman, Inc.,

Cambridge, Mass.

Corey, E. J., and Wipke, W. T. 1969. Computer assisted design of complex organic

synthesis. Science 166:178-192.

Croft, J. 1972. Is computerized diagnosis possible? Computers and Biomedical Re-

search 5:351-367.

Crowder, N. A. 1962. Intrinsic and extrinsic programming. In J. E. Coulson (Ed.),

Proceedings of the Conference on Application of Digital Computers to Automated Instruc-

tion. New York: Wiley, 58-65.

Damerau, F. J. 1979. The transformational question answering (TQA) system: Op-

erational statistics—1978. Rep. No. RC-7739 (No. 33522), Computer Sciences

Dept., Thomas J. Watson Research Center, IBM, Yorktown Heights, N.Y.

Darlington, J., and Burstall, R. M. 1973. A system which automatically improves

programs. IJCAI 3, 479-485.

Davies, D., et al. 1973. POPLER 1.5 reference manual. Edinburgh: University of

Edinburgh.

Davis, R. 1976. Applications of meta-level knowledge to the construction, main-

tenance, and use of large knowledge bases. Memo AIM-283, AI Laboratory,

and Rep. No. STAN-CS-76-552, Computer Science Dept., Stanford University.

(Doctoral dissertation.) Reprinted in R. Davis and D. Lenat (Eds.), Knowledge-

based systems in artificial intelligence. New York: McGraw-Hill, 1982, 229-490.

Davis, R. 1977. Interactive transfer of expertise: Acquisition of new inference rules.

IJCAI 5, 321-328.

Davis, R. 1978. Knowledge acquisition in rule-based systems: Knowledge about rep-

resentations as a basis for system construction and maintenance. In D. Waterman
and F. Hayes-Roth (Eds.), Pattern- directed inference systems. New York: Academic

Press, 99-134.

Davis, R. 1980. Meta-rules: Reasoning about control. AI Journal 15:179-222.

Davis, R., and Buchanan, B. 1977. Meta-level knowledge: Overview and applica-

tions. IJCAI 5, 920-928.

de Kleer, J., Doyle, J., Steele, G. L., Jr., and Sussman, G. J. 1979. Explicit control

of reasoning. In P. J. Winston and R. H. Brown (Eds.), Artificial intelligence: An
MIT perspective. Cambridge, Mass.: MIT Press, 93-116.

Doyle, J. 1979. A truth maintenance system. Artificial Intelligence 12:231-272.

Doyle, J. 1980. A model for deliberation, action, and introspection. Rep. No.

TR-581, AI Laboratory, Massachusetts Institute of Technology. (Doctoral disser-

tation.)

Doyle, J., and London, P. E. 1980. Selected descriptor index bibliography to the

literature on belief revision. SIGART Newsletter 71:7-23.

Bibliography 389

Duda, R. 0., and Gaschnig, J. G. 1981. Knowledge-based expert systems come of

age. BYTE 6:238-281.

Duda, R., Gaschnig, J., and Hart, P. E. 1979. Model design in the PROSPECTOR
consultant system for mineral exploration. In D. Michie (Ed.), Expert systems in

the micro- electronic age. Edinburgh: Edinburgh University Press, 153-167.

Duda, R. O., Gaschnig, J., Hart, P. E., Konolige, K., Reboh, R., Barrett, P.,

and Slocum, J. 1978. Development of the PROSPECTOR consultation system for

mineral exploration. Final Report, SRI Projects 5821 and 6415, SRI International,

Inc., Menlo Park, Calif.

Duda, R. O., Hart, P. E., Nilsson, N. J., Reboh, R., Slocum, J., and Sutherland,

G. L. 1977. Development of a computer-based consultant for mineral exploration.

Annual Report, SRI Projects 5821 and 6415, SRI International, Inc., Menlo Park,

Calif.

Duffield, A. M., Robertson, A. V., Djerassi, C, Buchanan, B. G., Sutherland, G. L.,

Feigenbaum, E. A., and Lederberg, J. 1969. Applications of artificial intelligence

for chemical inference II. Interpretation of low resolution mass spectra of ketones.

Journal of the American Chemical Society 91(11):2977-2981.

Dugdale, S., and Kibbey, D. 1977. Elementary mathematics with PLATO. Com-
puter-based Education Research Laboratory, University of Illinois, Urbana.

Engelmore, R. S., and Nii, H. P. 1977. A knowledge-based system for the inter-

pretation of protein x-ray crystallographic data. Heuristic Programming Project

Rep. No. HPP-77-2, Computer Science Dept., Stanford University.

Engelmore, R. E., and Terry, A. 1979. Structure and function of the CRYSALIS
system. IJCAI 6, 250-256.

Fagan, L. 1979. Knowledge engineering for dynamic clinical settings: Giving advice in

the intensive care unit. Doctoral dissertation, Computer Science Dept., Stanford

University.

Fahlman, S. E. 1977. A system for representing and using real world knowledge. Doc-

toral dissertation, AI Laboratory, Massachusetts Institute of Technology.

Fain, J., Gorlin, D., Hayes-Roth, F., Rosenschein, S., Sowizral, H., and Waterman, D.

1981. The ROSIE language reference manual. Tech. Note N-1647-ARPA, Rand
Corp., Santa Monica, Calif.

Fateman, R. J. 1976. An approach to automatic asymptotic expansions. Symposium

on Symbolic and Algebraic Computation, ACM.

Feigenbaum, E. A. 1977. The art of artificial intelligence: Themes and case studies

in knowledge engineering. IJCAI 5, 1014-1029.

Feigenbaum, E. A., Buchanan, B., and Lederberg, J. 1971. On generality and prob-

lem solving: A case study using the DENDRAL program. In B. Meltzer and

D. Michie (Eds.), Machine Intelligence 6. New York: American Elsevier, 165-190.

Feigenbaum, E. A., Engelmore, R. S., and Johnson, C. K. 1977. A correlation

between crystallographic computing and artificial intelligence research. Acta Crys-

tallographica A33 : 1 3

.

Feigenbaum, E. A., and Feldman, J. (Eds.). 1963. Computers and thought. New York:

McGraw-Hill.

Feinstein, A. 1967. Clinical judgment. Baltimore: William and Wilkins.

Feldman, J. A., and Rovner, P. D. 1969. An ALGOL-based associative language.

CACM 8:439-449.

390 Bibliography

Feldman, J. A., Gips, J., Horning, J. J., and Reder, S. 1969. Grammatical com-

plexity and inference. AI Memo 89, AI Laboratory, Stanford University.

Feldman, J. A., Low, J. R., Swinehart, D. C., and Taylor, R. H. 1972. Recent

developments in SAIL. Rep. No. STAN-CS-308, Computer Science Dept., and

Rep. No. AIM-176, AI Laboratory, Stanford University.

Fikes, R. E. 1970. REF-ARF: A system for solving problems stated as procedures.

Artificial Intelligence 1:27-120.

Fikes, R. E. 1975. Deductive retrieval mechanisms for state description models.

IJCAI 4, 99-106.

Fischer, G., Brown, J. S., and Burton, R. R. 1978. Aspects of a theory of simplifi-

cation, debugging, and coaching. Proceedings of the Second Annual Conference of the

Canadian Society for Computational Studies of Intelligence.

Fletcher, J. D. 1975. Modeling the learner in computer-assisted instruction. Journal

of Computer-Based Instruction 1:118-126.

Floyd, R. W. 1972. Toward interactive design of correct programs. In C. V. Freiman

(Ed.), Foundations and systems, information processing 71: Proceedings of IFIPS Con-

gress 11 (Vol. 1). Amsterdam: North-Holland, 7-10.

Forgy, C., and McDermott, J. 1977. OPS, a domain-independent production system

language. IJCAI 5, 933-939.

Friedman, D. P. 1974. The little LISPer. Chicago: Science Research Associates.

Furakawa, K. 1977. A deductive question answering system on relational databases.

IJCAI 5, 59-66.

Gabriel, R. P. 1981. An organization for programs in fluid dynamics. Rep. No.

STAN-CS-81-856, Computer Science Dept., Stanford University. (Doctoral dis-

sertation.)

Gelernter, H. L., Sanders, A. F., Larsen, D. L., Agarival, K. K., Boivie, R. H.,

Spritzer, G. A., and Searleman, J. E. 1977. Empirical explorations of SYNCHEM.
Science 197:1041-1049.

Genesereth, M. R. 1976. DB: A high level data base system with inference. Memo 4,

MACSYMA Group, Massachusetts Institute of Technology.

Genesereth, M. R. 1977. The difficulties of using MACSYMA and the function of

user aids. Proceedings of the First MACSYMA Users' Conference. Rep. No. CP-2012,

NASA.

Genesereth, M. R. 1978. Automated consultation for complex computer systems. Doc-

toral dissertation, Division of Applied Sciences, Harvard University.

Genesereth, M. R. 1979. The role of plans in automated consultation systems.

IJCAI 6, 311-319.

Ginsparg, J. M. 1978. Natural language processing in an automatic program-

ming domain. Rep. No. STAN-CS-78-671, Computer Science Dept., Stanford

University. (Doctoral dissertation.)

Goldberg, A. 1973. Computer-assisted instruction: The application of theorem-

proving to adaptive response analysis. Tech. Rep. 203, Institute for Mathematical

Studies in the Social Sciences, Stanford University.

Goldstein, I. 1977. The computer as coach: An athletic paradigm for intellectual

education. AI Memo 389, AI Laboratory, Massachusetts Institute of Technology.

Bibliography 391

Goldstein, I. 1979. The genetic epistemology of rule systems. International Journal

of Man-Machine Studies 11:51-77.

Gorry, G. A., Silverman, H., and Pauker, S. G. 1978. Capturing clinical expertise:

A computer program that considers clinical response to digitalis. American J. of

Medicine 64:452-460.

Gosper, R. W. 1977. Indefinite hypergeometric sums in MACSYMA. Proceedings of

the First MACSYMA Users' Conference. Rep. No. CP-2012, NASA.

Green, C. 1969. The application of theorem proving to question-answering systems.

Memo AIM-96, Electrical Engineering Dept., and Rep. No. STAN-CS-69-138,

Computer Science Dept., Stanford University. (Doctoral dissertation.)

Green, C. 1975a. Unpublished lecture surveying automatic proramming. Computer
Science Dept., Stanford University.

Green, C. 1975b. Whither automatic programming? (Invited tutorial lecture.)

IJCAI 4.

Green, C. 1976. The design of the PSI program synthesis system. Proceedings of the

Second International Conference on Software Engineering, 4-18.

Green, C. 1977. A summary of the PSI program synthesis system. IJCAI 5, 380-381.

Green, C, et al. 1979. Results in knowledge based program synthesis. IJCAI 6,

342-344.

Green, C, and Barstow, D. 1977. A hypothetical dialogue exhibiting a knowledge

base for a program understanding system. In E. W. Elcock and D. Michie (Eds.),

Machine Intelligence 8. New York: Wiley, 335-359.

Green, C, and Barstow, D. 1978. On program synthesis knowledge. Artificial Intel-

ligence 3:241-279.

Green, C, Phillips, J., Westfold, S., Pressburger, T., Kedzierski, B., Ange-

branndt, S., Mont-Reynaud, B., and Tappel, S. 1981a. Progress on knowledge-

based programming and algorithm design. Memo KES.U.81.1, Kestrel Institute,

Palo Alto, Calif.

Green, C, Phillips, J., Westfold, S., Pressburger, T., Kedzierski, B., Ange-

branndt, S., Mont-Reynaud, B., and Tappel, S. 1981b. Research on knowledge-

based programming and algorithm design— 1981. Memo KES.U.81.2, Kestrel

Institute, Palo Alto, Calif.

Green, C, Waldinger, R., Barstow, D., Elschlager, R., Lenat, D., McCune, B..

Shaw, D., and Steinberg, L. 1974. Progress report on program understanding

systems. Memo AIM-240, AI Laboratory, Stanford University.

Green, C, and Westfold, S. 1982. Knowledge-based programming self applied.

Machine Intelligence 10. New York: Wiley.

Grignetti, M. C, Hausmann, C, and Gould, L. 1975. An intelligent on-line assistant

and tutor—NLS-SCHOLAR. Proceedings of the National Computer Conference, San

Diego, Calif, 775-781.

Grossman, R. 1976. Some data base applications of constraint expressions. Rep.

No. TR-158, Computer Science Laboratory, Massachusetts Institute of Technol-

ogy-

Gund, P., Andose, J. D., and Rhodes, J. B. 1977. Computer assisted analysis in

drug research. In W. T. Wipke and W. J. Howe (Eds.), Computer- assisted organic

synthesis. Washington, D.C.: American Chemical Society, 179-187.

392 Bibliography

Gupta, M. M., Saridis, G. N., and Gaines, B. R. 1977. FUZZY automata and decision

processes. New York: North-Holland.

Haas, N., and Hendrix, G. G. 1980. An approach to acquiring and applying knowl-

edge. Proceedings of the First Annual National Conference on AI, Stanford University,

235-239.

Hammer, M., and McLeod, D. 1978. The semantic data model: A modelling mech-

anism for data base applications. ACM, 26-36.

Hammer, M., and Ruth, G. 1979. Automating the software development process.

In P. Wegner (Ed.), Research directions in software technology. Cambridge, Mass.:

MIT Press, 767-792.

Hardy, S. 1975. Synthesis of LISP functions from examples. IJCAI 4, 240-245.

Harris, L. R. 1977. ROBOT: A high performance natural language processor for

data base query. SIGART Newsletter 61:39-40.

Hart, P. E. 1975. Progress on a computer based consultant. IJCAI 4, 831-841.

Hayes, P. J. 1975. A representation for robot plans. IJCAI 4, 181-188.

Hayes-Roth, F., Gorlin, D., Rosenschein, S., Sowizral, H., and Waterman, D. 1981.

Rationale and motivation for ROSIE. Tech. Note N-1648-ARPA, Rand Corp.,

Santa Monica, Calif.

Hayes-Roth, F., Waterman, D. A., and Lenat, D. B. (Eds.). In preparation. Building

expert systems.

Hearn, A. C. 1973. REDUCE-2 users' manual. Rep. No. UCP-19, Computational

Physics Group, University of Utah.

Heathcock, C. H., and Clark, R. D. 1976. Journal of Organic Chemistry 41:636-643.

Heidorn, G. E. 1972. Natural language inputs to a simulation programming system.

Rep. No. 55hd72101A, Naval Postgraduate School, Monterey, Calif.

Heidorn, G. E. 1974. English as a very high level language for simulation program-

ming. Proceedings of Symposium on Very High Level Language, SIGPLAN Notices

9:91-100.

Heidorn, G. E. 1975a. Augmented phrase structure grammars. In B. L. Nash-

Webber and R. C. Schank (Eds.), Theoretical issues in natural language processing.

Association for Computational Linguistics, 1-5.

Heidorn, G. E. 1975b. Simulation programming through natural language dialogue. Am-
sterdam: North-Holland.

Lleidorn, G. E. 1976. Automatic programming through natural language dialogue:

A survey. IBM J. Research and Development 4:302-313.

Heidorn, G. E. 1977. The end of the user programmer? The Software Revolution,

Infotech State of the Art Conference, Copenhagen, Denmark.

Heiser, J. F., Brooks, R. E., and Ballard, J. P. 1978. Progress report: A com-

puterized psychopharmacology advisor. Proceedings of the Eleventh Collegium Inter-

nationale Neuro-Psychopharmacologicum, Vienna, Austria.

Hendrix, G. G., and Lewis, W. H. 1981. Transportable natural language interfaces

to databases. Proceedings of the Nineteenth Annual Meeting of the Association for

Computational Linguistics, Stanford, University.

Hendrix, G. G., and Sacerdoti, E. D. 1981. Natural-language processing: The field

in perspective. BYTE 6:304-352.

Bibliography 393

Hewitt, C. 1971. Description and theoretical analysis (using schemas) of PLANNER: A
language for proving theorems and manipulating models in a robot. Doctoral disserta-

tion, AI Laboratory, Massachusetts Institute of Technology.

Hewitt, C. 1977. Viewing control structures as patterns of passing messages. Arti-

ficial Intelligence 8:323-364.

Holt, J. 1964. How children fail. New York: Delta.

Howe, J. A. M. 1973. Individualizing computer-assisted instruction. In A. Elithorn

and D. Jones (Eds.), Artificial and human thinking. Amsterdam: Elsevier, 94-101.

Howe, J. A. M, and O'Shea, T. 1976. Computational metaphors for children. Rep.

No. 24, Dept. of Artificial Intelligence, Edinburgh University.

Hunt, E. B. 1975. Artificial Intelligence. New York: Academic Press.

Illich, I. 1971. Deschooling society. New York: Harper and Row.

Jacquez, J. A. (Ed.). 1964. The diagnostic process. Proceedings of a conference spon-

sored by the Biomedical Data Processing Training Program, University of Michigan

Medical School, Ann Arbor.

Jelliffe, R. W. 1967. A mathematical analysis of digitalis kinetics in patients with

normal and reduced renal function. Mathematical Biosciences 1:305.

Jurs, P. C. 1974. Chemical data interpretation using pattern recognition tech-

niques. In W. T. Wipke, S. R. Heller, R. J. Feldman, and E. Hyde, (Eds.), Computer

representation and manipulation of chemical information. New York: Wiley, 265-285.

Kahn, K. 1976. An actor-based computer animation language. Proceedings of the

SIGGRAPH/ACM Workshop on User-Oriented Design of Interactive Graphics Systems,

37-43.

Kant, E. 1977. The selection of efficient implementations for a high level language.

Proceedings of Symposium on Artificial Intelligence and Programming Languages.

SIGART Newsletter 64:140-146.

Kant, E. 1978. Efficiency estimation: Controlling search in program synthesis. In

S. P. Ghosh and L. Y. Leonard (Eds.), AFIPS Conference Proceedings: National

Computer Conference, 47:703.

Kant, E. 1979. Efficiency considerations in program synthesis: A knowledge-based ap-

proach. Doctoral dissertation, Computer Science Dept., Stanford University.

Kaplan, S. J. 1979. Cooperative responses from a portable natural language data base

query system. Doctoral dissertation, Dept. of Computer and Information Sciences,

University of Pennsylvania.

Kay, A., and Goldberg, A. 1977. Personal dynamic media. Computer 10:31-41.

Kedzierski, B. 1982. Communication and management support in system develop-

ment environments. Proceedings of the Human Factors in Computer Systems Confer-

ence, Gaithersburg, Md.

Kellogg, C, Klahr, P., and Travis L. 1978. Deductive planning and pathfinding for

relational databases. In H. Gallaire and J. Minker (Eds.), Logic and databases. New
York: Plenum, 179-200.

Kimball, R. B. 1973. Self-optimizing computer-assisted tutoring: Theory and prac-

tice. Rep. No. 206, Institute for Mathematical Studies in the Social Sciences.

Stanford University.

394 Bibliography

King, J. J. 1981a. Modelling concepts for reasoning about access to knowledge.

Proceedings of the Workshop on Data Abstraction, Databases, and Conceptual Modelling,

Pingree Park, Colorado, 1980.

King, J. J. 1981b. Query optimization by semantic reasoning. Rep. No. CS-81-857,

Computer Science Dept., Stanford University. (Doctoral dissertation.)

Koffman, E. B., and Blount, S. E. 1973. Artificial intelligence and automatic pro-

gramming in CA1. IJCAI 3, 86-94.

Koffman, E. B., and Blount, S. E. 1975. Artificial intelligence and automatic pro-

gramming in CAI. Artificial Intelligence 6:215-234.

Kornfeld, W. A. 1979. ETHER—A parallel problem solving system. IJCAI 6, 490-

492.

Kornfeld, W. A., and Hewitt, C. 1981. The scientific community metaphor. IEEE

Transactions on Systems, Man, and Cybernetics SMC-1 1:24-33.

Kowalski, R. 1977. Predicate logic as a programming language. Amsterdam: North-

Holland.

Kunz, J., et al. 1978. A physiological rule-based system for interpreting pulmo-

nary function test results. Heuristic Programming Project Rep. No. HPP-78-19,

Computer Science Dept., Stanford University.

Laubsch, J. H. 1975. Some thoughts about representing knowledge in instructional

systems. IJCAI 4, 122-125.

Le Faivre, R. A. 1977. FUZZY reference manual. Computer Science Dept., Rutgers

University.

Lederberg, J. 1964a. Computation of molecular formulas for mass spectrometry. San

Francisco: Holden-Day.

Lederberg, J. 1964b. DENDRAL-64: A system for computer construction, enumera-

tion and notation of organic molecules as tree structures and cyclic graphs. Part I.

Notational algorithm for tree structures. Rep. No. CR-57029, NASA.

Ledley, R., and Lusted, L. 1959. Reasoning foundations of medical diagnosis. Sci-

ence 130:9-21.

Lenat, D. B. 1975. Synthesis of large programs from specific dialogues. In G. Huet

and G. Kahn (Eds.), Proving and improving programs. Rocquencourt, France: Insti-

tut de Recherche d'Informatique et d'Automatique, 225-241.

Lewis, V. E. 1977. User aids for MACSYMA. Proceedings of the First MACSYMA Users'

Conference. Rep. No. CP-2012, NASA.

Lindberg, D. A. B., Sharp, G. C, Kingsland, L. C, Weiss, S. M., Hayes, S. P.,

Ueno, H., and Hazelwood, S. E. 1980. Computer based rheumatology consultant.

In the syllabus for the Tutorial on computers in medicine: Applications of artificial

intelligence techniques, Stanford University School of Medicine.

Lindsay, R., Buchanan, B. G., Feigenbaum, E. A., and Lederberg, J. 1980. DEN-

DRAL. New York: McGraw-Hill.

Liskov, B. H., Snyder, A., Atkinson, R., and Schaffert, C. 1977. Abstraction mech-

anisms in CLU. CACM 8:564-576.

London, P. E. 1978. Dependency networks as a representation for modelling in

general problem solvers. Rep. No. TR-698, Computer Science Dept., University

of Maryland.

Bibliography 395

Long, W. 1980. Criteria for computer generated therapy advice in a clinical domain.

Conference on Computers in Cardiology, Williamsburg, Va.

Low, J. R. 1974. Automatic coding: Choice of data structures. Memo AIM-242,

AI Laboratory, Stanford University.

Low, J. R. 1978. Automatic data structure selection: An example and overview.

CACM 5:21-25.

Manna, Z., and Waldinger, R. 1975. Knowledge and reasoning in program synthesis.

Artificial Intelligence 6:175-208.

Manna, Z., and Waldinger, R. 1977. Synthesis: Dreams => programs. Rep. No.

STAN-CS-77-630, Computer Science Dept., Stanford University.

Manna, Z., and Waldinger, R. 1978. DEDALUS—The DEDuctive ALgorithm Ur-

Synthesizer. National Computer Conference, Anaheim, Calif., 683-690.

Martin, W. A. 1974. OWL notes: A system for building expert problem solving

systems involving verbal reasoning. Project MAC, Massachusetts Institute of

Technology.

Masinter, L., Sridharan, N. S., Carhart, R., and Smith, D. H. 1974. Application of

artificial intelligence for chemical inference XII: Exhaustive generation of cyclic

and acyclic isomers. Journal of the American Chemical Society 96:7702.

Mathlab Group. 1977. MACSYMA reference manual. Computer Science Laboratory,

Massachusetts Institute of Technology.

McCarthy, J. 1960. Recursive functions of symbolic expressions and their computa-

tion by machine. CACM 4:184-195.

McCarthy, J. 1978. History of LISP. SIGPLAN Notices 13:217-223.

McCarthy, J., Abrahams, P. W., Edwards, D. J., Hart, T. P., and Levin, M. I. 1962.

LISP 1.5 programmer's manual. Cambridge, Mass.: MIT Press.

McCune, B. P. 1977. The PSI program model builder: Synthesis of very high-level

programs. Proceedings of the Symposium on Artificial Intelligence and Programming

Languages, SIGART Newsletter 64:130-139.

McCune, B. 1979. Building program models incrementally from informal descriptions.

Doctoral dissertation, Computer Science Dept., Stanford University.

McDermott, D. V. 1975. Very large PLANNER-type data bases. Memo AIM-339,

AI Laboratory, Massachusetts Institute of Technology.

McDermott, D. V. 1981. Rl: The formative years. AI Magazine 2:21-29.

Miller, M. L. 1979. A structured planning and debugging environment for elemen-

tary programming. International Journal of Man-Machine Studies 1:79 95.

Miller, M. L., and Goldstein, I. 1977a. Problem solving grammars as formal tools

for intelligent CAI. Proceedings: 1977 Annual Conference, ACM, Seattle.

Miller, M. L., and Goldstein, I. 1977b. Structured planning and debugging. IJCAI 5.

Minker, J. 1978. An experimental relational data base system based on logic. In

H. Gallaire and J. Minker, (Eds.), Logic and databases. New York: Plenum.

Mitchell, T. M. 1977. Version spaces: An approach to rule revision during rule

induction. IJCAI 5, 305-310.

Mitchell, T. M. 1978. Version spaces: An approach to concept learning. Rep. No.

CS-78-711, Computer Science Dept., Stanford University. (Doctoral dissertation.)

396 Bibliography

Mitchell, T. M., and Schwenzer, G. M. 1978. Applications of artificial intelligence

for chemical inference XXV: A computer program for automated empirical 13C

NMR rule formation. Organic Magnetic Resonance 8:378.

Morgenstern, M. 1976. Automated design and optimization of information processing

systems. Doctoral dissertation, Massachusetts Institute of Technology.

Moses, J. 1971. Symbolic integration: The stormy decade. ACM 14:548-560.

Moses, J. 1975. A MACSYMA primer. Mathlab Memo No. 2, Computer Science

Laboratory, Massachusetts Institute of Technology.

Moses, J., and Yun, D. Y. 1973. The EZGCD algorithm. Proceedings of the ACM
National Convention.

Musser, D. R. 1975. Multivariate polynomial factoring. J. ACM 2:291-307.

Mylopolous, J., Bernstein, P. A., and Wong, H. K. T. 1980. A language facility for

designing database-intensive applications. ACM 5:185-207.

Newell, A., Shaw, J. C, and Simon, H. A. 1957. Programming the logic theory

machine. Proceedings of the Western Joint Computer Conference, 230-240.

Nii, H. P., and Aiello, N. 1978. AGE (Attempt to Generalize): Profile of the AGE-0
system. Heuristic Programming Project Working Paper HPP-78-5, Computer

Science Dept., Stanford University.

Nii, H. P., and Aiello, N. 1979. AGE (Attempt to Generalize): A knowledge-based

program for building knowledge-based programs. IJCAI 6, 645-655.

Nilsson, N. (Ed.). 1975. Artificial intelligence—research and applications. SRI In-

ternational, Inc., Menlo Park, Calif.

Nordyke, R., Kulikowski, C. A., and Kulikowski, C. W. 1971. A comparison of

methods for the automated diagnosis of thyroid dysfunction. Computers and Bio-

medical Research 4:374-389.

Norman, A. C. 1975. On computing with formal power series. ACM Transactions on

Mathematical Software 1:346-356.

Norman, D. A., Gentner, D. R., and Stevens, A. L. 1976. Comments on learning

schemata and memory representation. In D. Klahr (Ed.), Cognition and instruction.

Hillsdale, N.J.: Lawrence Erlbaum, 177-196.

Papert, S. 1972a. Teaching children to be mathematicians vs. teaching about math-

ematics. International Journal of Mathematics, Education, Science, and Technology

3:249-262.

Papert, S. 1972b. Teaching children thinking. Programmed Learning and Educational

Technology 9(5):245-255.

Papert, S. 1973. Uses of technology to enhance education. AI Memo 298, AI Labora-

tory, Massachusetts Institute of Technology.

Papert, S. 1980. Mindstorms: Children, computers, and powerful ideas. New York:

Basic Books.

Pauker, S., Gorry, G. A., Kassirer, J., and Schwartz, W. 1976. Towards the simula-

tion of clinical cognition—Taking a present illness by computer. American Journal

of Medicine 60:981-996.

Petry, F. E., and Biermann, A. W. 1976. Reconstruction of algorithms from memory
snapshots of their execution. Proceedings: 1976 Annual Conference, ACM, New York,

530-534.

Bibliography 397

Phillips, J. V. 1977. Program inference from traces using multiple knowledge

sources. IJCAI 5, 812.

Piaget, J. (D. Coltman, Trans.). 1970. Science of education and the psychology of the

child. New York: Viking.

Piaget, J., and Inhelder, B. (H. Weaver, Trans.). 1969. The psychology of the child.

New York: Basic Books.

Polya, G. 1954. Mathematics and plausible reasoning (2 vols.). New York: Wiley.

Polya, G. 1957. How to solve it (2nd ed.). New York: Doubleday Anchor.

Pople, H. 1977. The formation of composite hypotheses in diagnostic problem

solving—An exercise in synthetic reasoning. IJCAI 5, 1030-1037.

Popplestone, R. J. 1967. The design philosophy of POP-2. In D. Michie (Ed.),

Machine Intelligence 3. Edinburgh: Edinburgh University Press, 393-402.

Pratt, V. 1979. LISP. In J. Belzer, A. G. Holzman, and A. Kent (Eds.), Encyclopedia

of computer science and technology (Vol. 10). New York: Marcel Dekker, 78-116.

Preston, K. 1976. Computer processing of biomedical images. Computer 9:54-68.

Reiser, J. F. 1975. BAIL: A debugger for SAIL. Rep. No. STAN-CS-75-270, Com-
puter Science Dept., and AIM-270, AI Laboratory, Stanford University.

Reiser, J. F. (Ed.). 1976. SAIL. Rep. No. STAN-CS-76-574, Computer Science

Dept., and Memo AIM-289, AI Laboratory, Stanford University.

Reiter, R. 1978. On reasoning by default. TINLAP-2, 210-218.

Rich, C. 1979. A library of programming plans with applications to automated analysis,

synthesis and verification of programs. Doctoral dissertation, Massachusetts Institute

of Technology.

Rich, C, and Shrobe, H. E. 1976. Initial report on a LISP programmer's apprentice.

Rep. No. TR-354, AI Laboratory, Massachusetts Institute of Technology.

Rich, C, and Shrobe, H. E. 1978. Initial report on a LISP programmer's apprentice.

IEEE Transactions on Software Engineering SE-4(6):456-467.

Rieger, C, Rosenberg, J., and Samet, H. 1979. Artificial intelligence programming

languages for computer-aided manufacturing. IEEE Transactions on Systems, Man,

and Cybernetics SMC-9(4):205-226.

Risch, R. 1969. The problem of integration in finite terms. Transactions of the AMS
139:167-189.

Rothstein, M. 1977. A new algorithm for the integration of exponential and logarith-

mic functions. Proceedings of the First MACSYMA Users' Conference. Rep. No. CP-

2012, NASA.

Roussopoulos, N. D. 1977. A semantic network model of databases. Rep. No. 104,

Computer Science Dept., University of Toronto.

Rowe, N. 1978. An inductive tutor for context-free grammar construction. Master's

thesis, Massachusetts Institute of Technology.

Rulifson, J. F., Waldinger, J. A., and Derkson, J. A. 1971. A language for writing

problem-solving programs. Proceedings of IFIPS Congress '71, Ljubljana, Yugoslavia.

Ruth, G. 1976. Automatic design of data processing systems. Proceedings of the

Third ACM Symposium on Principles of Programming Languages, Atlanta.

Ruth, G. 1978. Protosystem I: An automatic programming system prototype. Pro-

ceedings of the National Computer Conference, Anaheim, Calif, AFIPS 47:675 681.

398 Bibliography

Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction spaces. Artificial

Intelligence 5:115-135.

Sacerdoti, E. D. 1977. A structure for plans and behavior. New York: American

Elsevier.

Sacerdoti, E. D., Fikes, R. E., Reboh, R., Sagalowicz, D., Waldinger, R. J., and

Wilber, B. M. 1976. QLISP: A language for the interactive development of com-

plex systems. SRI Tech. Note 120, AI Center, SRI International, Inc., Menlo Park,

Calif.

Safrans, C, Desforges, J., and Tsichlis, P. 1976. Diagnostic planning and cancer

management. Rep. No. TR-169, Laboratory for Computer Science, Massachusetts

Institute of Technology.

Sandewall, E. 1978. Programming in the interactive environment: The LISP ex-

perience. ACM Computing Surveys 10:35-71.

Schank, R. C, and Riesbeck, C. K. 1981. Inside computer understanding. Hillsdale,

N.J.: Lawrence Erlbaum.

Schmidt, C. F., and Sridharan, N. S. N. 1977. Plan recognition using a hypothesize

and revise paradigm: An example. IJCAI 5, 480-486.

Schroll, C, Duffield, A. M., Djerassi, C, Buchanan, B. G., Sutherland, G. L.,

Feigenbaum, E. A., and Lederberg, J. 1969. Applications of artificial intelligence

for chemical inference III. Aliphatic ethers diagnosed by their low resolution mass

spectra and NMR data. Journal of the American Chemical Society 91:7440.

Self, J. A. 1974. Student models in computer-aided instruction. International Journal

of Man-Machine Studies 6:261-276.

Shaw, D. E. 1980. Knowledge-based retrieval on a relational database machine.

Rep. No. TR-823, Computer Science Dept., Stanford University.

Shaw, D., Swartout, W., and Green, C. 1975. Inferring LISP programs from ex-

amples. IJCAI I 260-267.

Sheikh, Y. M., Buchs, A., Delfino, A. B., Schroll, G., Duffield, A. M., Djerassi, C,
Buchanan, B., Sutherland, G. L., Feigenbaum, E. A., and Lederberg, J. 1970.

Applications of artificial intelligence for chemical inference V. An approach to the

computer generation of cyclic structures. Differentiation between all the possible

isomeric ketones of composition, C6H10O. Organic Mass Spectrometry 4:493.

Shortliffe, E. H. 1976. Computer-based medical consultations: MYCIN. New York:

American Elsevier.

Shortliffe, E. H., Buchanan, B. G., and Feigenbaum, E. A. 1979. Knowledge en-

gineering for medical decision making: A review of computer-based clinical deci-

sion aids. Proceedings of the IEEE 67:1207-1224.

Shortliffe, E. H., Scott, A. C, Bischoff, M. B., Campbell, A. B., van Melle, W.,

and Jacobs, C. D. 1981. ONCOCIN: An expert system for oncology protocol

management. IJCAI 7.

Shrobe, H. E. 1978. Reasoning and logic for complex program understanding. Doctoral

dissertation, Massachusetts Institute of Technology.

Sibel, W., Furbach, U., and Schreiber, J. F. 1978. Strategies for the synthesis of

algorithms. Informatik-Fadbendik 5:97-109.

Siklossy, L. 1976. Let's talk LISP. Englewood Cliffs, N.J.: Prentice-Hall.

Bibliography 399

Siklossy, L., and Sykes, D. 1975. Automatic program synthesis from example prob-

lems. IJCAI 4, 268-273.

Silverman, H. 1975. A digitalis therapy advisor. Rep. No. TR-143, MAC Project,

Computer Science Dept., Massachusetts Institute of Technology.

Simon, H. A. 1972. The heuristic compiler. In H. A. Simon and L. Siklossy (Eds.),

Representation and meaning. Englewood Cliffs, N. J.: Prentice-Hall, 9-43.

Sleeman, D., and Brown, J. S. (Eds.). In press. Intelligent tutoring systems. London:

Academic Press.

Smith, D. H. 1975. Applications of artificial intelligence for chemical inference XV.

Constructive graph labelling applied to chemical problems. Chlorinated hydrocar-

bons. Analytical Chemistry 47:1176.

Smith, D. H., Buchanan, B. G., Engelmore, R. S., Adlercreutz, H., and Djerassi, C.

1973. Applications of artificial intelligence for chemical inference DC. Analysis

of mixtures without prior separation as illustrated for estrogens. Journal of the

American Chemical Society 95:6078.

Smith, D. H., Buchanan, B. G., Engelmore, R. S., Duffield, A. M., Yeo, A., Feigen-

baum, E. A., Lederberg, J., and Djerassi, C. 1972. Applications of artificial intel-

ligence for chemical inference VIII. An approach to the computer interpretation

of the high resolution mass spectra of complex molecules. Structure elucidation

of estrogenic steroids. Journal of the American Chemical Society 94:5962.

Smith, D. H., and Carhart, R. E. 1976. Applications of artificial intelligence for

chemical inference XXIV. Structural isomerism of mono- and sesquiterpenoid

skeleton 1,2-. Tetrahedron 32:2513.

Smith, D. H., and Carhart, R. E. 1978. Structure elucidation based on computer

analysis of high and low resolution mass spectral data. In M. L. Gross (Ed.), High

performance mass spectrometry: Chemical applications. Washington, D.C.: American

Chemical Society, 325.

Smith, R. G., and Davis, R. 1981. Frameworks for cooperation in distributed prob-

lem solving. IEEE Transactions on Systems, Man, and Cybernetics SMC-ll(l).

Smith, R. L. 1976. Artificial intelligence in CAI. Unpublished working paper, Insti-

tute for Mathematical Studies in the Social Sciences, Stanford University.

Smith, R. L., and Blaine, L. H. 1976. A generalized system for university mathe-

matics instruction. SIGCUE Bulletin 1:280-288.

Smith, R. L., Graves W. H., Blaine, L. H., and Marinov, V. G. 1975. Computer-

assisted axiomatic mathematics: Informal rigor. In O. Lacarme and R. Lewis

(Eds.), Computers in education, IFIPS (Part 2). Amsterdam: North-Holland, 803

809.

Snape, K. 1974. Doctoral dissertation, University of Oxford.

Solomon, C, and Papert, S. 1976. A case study of a young child doing turtle

graphics in LOGO. Proceedings of the AFIPS National Computer Conference,

1049-1056.

Sowa, J. F. 1976. Conceptual graphs for a data base interface. IBM J. Research and

Development 20:336-357.

Sridharan, N. S. 1978. Special issue on applications in the sciences and medicine.

AI Journal 1(1,2):195.

400 Bibliography

Stallman, R. M., and Sussman, G. J. 1977. Forward reasoning and dependency-

directed backtracking in a system for computer-aided circuit analysis. Artificial

Intelligence 9:135-196.

Stansfield, J. L., Carr, B. P., and Goldstein, I. P. 1976. WUMPUS Advisor I: A first

implementation of a program that tutors logical and probabilistic reasoning skills.

Memo 381, AI Laboratory, Massachusetts Institute of Technology.

Stefik, M. 1980. Planning with constraints. Rep. No. STAN-CS-80-784, Computer
Science Dept., Stanford University. (Doctoral dissertation.)

Steinberg, L. 1980. A dialogue moderator for program specification dialogues in the PSI

system. Doctoral dissertation, Computer Science Dept., Stanford University.

Stevens, A. L., and Collins, A. 1977. The goal structure of a socratic tutor. BBN
Rep. No. 3518, Bolt Beranek and Newman, Inc., Cambridge, Mass.

Stevens, A. L., and Collins, A. 1978. Multiple conceptual models of a complex

system. BBN Rep. No. 3923, Bolt Beranek and Newman, Inc., Cambridge, Mass.

Stevens, A. L., Collins, A., and Goldin, S. 1978. Diagnosing student's misconcep-

tions in causal models. BBN Rep. No. 3786, Bolt Beranek and Newman, Inc.,

Cambridge, Mass.

Summers, P. D. 1977. A methodology for LISP program construction from exam-

ples. /. ACM 24:161-175.

Suppes, P. 1957. Introduction to logic. New York: Van Nostrand Reinhold.

Suppes, P. (Ed.). 1981. University-level computer assisted instruction at Stanford: 1968-

1980. Stanford, Calif.: Institute for Mathematical Studies in the Social Sciences.

Sussman, G. J. 1975. A computer model of skill acquisition. New York: American

Elsevier.

Sussman, G. J., and McDermott, D. V. 1972a. Why conniving is better than plan-

ning. AI Memo 255A, AI Laboratory, Massachusetts Institute of Technology.

Sussman, G. J., and McDermott, D. V. 1972b. From PLANNER to CONNIVER:
A genetic approach. AFIPS 1171-1180.

Sussman, G. J., Winograd, T., and Charniak, E. 1971. MICRO-PLANNER reference

manual. AI Memo 203A, AI Laboratory, Massachusetts Institute of Technology.

Swartout, W. 1977a. A digitalis therapy advisor with explanations. Rep. No. TR-
176, MAC Project, Computer Science Dept., Massachusetts Institute of Technol-

ogy-

Swartout, W. 1977b. A digitalis therapy advisor with explanations. IJCAI 5,

819-825.

Swartout, W. 1981. Explaining and justifying expert consulting programs. IJCAI 7,

815-822.

Szolovits, P., and Pauker, S. 1976. Research on a medical consultation program for

taking the present illness. Proceedings of the Third Illinois Conference on Medical

Information Systems.

Szolovits, P., and Pauker, S. 1978. Categorical and probabilistic reasoning in medi-

cal diagnosis. AI Journal 11(1,2):115— 154.

Teitelman, W., et al. 1978. INTERLISP reference manual. Xerox PARC, Palo Alto,

Calif.

Teitelman, W., and Masinter, L. 1981. The INTERLISP programming environment.

IEEE Transactions on Computers C-14(4):25-35.

Bibliography 401

Terry, A. In preparation. The hierarchical control of productions systems. Doctoral

dissertation, Computer Science Dept., Stanford University.

Trager, B. M. 1978. In preparation. Integration of algebraic functions. Doctoral dis-

sertation, Computer Science Laboratory, Massachusetts Institute of Technology.

TrigobofT, M. 1978. IRIS: A Framework for the construction of clinical consultation sys-

tems. Doctoral dissertation, Computer Science Dept., Rutgers University.

Trigoboff, M, and Kulikowski, C. 1977. IRIS: A system for the propagation of

inferences in a semantic net. IJCAI 5, 274-280.

van Melle, W. 1980. A domain independent system that aids in constructing consul-

tation programs. Rep. No. STAN-CS-80-820, Computer Science Dept., Stanford

University. (Doctoral dissertation.)

Varkony, T. H., Carhart, R. E., and Smith, D. H. 1977. Computer assisted struc-

ture elucidation, ranking of candidate structures, based on comparison between

predicted and observed mass spectra. Paper presented at the ASMS meeting,

Washington, D.C.

Varkony, T. H., Smith, D. H., and Djerassi, C. 1978. Computer-assisted structure

manipulation: Studies in the biosynthesis of natural products. Tetrahedron 34:841-

852.

Wahlster, W. 1977. HAM-RPM: A knowledge based conversationalist. SIGART News-

letter 61:36-37

.

Waldinger, R. 1977. Achieving several goals simultaneously. In E. W. Elcock and

D. Michie (Eds.), Machine Intelligence 8. New York: Wiley, 94-136.

Waldinger, R., and Levitt, K. N. 1974. Reasoning about programs. Artificial Intel-

ligence 5:235-316.

Waltz, D. L. 1978. An English language question answering system for a large

relational database. CACM 21:526-539.

Wang, P., and Rothschild, L. 1975. Factoring multivariate polynomials over the

integers. Mathematics of Computation 29:935-950.

Warren, D., Pereira, L. M., and Pereira, F. 1977. PROLOG—The language and its

implementation compared with LISP. Proceedings of the ACM SIGART-SIGPLAN

Symposium on AI and Programing Languages, Rochester, N. Y.

Waterman, D. A., and Hayes-Roth, F. (Eds.). 1978. Pattern- directed inference systems.

New York: Academic Press.

Waters, R. C. 1976. A system for understanding mathematical FORTRAN pro-

grams. Memo AIM-168, AI Laboratory, Massachusetts Institute of Technology.

Waters, R. C. 1978. Automatic analysis of the logical structure of programs. Rep.

No. AI-TR-492, Massachusetts Institute of Technology. (Based on doctoral dis-

sertation, A Method for automatically analyzing the logical structure of programs, 1978.)

Wegbreit, B. 1975a. Goal-directed program transformation. Rep. No. CSL-75-8,

Xerox PARC, Palo Alto, Calif.

Wegbreit, B. 1975b. Mechanical program analysis. CACM 18:528-539.

Weiss, S. M., and Kulikowski, C. A. 1979. EXPERT: A system for developing con-

sultation nodes. IJCAI 6, 942-947.

Weiss, S. M., Kulikowski, C. A., Amarel, S., and Safir, A. 1978. A model-based

method for computer-aided medical decision-making. Artificial Intelligence 11:145-

172.

402 Bibliography

Weiss, S. M., Kulikowski, C. A., and Galen, R. S. 1981. Developing microprocessor

based expert models for instrument interpretation. IJCAI 7, 853-855.

Weiss, S., Kulikowski, C, and Safir, A. 1977. A model-based consultation system

for the long-term management of glaucoma. IJCAI 5, 826-832.

Weissman, C. 1967. LISP 1.5 Primer. Belmont, Calif.: Dickenson.

Wescourt, K. T., and Hemphill, L. 1978. Representing and teaching knowledge for

troubleshooting/debugging. Tech. Rep. 292, Institute for Mathematical Studies

in the Social Sciences, Stanford University.

Wexler, J. D. 1970. Information networks in generative computer-assisted instruc-

tion. IEEE Transactions on Man-Machine Systems MMS-1 1:181-190.

Weyhrauch, R. 1979. Prolegomena to a theory of mechanized formal reasoning.

Rep. No. STAN-CS-78-687, Computer Science Dept., Stanford University.

Wilber, B. M. 1976. A QLISP reference manual. Tech. Note 118, AI Center, SRI

International, Inc., Menlo Park, Calif.

Winograd, T. 1975. Breaking the complexity barrier again. SIGPLAN Notices

1:13-30.

Winston, P. H. 1977. Artificial intelligence. Reading, Mass: Addison-Wesley.

Winston, P. H., and Horn, B. K. P. 1981. LISP. Reading, Mass.: Addison-Wesley.

Wipke, W. T., Braun, H., Smith, C, Choplin, F., and Sieber, W. 1977. SECS—
Simulation and Evaluation of Chemical Synthesis: Strategy and planning. In

W. T. Wipke and W. J. House (Eds.), Computer-assisted organic synthesis. Washing-

ton, D.C.: American Chemical Society, 97-127.

Yob, G. 1975. Hunt the Wumpus. Creative Computing 51-54.

Yu, V. L., Buchanan, B. B., Shortliffe, E. H., Wriath, S. M., Davis, R., Scott,

A. C, and Cohen, S. N. 1979. Evaluating the performance of a computer-based

consultant. Computer Programs in Biomedicine 9:95-102.

Yu, V. L., Fagan, L. M., Wraith, S. M., Clancey, W. J., Scott, A. C, Hannigan,

J. F., Blum, R. L., Buchanan, B. G., and Cohen, S. N. 1979. Antimicrobial

selection by a computer—A blinded evaluation by infectious disease experts.

J. American Medical Association 242:1279-1282.

Zadeh, L. A. 1965. Fuzzy sets. Information and Control 8:338-353.

Zilles, S. 1975. Abstract specification for data types. IBM Research Laboratory,

San Jose, Calif.

Zippel, R. 1976. Univariate power series expansions in algebraic manipulation. Pro-

ceedings of an ACM Symposium on Symbolic and Algebraic Computation.

Indexes

NAME INDEX

Pages on which an author's work is discussed are italicized.

Abelson, R., 225, 291, 294, 383

Abrahams, P. W., 33, 395

Adlercreutz, H., 110, 399

Agarival, K. K., 139, 140, 142, 390

Aiello, N., 84, 126, 396

Aikins, J., 182, 383

Allen, J., 29, 383

Amarel, S., 325, 383, 401

Anderson, B., 255

Andose, J. D., 142, 391

Angebranndt, S., 335, 391

Arnold, R. S., 167, 383, 387

Ashton-Warner, S., 291, 383

Atkinson, R. C, 226, 228, 230, 344, 383, 384,

394

Austin, H., 293, 383

Backus, J. W., 6, 297, 383

Ballard, J. P., 84, 392

Balzer, R. M, 298, 305, 336-342, 383

Bamberger, J., 294, 383

Baron, R. V., 364-369, 384

Barr, A., 89, 226, 228, 230, 384

Barrett, P., 155, 162, 389

Barstow, D. R., 305, 307, 330, 335, 350-354,

379, 384, 391

Barton, D., 141-148

Bauer, M, 319, 325, 384

Bayes, T., 90

Beard, M, 230, 384

Bell, A. G., 229, 253, 385

Bennett, J. S., 84, 384

Bernstein, P. A., 172, 396

Biermann, A. W., 298, 305, 311, 318-319,

322, 325, 384, 396

Biggerstaff, T. J., 316, 325, 384

Bischoff, M. B., 180, 398

Blaine, L. H., 284, 290, 384, 399

Blount, S. E., 227, 233, 394

Blum, R. L., 180, 303-307, 384

Bobrow, D. G., 45, 64, 385

Boivie, R. H., 139, 140, 142, 390

Borning, A., 293, 385

Braun, H., 138, 142, 402

Brooks, R. E., 84, 392

Brown, G. P., 227, 233, 385

Brown, H., 103, 111, 115, 385, 387

Brown, J. S., 144, 227, 228, 229, 231, 233,

234, 235, £47-253, 254-260, 279-282,

385, 386, 390, 399

Buchanan, B. G., 101, 108, 109, 110, 115,

120, 123, 182, 183, 192, 386, 388, 389,

394, 398, 399

Buchs, A., 109, 115, 386, 398

Burstall, R. M., 7, 310, 314, 315, 325, 386,

388

Burton, R. R., 227, 228, 229, 231, 233, 234,

235, 247-253, 254-260, 279-282, 385,

386, 390

Cadiou, J. M., 167, 387

Campbell, A. B., 180, 398

Carbonell, J., 226, 227, 229, 236-241, 386,

387

Carhart R. E., 109, 110, 111, 112, 114, 115,

387, 395, 399, 401

Carr, B. P., 231, 233-234, 261-266, 387, 400

Chang, C. L., 167, 173, 387

Charniak, E., 10, 14, 387, 400

Choplin, J. M, 138, 142, 402

Church, A., 21, 387

Clancey, W. J., 191, 228, 229, 235, 267-278,

387

Clark, K., 138, 312, 325, 387

Clocksin, W. F., 13, 387

Codd, E. F., 167, 387

Collins, A., 7, 227, 229-230, 231, 233, 234,

235, 236-241, 242-246, 274, 386, 387.

388, 400

Collins, J. S., 7, 386

Corey, E. J., 134-138, 142, 388

Creary, L. A., 84, 384

Croft, J., 179, 388

Crowder, N. A., 226, 388

405

406 Name Index

Damerau, F. J., 165, 388

Darlington, J., 310, 314, 315, 325, 386, 388

Davies, A., 12, 53, 388

Davis, R., 46, 57, 87-101, 115, 130, 182, 192,

388

de Kleer, J., 76, 253, 385, 388

Delfino, A. B., 109, 115, 386, 398

Derkson, J. A., 11 12, 397

Desforges, J., 180, 398

diSessa, A., 225, 291, 294, 383

Djerassi, C, 109, 110, 111, 114-115, 386,

387, 389, 398, 399, 401

Doyle, J., 74, 75, 76, 388

Duda R. O., 86, 155-162, 389

Duffield, A. M, 109, 110, 115, 389, 398, 399

Dugdale, S., 255, 389

Edwards, D. J., 33, 395

Elschlager, R., 307, 391

Engelmore, R. S., 84, 110, 124, 126, 133,

389, 399

Engleman, C, 143-149

Fagan, L., 180, 182, 192, 206, 389

Fahlman, S., 146, 389

Fain, J., 84, 389

Fateman, R. J., 144, 389

Feigenbaum, E. A., 5, 84, 86, 108, 109, 110,

115, 120, 122, 123, 124, 126, 133, 183,

389, 394, 398, 399

Feinstein, A., 178, 389

Feldman, J. A., 5, 11, 41, 52, 318, 325, 384,

389, 390

Fikes, R. E., 5, 64, 69, 73, 390, 398

Fisher, G., 254, 390

Fletcher, J. D., 226, 390

Floyd, R. W., 311, 390

Forgy, C, 84, 390

Friedman, D. P., 29, 390

Furakawa, K., 170, 173, 390

Furbach, U., 310, 398

Gabriel, R. P., 329, 335, 390

Gaines, B. R., 13, 392

Galen, R. S., 222, 402

Gaschnig, J. G., 86, 162, 155, 389

Gelernter, H. L., 135-136, 139-142, 390

Genesereth, M. R., 146, 147, 232, 390

Gentner, D. R., 234, 396

Ginsparg, J. M, 327, 329, 390

Gips, J., 318, 325, 390

Goldberg, A., 228, 293, 390, 393

Goldin, S., 234, 242, 246, 400

Goldman, N., 336-342, 383

Goldstein, I., 228, 229-234, 235, 254, 260,

261-266, 288, 293, 385, 386, 387, 390,

391, 395, 400

Gorlin, D., 84, 389, 392

Gorry, G. A., 202, 205, 206-211, 391, 396

Gosper, R. W., 144, 391

Gould, L., 236, 241, 391

Graves, W. H., 284, 290, 399

Gray, N., 114

Green, C. C., 11, 305, 307, 311, 312, 313.

316, 319, 325, 326-335, 350, 391

Grignetti, M. C., 236, 241, 391

Gritter, R. J., 122, 386

Grossman, R., 146, 391

Gund, P., 142, 391

Gupta, M. M., 13, 392

Haas, N., 169, 392

Hammer, M, 172, 298, 305, 369, 392

Hardy, S., 319, 325, 392

Harris, G., 234, 385

Harris, L. R., 164, 392

Hart, P. E., 152, 153-154, 155, 160, 162, 389,

392

Hart, T. P., 33, 395

Hausmann, C. L., 236, 241, 279, 282, 386,

391

Hayes, P. J., 73, 392

Hayes, S. P., 222, 394

Hayes-Roth, F., 9, 57, 84, 86, 389, 392, 401

Hearn, A. C., 146, 392

Heathcock, C. H., 138, 391

Heidorn, G. E., 298, 305, 311, 370-374, 392

Heiser, J. F., 84, 180, 392

Hemphill, L., 234, 402

Hendrix, G. G., 166, 169, 173, 390, 392

Herrik, H., 297, 383

Hewitt, C., 9-10, 35, 46, 393

Hjelmeland, L., 115, 385

Holt, J., 291, 393

Horn, P. K. F., 14, 29, 402

Horning, J. J., 318, 325, 390

Howe, J. A. M, 225, 293, 393

Huggins, B., 282, 386

Hunt, E. B., 228, 393

Illich, I., 291-292, 393

Inhelder, B., 291, 397

Jacobs, C. D., 180, 398

Jacquez, J. A., 177, 393

Jelliffe, R. W., 206, 393

Johnson, C. K., 124, 133, 389

Jurs, P. C., 118, 393

Name Index 10;

Kahn, K., 62, 293, 393

Kant, E., 330, 335, 351, 354, 375-379, 383,

393

Kaplan, S. J., 167, 393

Kassirer, A., 202, 205, 396

Kay, A., 293, 393

Kedzierski, B., 335, 393

Kellogg, C, 173, 393

Kibbey, D., 255, 389

Kimball, R. B., 226, 393

King, J. J., 170, 171, 173, 394

Kingsland, L. C, 222, 394

Klahr, P, 173, 393

Koffman, E. B., 227, 230, 233, 394

Konolige, K., 155, 162, 389

Kornfeld, W. A., 46, 394

Kowalski, R., 312, 325, 394

Krishnaswamy, R., 318-319, 384

Kulikowski, C. A., 179, 180, 193-196, 212-

216, 217-222, 396, 401, 402

Kulikowski, C. W., 179, 396

Kunz, J., 180, 394

Larkin, K. M., 279-282, 385

Larsen, D. L., 139, 140, 142, 390

Laubsch, J. H., 227, 229, 231, 394

Le Faivre, R., 13, 394

Lederberg, J., 103, 106-110, 120, 122, 123,

386, 389, 394, 398, 399

Ledley, R., 177, 394

Lenat, D. B., 86, 307, 316, 318, 325, 391,

392, 394

Letsinger, R., 228, 277, 278, 387

Levin, M. I., 33, 395

Levitt, K., 312, 325, 401

Lewis, V. E., 147, 394

Lewis, W. H., 147, 166, 392

Lindberg, D. A. B., 222, 394

Lindsay, R., 110, 123, 394

Liskov, B. H., 343-344, 394

London, P. E, 74, 76, 389, 394

Long, W., 207-211, 395

Low, J. R., 11, 41, 52, 317, 325, 390, 395

Lusted, L., 177, 394

Manna, Z., 308, 355-363, 395

Marinov, V. V., 284, 290, 399

Martin, W. A., 143-149, 316, 325, 364-369,

395

Masinter, L., 67, 103, 111, 115, 385, 390, 400

McCarthy, J., 5, 6, 7, 15, 29, 33, 395

McCune, B., 300, 307, 329-330, 335, 391, 395

McDermott, J., 84, 390

McDermott, D. V., 10, 14, 29, 35, 56, 387,

395, 400

McLeod, D., 172, 392

Mellish, C. S., 13, 387

Melosh, R. E., 84, 384

Miller, M. L., 229, 232-233, 282, 293, 3X6.

395

Minker, J., 173, 395

Mitchell, T. M., 110, 120, 121, 123, 395, 396

Mont-Reynaud, B., 335, 391

Morgenstern, M., 364-369, 395, 396

Moses, J., 143-149, 396

Musser, D. R., 144, 396

Myers, J., 197-201

Mylopolous, J., 172, 396

Newell, A., 4, 396

Nii, H. P., 84, 126, 133, 389, 396

Nilsson, N. J., 102, 154, 160, 389, 396

Nordyke, R., 179, 396

Norman, A. C, 144, 396

Norman, D. A., 234, 396

Nourse, J., 113

O'Shea, T., 293, 393

Papert, S., 225, 291-294, 396, 399

Passafiume, J. J., 237, 388

Pauker, S. G., 180, 202-205, 206-211, 391,

396, 400

Pereira, F., 13, 401

Pereira, L. M., 13, 401

Petry, F. E., 322, 325, 396

Phillips, J., 319, 322, 324, 325. 329, 335. 391,

397

Piaget, J., 291, 397

Polya, G., 294, 397

Pople, H., 180, 197-201, 397

Popplestone, R. J., 7, 12, 397

Pratt, V. R., 29, 397

Pressburger, T., 335, 391

Preston, K., 177, 397

Quillian, M. R., 5

Raphael, B., 11

Reboh, R., 64, 69, 155, 160. 162, 389, 398

Reder, S., 318, 325, 390

Reiser, J. F., 11, 70, 397

Reiter, R., 172, 173, 239, 397

Rhodes, J. B., 142, 391

Rich, C., 343-349, 397

Rieger, C., 14, 397

Riesbeck, C. K., 14, 29, 33, 387, 398

408 Name Index

Rinehart, A. R., 141

Risch, R., 82, 144, 397

Robertson, A. V., 109, 389

Rosenberg, L., 14, 397

Rosenschein, S., 84, 389, 392

Rothschild, L., 144, 401

Rothstein, M., 144, 397

Roussopoulos, N. D., 167, 171-172, 387, 397

Rovner, P. D., 11, 381

Rowe, N., 293, 397

Rubenstein, R., 247, 248, 252, 253, 385

Rulifson, J. F., 11-12, 397

Ruth, G., 298, 305, 364-369, 392, 397

Sacerdoti, E. D., 64, 69, 164, 173, 280, 392,

398

Safir, A., 180, 193-196, 222, 402

Safrans, C, 180, 397

Sagalowicz, D., 64, 69, 398

Samet, H., 14, 397

Sanders, A. F., 139, 140, 142, 390

Sandewall, E., 65-66, 67, 398

Saridis, G. N., 13, 392

Schaffert, C., 344, 394

Schank, R., 14, 29, 33, 398

Schmidt, C. F., 13, 398

Schreiber, J. F., 310, 398

Schroll G., 109, 398

Schwartz, W., 202, 205, 396

Schwenzer, G. M., 110, 121, 396

Scott, A. C., 180, 398

Searleman, J. E., 139, 140, 142, 390

Self, J. A., 229, 235, 398

Sharp, G. C., 222, 394

Shaw, J. C., 4, 396

Shaw, D. E., 172, 307, 319, 325, 391, 398

Sheikh, Y. M., 115, 398

Shortliffe, E., 180, 183, 184-192, 398

Shrobe, H. E., 343-349, 387, 398

Sibel, W., 310, 398

Sickel, S., 312, 325, 387

Sieber, W., 138, 142, 402

Siklossy, L., 29, 319, 325, 398, 399

Silverman, H., 180, 206-211, 391, 398

Simon, H. A., 4, 317, 325, 396, 399

Sleeman, D., 228, 399

Slocum, .]., 155, 160, 162, 389

Smith, D. H., 109, 110, 111, 112, 114-115,

387, 398, 399, 401

Smith, G., 138, 142, 402

Smith, R. G., 46, 399

Smith, R. L., 228, 284, 290, 384, 399

Snape, K., 125, 399

Snyder, A., 344, 394

Solomon, C., 293, 399

Sowa, J. F., 171-172, 399

Sowizral, H., 84, 389, 392

Sridharan, N. S., 13, 86, 111, 115, 140, 183,

395, 399

Stallman, R. M., 73-74, 400

Stansfield, J. L., 261, 266, 400

Steel, J., 76, 388

Stefik, M, 84, 400

Steinberg, L., 307, 329, 391, 400

Stevens, A., 229-230, 234, 242-246, 274, 396,

400

Summers, P. D., 325, 400

Suppes, P., 227, 283-290, 400

Sussman, G., 10, 56, 73-74, 76, 316, 317-318,

325, 361, 388, 400

Sutherland, G. L., 108, 109, 110, 115, 160,

162, 389, 398

Swartout, W., 91, 180, 182, 206-211, 211,

319, 325, 398, 400

Swinehart, D. C., 11, 41, 52, 390

Sykes, D., 319, 325, 399

Szolovits, P., 180, 183, 202-205, 206, 400

Tappel, S., 335, 391

Taylor, R. H., 11, 41, 52, 390

Teitelman, W., 8, 400

Terry, A., 133, 389, 401

Trager, B. M., 144, 401

Traub, J. F., 144, 385

Travis, L., 173, 393

Trigoboff, M., 180, 212-216, 401

Tsichlis, P., 180, 398

VanLehn, K., 282, 386

van Melle, W., 84, 180, 276, 398, 401

Varkony, T. H., 109, 110, 114-115, 401

von Neumann, J., 6

Wahlster, W., 13, 401

Waldinger, R., 11, 12, 64, 69, 307, 308, 312,

325, 355-363, 391, 395, 398, 401

Waltz, D. L., 164, 401

Wang, P., 144, 401

Warnock, E. H., 237, 388

Warren, D., 13, 401

Waterman, D. A., 9, 57, 84, 86, 389, 392,

401

Waters, R. C., 343-349, 401

Wegbreit, B., 45, 315, 325, 384, 401

Weiss, S. M., 180, 193-196, 217-222, 394, 402

Weissmann, C., 29, 402

Wescourt, K., 234, 402

Westfold, S., 335, 391

Name Index 409

Wexler, J. D., 227, 402 Wipke, W. T., 134-139, 142, 388, 402

Weyhrauch, R., 13, 402 Wong, H. K. T., 172, 396

White, W. C, 122, 386

Wiederhold, G., 303-307, 384
Yeo

'

A
"'
110

'

3"

Y:
b

V
G

'l82

61

19

4

2

02

267, 402
Wile, D., 336-342, 383

Yun D 3%
Williams, C, 336-342

Wilson, H. A., 226, 383 Zadeh; Lij 13j 402

Winograd, T., 10, 64, 383, 400 Ziles, L. A., 343-344, 402

Winston, P. H., 14, 29, 86, 330-332, 402 Zippel, R., 144, 402

SUBJECT INDEX

Acceptance of expert systems, 89

Acquisition of knowledge. See Knowledge

acquisition; Learning.

Action clause of production rule, 188

Acyclic molecular structures, 106, 111

ADD list, 73

Advisor in MACSYMA, 147

AGE, 84

use of, in CRYSALIS, 126

Agenda in SCHOLAR, 239

Agricultural pest-management systems, 154

AI programming, 30-32

AI programming languages, 3-76

CONNIVER, 4, 8-10, 38-39, 50-51, 56,

60-61, 68, 146, 202

context mechanisms in, 10, 35-37, 39, 44,

46, 73

control structures in, 31-32, 45-57

database facilities in, 44

data structures in, 30-31, 34-44

features of, 30-71

FOL, 13

FUZZY, 13, 43, 53-55, 63-64

INTERLISP, 8, 67-68, 70-71, 212, 362

IPL, 4

LEAP, 11, 41, 317

LISP, 4, 5-9, 15-29, 37, 46-47, 59, 66-68,

187, 298, 300, 312-314, 355

MACLISP, 8, 202, 206, 369

MICRO-PLANNER, 10

pattern matching in, 32, 58-64

PLANNER, 8-10, 38, 47-50, 56, 60, 68,

74, 79

POP-2, 7, 12, 42, 53, 63, 70

POPLER, 12

programming environment of, 3-4, 7-9,

32, 65-71

PROLOG, 13

QA4, 11, 79

QLISP, 12, 39-41, 51-52, 61-62, 69, 362

SAIL, 11, 41-42, 52-53, 62-63, 69-70, 317

AIMDS/BELIEVER, 13

ALCHEM in SECS, 137

Algebraic manipulation, 143

ALGOL, 6, 11

Aliphatic amines, 117

Allocation of storage. See Variable scoping.

Alternative dialogues in GUIDON, 272

Ambiguity in program specification, 336 337

Analytic chemistry, 102-133

Anaphoric reference, 250

AND/OR tree, 90, 95, 134, 190, 270

Androstanes, 122

Antecedent reasoning. See Bottom-up

reasoning; Control structure;

Reasoning strategies.

Antecedent theorem in PLANNER, 38, 48,

73

Antimicrobial therapy, 184

AP2 in SAFE, 337

APL, 6

Applications of AI. See Expert system.

Applicative style of programming, 6-7, 15,

17

Apprentice for MACSYMA, 148

Approaches to automatic programming, 301,

312-325

automatic data-structure selection, 316-

317

induction, 319-325

knowledge engineering, 301, 315-316,

350-354, 375-379

problem solving, 301, 317-318, 321, 324-

325

program transformation, 301, 302, 304,

309, 314-315, 350-354, 355-363, 370

374, 375-379

program understanding, 303, 305, 343,

364-369

theorem proving, 301, 308-309, 312-314

Arithmetic skills, 279-282

Articulate expert. See also Explanation,

in ICAI systems, 230

in SOPHIE, 252

Askable vs. unaskable hypotheses, 161

Assembly, automation of, in SRI computer-

based consultant, 150-154

Assertion, 38

Assignment statement, 19

Associations. See also LEAP; Property lists,

in AI programming languages, 4

in LISP, 7

411

412 Subject Index

Associations (continued)

in SAIL, 41

Associative triple

in MYCIN, 188

in SAIL, 41

Atom in LISP, 7, 16

Atom migration in mass spectroscopy, 117

Attribute-object-value triple. See

Associative triple.

Augmented links in IRIS, 212

Automatic backtracking, 9

Automatic coding, 299. See also Automatic

programming.

Automatic derivation of NL front end, 166

Automatic programming (AP), 297 379. See

also Program specification,

approaches to, 301, 312 325

automatic data-structure selection, 316-

317

of data-processing systems, 364 369

definition of, 297-298

efficiency of synthesized code in, 302-303,

317, 327, 365, 375 379

issues in, 301 303

and learning, 297 298, 318

and LISP, 27

planning in, 339 340

program-specification methods for, 297,

299-300, 306-311, 336-337

program synthesis, 313

program understanding, 303, 305, 343,

364-369

representation of knowledge in, 315-316

representation of programs in, 319, 327,

329-330, 343-348, 375

and self-reflective programs, 297-298, 318

of simulation programs in NLPQ, 370-374

symbolic execution in, 323, 336, 339-340

systems-design issues in, 327-328

target language in, 28, 300, 355, 370

verification of synthesized code, 320, 344-

347, 355

Automatic theory formation, 116. See also

Hypothesis, formation.

Axiomatization of operations, 319

Backtracking, 121, 336, 339

automatic, 9

chronological, 50, 72

in CONNIYER, 50

dependency-directed, 73

Backward chaining, 83, 87, 93, 136.

See also Control structure;

Reasoning strategies.

as depth-first search, 189

in MYCIN, 189-191

in PROSPECTOR, 156, 160-161

Backward reasoning, 136. See also Backward
chaining; Control structure; Reasoning

strategies.

BADLIST, 107

Bag in QLISP, 34, 39 41

BAIL in SAIL, 70

Bayesian decision theory, 179, 267

Behavioral specification of programs, 336-

338, 343

Belief revision, 72-76

Best-first search, 141

BIP, 230, 234

Blackboard architecture, 31, 104, 126, 342.

See also Design notebook.

Bottom-up reasoning

in CASNET, 196

in INTERNIST, 199 200, 201

in IRIS, 214

British Museum Algorithm, 35

BUGGY, 231, 279-282, 292

evaluation of, 280

sample protocol from, 281 282

Calling hierarchy, 31

CAR in LISP, 16

Case grammar, 238

Case-method tutor, 235, 242

CASNET, 160, 180, 181, 182, 193 196, 215,

221

Categorical reasoning, 205

Causal disease pathway in CASNET, 195

Causal model in CASNET, 193-195

Causal network in CASNET, 180-181, 193-

195

CDR in LISP, 16

Cell in LISP, 4, 16-17

CENTAUR, 182

Certainty factor (CF), 13, 271, 277. See

also Hypothesis, status of, in CASNET;
Uncertainty.

in CASNET, 193, 195-196

in CRYSALIS, 131

in EXPERT, 221

in IRIS, 215

in MYCIN, 180, 188-191

Chemical applications of AI. See Expert

system.

Chess, 4, 72

CHI, 326, 333-335

Chief complaint, 202

Chronological backtracking, 9, 50, 72

Subject Index 413

Classification systems, 217

Classification tables in CASNET, 194-196

Clinical reasoning. See Diagnosis; Medical

diagnosis.

CLISP in INTERLISP, 8, 68

Closed-world assumption in SCHOLAR, 240

COBOL, 3

Code generation in automatic programming.

See Program synthesis.

Codification of programming knowledge.

See Representation of programming

knowledge.

Combinatorial explosion, 79, 134, 136, 140,

303, 313, 368. See also Search.

Communication skills of a computer-based

consultant, 150

Compiler, 3, 297

compared to AP system, 302

Completeness of program specification, 300,

308

Computer-assisted instruction (CAI),

225-294. See also Intelligent computer-

assisted instruction,

environmental approach in, 291-294

learning by doing, 291

learning resources in, 292-293

nontutorial, 291-294

teacherless learning, 293

Computer-based consultant (CBC), 177. See

also Expert system.

Advisor for MACSYMA, 147

for air-compressor assembly system (SRI),

150-154

definition of, 150

Computer coach in ICAI systems, 231, 234,

254-255, 257-259, 261-266. See also

Tutoring strategies in ICAI.

Computer games in ICAI systems, 234, 252,

254, 261-266

Computer programming. See Programming.

Concept formation, 116. See also

Hypothesis, formation.

Conceptual bugs, 279-280. See also

Diagnosis of student misconceptions.

Conditional-formation principle, 357

Conditional statements, 31

Confidence measure. See Certainty factor.

Conflict resolution in PECOS, 350

Conflicting subgoals, 361

CONGEN, 106, 111-115. See also

DENDRAL.
status of, 110, 113-115

use of constraints in, 112

user interface in, 112

CONNIVER, 4, 8-10, 146, 202

backtracking in, 50

control structures in, 50-51

data structures in, 38-39

pattern matching in, 60-61

programming environment of, 68

vs. PLANNER, 56

CONS cell in LISP, 4, 16-17

Consequent reasoning in PROSPECTOR,
156, 160-161. See also Backward

chaining.

Consequent theorems in PLANNER, 9, 12,

48

Consistency of program specifications, 302

Constraint expressions, 146

Constraint generator, 106

Constraint propagation, 146

Constraint satisfaction, 102

in CONGEN, 112

in CRYSALIS, 124, 128

in DENDRAL, 107-108

in Meta-DENDRAL, 118

in program specification, 302, 336, 338-

340

Constraints

on bond fragmentations, 106, 111

semantic, 118

in structure elucidation, 103

Constrictor relation in INTERNIST, 200

Constructive bugs, 234, 254. See also

Tutoring strategies in ICAI.

Consultation in medical diagnosis, 178

Consultation model in EXPERT, 218

Consultation system, 81, 82, 177. See also

Expert system.

Content addressing, 58

Context in dialogue, 270

Context mechanisms, 10, 35-37, 39, 44, 46,

73

Control structure. See also Reasoning

strategies,

agenda, 239

of AI programming languages, 9, 31-32,

45-57

automatic backtracking, 9

backward chaining, 83, 87, 93, 136, 156,

161, 189-191

backward reasoning, 136

bottom-up, 196

consequent reasoning, 156, 160-161

data- or event-driven processing, 129, 257

dependency-directed backtracking, 73

expectation- or goal-driven processing,

91-92, 97-101

414 Subject Index

Control structure (continued)

forward chaining, 214

forward reasoning, 136

goal tree, 90

hill climbing, 317

matching, 160, 202, 319-320

means-ends analysis, 139, 317

meta-rules, 92

opportunism, 129

pattern-directed invocation, 9

propagation, 213-215

triggering, 203-204

Conversational LISP (CLISP), 8, 68

COOP, 167

Cooperative responses in DBMS, 167

Coroutining, 45. See also Multiprocessing.

in CONNIYER, 51

in SAIL, 53

Cost

in search, 140

of tests in diagnosis, 193-194, 199

Courseware, 226, 240. See also Computer-

assisted instruction.

CPM in MACSYMA, 146

Credit assignment, 72, 88, 121

in ICAI student models, 232

Critic in ICAI student models, 233

CRYSALIS, 104, 124-133

sample protocol from, 130-133

status of, 133

Cyclic molecules, 111

Data abstraction, 172, 344

Database facilities in AI programming

languages, 44

Database management systems (DBMS),

163-173

cooperative responses in, 167

incremental query formulation, 167

logic in, 172-173

NL front ends, 164-170

query optimization in, 170-171

Database, relational, in MACSYMA, 146

Database schema, 163, 171-172

Data- or event-driven processing, 129, 257.

See also Bottom-up reasoning; Control

structure; Reasoning strategies.

Data independence in DBMS, 163

Data-manipulation language, 163

Data model in DBMS, 171-172

Data-processing systems, synthesis of, 364-

369

Data structure, 30 31, 34 44, 308, 350

automatic selection of, in AP, 316-317

Data types, 34, 39-41, 43-44

Debugging. See also Diagnosis of student

misconceptions.

in Programmer's Apprentice, 344-347

in TEIRESIAS, 192

Decision criteria in PIP, 203

Decision rules in EXPERT, 218-220

Decision tables in IRIS, 214-215

DEDALUS, 12, 302, 304, 355-363

status of, 362-363

Default reasoning, 239

DELETE list, 73

Demons, 46

as antecedent theorems in PLANNER, 38

in SAIL, 52

DENDRAL, 79, 82, 103, 104, 106-123

plan-generate-test cycle in, 106-109

status of, 109-110

use of constraints in, 107 108

Dependencies and assumptions, 72-76

Dependency-directed backtracking, 73

Depth-first search, 50, 189-190

Design notebook in Programmer's

Apprentice, 348

Diagnosis, 177, 274. See also Medical

diagnosis; Troubleshooting.

cost of tests in, 193 194, 199

decision-theoretic approaches to, 179

differential, 204

hypothesis confirmation in, 204-205

in INTERNIST, 197, 199-201

in PIP, 202, 204-205

propagation in, in IRIS, 212-215

sequential, 179

statistical approaches to, 179

teaching strategies for, 247-253, 267-278

Diagnosis of student misconceptions, 226,

254. See also Intelligent computer-

assisted instruction; Plan recognition;

Student model.

conceptual bugs, 279-280

diagnostic model for, 233, 279-280

differential modeling in, 255-256

partial solutions in, 273

in SCHOLAR, 239

in WHY, 245

Dialectical argumentation, 74

Dialogue management, 259. See also Mixed-

initiative dialogue; Natural language;

Tutoring strategies in ICAI.

agenda in SCHOLAR, 239

alternative dialogues, 272

askable vs. unaskable hypotheses in

PROSPECTOR, 161

Subject Index 415

context, 270

dialectical argumentation, 74

discourse model, 150, 238, 259, 263, 266

discourse procedure, 272-273

explicating in GUIDON, 235, 267, 272-

273

focus of attention, 351, 376

in PSI, 329

rules, 268

Socratic tutoring method, 242-246

via tutorial goals, 244

in WUSOR, 263

Difference measures, 320

Differential diagnosis, 204

Differential modeling, 255-256. See also

Diagnosis of student misconceptions;

Student model.

Digitalis Therapy Advisor, 206-211

sample protocol from, 208-211

status of, 211

validation of, 211

DIRECTOR, 293

Discourse model, 150, 238, 259, 263, 266

Discourse procedure in GUIDON, 272-273

Discovery learning. See Learning, by

discovery.

Discussion agenda in SCHOLAR, 239

Disease area in INTERNIST, 198, 200

Disease category in CASNET, 193

Disease hypothesis in INTERNIST, 197

Disease model in INTERNIST, 199

Disease process. See Monitoring dynamic

processes.

Disease tree in INTERNIST, 198

Distributed processing in PUP, 318

Documentation of programs in

Programmer's Apprentice, 344-347

Domain independence, 276. See also Tools

for building expert systems.

Domain-independent constraint

propagation, 146

Domain-independent rules, 84

Domain model in SAFE, 339

Domain-specific knowledge, 79, 129

Dotted pair, 312

Drug-preference categories in MYCIN, 191

DWIM in INTERLISP, 68

Dynamic allocation, 33. See also Variable

scoping.

Dynamic lists, 53

Dynamic processes. See Monitoring dynamic

processes.

Dynamic programming in Protosystem 1, 368

Dynamic scoping, 18, 33. See also Variable

scoping.

Early AI programs, 4

EDITSTRUC in CONGEN, 112

Education. See also Computer-assisted

instruction; Intelligent computer-

assisted instruction; Tutoring

strategies in ICAI.

applications of AI in, 225-294

environmental approach to, 225, 291-294

learning by discovery, 254

learning by doing, 291

learning environment, 292

learning resources, 292-293

LOGO lab, 225

nontutorial CAI, 291-294

pedagogical style in, 275-276

Efficiency of DBMS queries, 170-171

Efficiency of synthesized programs, 327

in AP systems, 302-303, 317

by eliminating redundant computations,

314

estimation of, 375-378

in LIBRA, 330, 351, 375-379

in Protosystem I, 368

Electron density map interpretation, 124

Electron trees, 115

Ellipsis, 165, 250

EMYCIN, 84, 183, 276

English. See Natural language.

Environment

programming, 3-4, 7, 28, 32, 65-71, 230.

232, 234

runtime, 3, 9

Environmental approach to CAI, 291-294

EPAM, 5

ESTABLISH in EXCHECK, 287

Etiology of a disease, 179

Evaluation of expert systems. See

Validation, of expert systems.

Evaluation function, 3, 27. See also

Interpreter.

EVAL in LISP, 15, 17, 28

in search, 141

Evaluation of ICAI systems. See Validation,

of ICAI systems.

Event-driven processing. See Data- or event-

driven processing.

Event list in CRYSALIS, 128

Evidence, 120

EVOKE relation in INTERNIST, 198

EXAMINE in CONGEN, 114

416 Subject Index

Examples, program specification from, 300,

306-308, 318 325

generic, 307

in PSI, 329

traces, 307-308, 321-325

EXCHECK, 227, 283-290

explanation in, 97

sample protocol from, 284 285

Expanding procedure calls, 315

Expectation- or goal-driven processing, 91-

92, 97 101. See also Backward

chaining; Control structure;

Reasoning strategies; Top-down

processing.

EXPERT, 180, 217 222

status of, 222

Expert system, 9, 79-294. See also

Knowledge engineering.

acceptance of, 89

for agricultural pest management, 154

in chemical analysis, 102-133

in chemical synthesis, 102, 134-142

for classification, 217

as consultation system, 81-82

for database management, 163-173

debugging of, in TEIRESIAS, 192

for digitalis administration, 206-211

in education, 225 194

for electromechanical assembly, 150-154

exhaustive solutions in, 177, 190

for glaucoma, 193-196, 215-216

history of, 79-80

in internal medicine, 197-201

for mathematics, 143-154

for medical diagnosis, 177 222

for mineral exploration, 154, 155-162

for renal disease, 202-205

in rheumatology, 222

size of, 85, 159

sociological considerations concerning, 177

status of, 83-85

in stereochemistry, 113

in synthetic chemistry, 134-142

tools for building, 84, 126, 183, 212-216,

217-222, 267-278

for treatment regimen, 206-211

tutorial, 267 278

validation of, 182, 192, 211, 267

Expert-systems-building tools. See Tools for

building expert systems.

Expertise, 80

in automatic programming, 315

Expertise module of ICAI systems, 229-231

and simulation, 229 230, 245-246, 251

in WEST, 256

in WUSOR, 263-264

Experts in PSI, 326. See also Knowledge

sources.

Explanation, 6, 72, 81-83, 89-91, 120

and acceptance of expert systems, 89

by articulate expert, 252

by computer coaches, 257-259

for debugging, 89, 192

in Digitalis Therapy Advisor, 206, 211

in EXCHECK, 97

in ICAI systems, 97, 228, 229

for justification of conclusions, 89

in medical consultation systems, 182

in production systems, 187-188

in Programmer's Apprentice, 348

by proof summarization in EXCHECK,
287-289

in PROSPECTOR, 155

in PSI, 329

and self-reflective programs, 6-7, 89

in TEIRESIAS, 95-97

of therapy selection in MYCIN, 191

in WUSOR, 263, 266

Extensibility, 69

Finding in medical diagnosis, 178

in EXPERT, 218-220

in PIP, 202

Flexibility. See also Self-reflective programs,

of knowledge representation, 130

and meta-knowledge, 89, 267

of a model, 118

of production rules, 228

Focus of attention

in LIBRA, 376

in PECOS, 351

FOL, 13

Formal language in AP, 301, 312-314

Formal program specifications. See also

Informality; Program specification;

Very high level language,

in DEDALUS, 355

definition of, 300

vs. informality, 326, 336

FORTRAN, 3, 5, 217, 297, 299

Forward chaining in IRIS, 214

Forward reasoning, 136. See also Bottom-

up reasoning; Control structure; Data-

or event-driven processing; Reasoning

strategies.

Fragmentation in mass spectrometry, 104,

116

Frame-oriented CAI, 226, 231

Frames

Subject Index 417

in AP systems, 316

in IRIS, 212-213

in PIP, 181, 202-204

FUNARG, 46

Function, 34

Functional Description Compiler, 317

Functional relationships, 245-246

FUZZY, 13

control structures in, 53-55

data structures in, 43

pattern matching in, 63-64

Fuzzy set, 13

Garbage collection, 4, 18

General Problem Solver (GPS), 4, 47, 79

Generality of rules for molecular processes,

120

Generalization principle in DEDALUS, 360-

361

Generate and test. See Plan-generate-test.

Generative CAI, 227, 229

Generator, 4, 45

Generic examples for program specification,

307

Generic traces for program specification, 307

Geography tutor, 236-241

Geological data models, 155

Glaucoma consultation system, 193-196,

215-216

Goal tree, 90, 95

GOODLIST, 107, 113

Goodness of fit in PIP, 202

GPSS, 303, 370-374

Gradual refinement, 350

Grammar
automatic derivation of, in TED, 166

case, 238

in DBMS, 164-165

problem-solving, 229

Grammatical inference, 116, 318

Graphics, 293

GUIDON, 6, 228, 230, 235, 243, 267-278,

292

domain independence in, 276

sample protocol from, 268-270

status of, 276-278

HACKER, 10, 315, 317-318, 361

Half-order theory of mass spectrometry,

118-119

HAM-RPM, 13

HEADMED, 180

HEARSAY, 31-32, 126, 342

Heuristic Compiler, 317

Heuristic DENDRAL. See DENDRAL.

Heuristic problem solving

in MACSYMA, 146

as search, 79

in structure elucidation, 106

in synthetic chemistry, 140, 142

Heuristics, 81, 140, 313

Hierarchical knowledge in SCHOLAR, 237

Hierarchy of procedural knowledge, 151

Hill climbing, 145, 317

HODGKINS, 180

How the West Was Won, 254, 255

Human engineering, 84. See also User

interface.

Hypothesis

askable vs. unaskable, 161

confirmation, 202, 204-205

in EXPERT, 218-220

formation, 84, 116, 124-125

in INTERNIST, 197

in medical reasoning, 179-180

propagation in PROSPECTOR, 160

status of, in CASNET, 195

Imbedding algorithm, 111

Implicit knowledge, 277

IMPLIES in EXCHECK, 286-287

IMPORT property in INTERNIST, 199

Importance tags in SCHOLAR, 237

Incomplete knowledge, 240. See also

Uncertainty.

Incremental compiler, 70, 300

Incremental query formulation, 167

Individualization of instruction, 226

Induction axioms, 313

Induction/inference in mass-spectral

processes, 116

Induction of programs. See also Automatic

programming; Examples, program

specification from; Traces,

as approach to AP, 318-325

axiomatization of operations in, 319

from examples, 318-325

and grammatical inference, 318

program schemas in, 319

from protocols, 322-325

from traces, 321-325

Inexact knowledge, 79, 81. See also

Uncertainty,

in medical reasoning, 179

Infectious-disease consultant system,

184-192

Inference engine, 189

418 Subject Index

Inference mechanism. See also Control

structure; Reasoning strategies,

constraint propagation, 146

and explanation, 90

network as, in PROSPECTOR, 158

rules, 159, 188-189

in SOPHIE, 251-252

strategies for, 239

Informality

human, studies of, 337

in mathematical reasoning, 283-290

of program specifications, 326, 336-338

Information retrieval. See Database

management systems.

Instructional programming environment

BIP, 230, 234

SPADE, 232

Instructional strategy. See Tutoring

strategies in ICAI.

Intelligent computer-assisted instruction

(ICAI), 225-294. See also Computer-

assisted instruction,

in arithmetic skills, 279-282

case-method tutor, 235, 242

computer coach, 231, 234, 254-255, 257-

259, 261-266

computer games, 234, 252, 254, 261-266

diagnosis of student misconceptions in,

226, 233, 239, 245, 254, 273, 279-280

in electronics troubleshooting, 247-253

geography tutor, 236-241

in informal mathematical reasoning, 283-

290

in logic, 283-290

in medical diagnosis, 267-278

pedagogical style in, 275

in proof theory, 283-290

in set theory, 283-290

Socratic method in, 234

survey of, 225-228

for teaching diagnostic strategies, 247-253

tutoring module, 233-235

tutoring strategies in, 228, 233, 237

Interactive dialogue. See Mixed-initiative

dialogue.

Interactive knowledge acquisition. See

Knowledge acquisition; Transfer of

expertise.

Interactive LISP. See INTERLISP.
Interactive program specification, 300, 302,

303, 310-311. See also Mixed-initiative

dialogue; Natural language; Program

specification,

in NLPQ, 370-374

in Programmer's Apprentice, 345, 348

in PSI, 327, 330-332

in SAFE, 337-338

Interactive transfer of expertise. See

Knowledge acquisition; Transfer of

expertise.

Interestingness

in selection of heuristics, 119

in synthetic chemistry, 134, 135

INTERLISP, 8, 212, 362

CLISP, 68

DWIM, 68

programmer's assistant for, 68

programming environment of, 67 68, 70-

71

Internal medicine, 197-201

Internal Problem Description (IPD) in

NLPQ, 372-373

INTERNIST, 83, 180, 181, 182, 197-201,

205

INTERNIST-II, 200-201, 215

status of, 201

Interpreter, 3. See also Evaluation function.

EVAL in LISP, 15, 17, 28

Intersection search in SCHOLAR, 239-240

INTSUM in Meta-DENDRAL, 119

IPL, 4

IRIS, 84, 160, 180, 181, 212-216

Isomers, 108

ISPEC in IRIS, 212-214

Issues-and-examples tutoring strategy, 256

issue evaluators in, 257

issue recognizers in, 257

Items in SAIL, 41

JCL, 365

Judgmental knowledge, 277. See also

Uncertainty.

Justification. See also Explanation.

for beliefs, 74

in medical consultation systems, 182

KLAUS, 169-170

sample protocol from, 169-170

Knowledge, opacity of, 82

Knowledge acquisition, 79, 80-83, 87, 91-

92, 116. See also Learning; Transfer of

expertise.

by automatic theory formation, 116

interactive, in SECS, 137

in medical consultation systems, 182

in Meta-DENDRAL, 116-123

REACT, in CONGEN, 114-115

in TEIRESIAS, 97-101, 191-192

Subject Index 419

by transfer of expertise, 116

Knowledge base, 34, 80

Knowledge-based system, 326. See also

Expert system.

Knowledge engineering, 326. See also Expert

system; Knowledge acquisition,

as approach to AP, 301, 315-316, 350-

354, 375-379

definition of, 84

in PECOS, 350-354

Knowledge representation. See

Representation of knowledge.

Knowledge sources, 125, 126

Experts in PSI, 326

in Programmer's Apprentice, 348

in SAFE, 342

LADDER, 164-166

sample protocol from, 165-166

Laser pointer for a computer-based

consultant, 150

LEAP in SAIL, 11, 41, 317

Learning, 6-7, 72, 88, 116, 293, 317. See also

Education; Knowledge acquisition.

by debugging, 318

by discovery, 254

by doing, 291

environment, 292

in HACKER, 318

resources, 292-293

and self-reflective programs, 6-7, 89, 318

statistical, in DENDRAL, 118

strategy of Meta-DENDRAL, 119

training instances for, in DENDRAL, 117

LHASA, 104, 134-142

LIBRA, 302, 304, 305, 330, 351, 375-379

LIFER, 165-166

interface for PROSPECTOR, 160

Limited inference algorithm (CPM), in

MACSYMA, 146

Link types, 212

LISP, 5-9, 15-29, 187

and automatic programming, 27

cell, 4

control structures, 46-47

data structures, 37

disadvantages of, 28-29

dotted pair, 312

formal axioms for, 312-314

INTERLISP, 8

language primitives, 19-21

machines, 9

MACLISP, 8

pattern matching, 59

programming environment, 66-67

programs as data, 26-28, 298

self-reflective programs in, 6-7, 27, 298

syntax of, 18

as target language, 28, 300, 355

List processing, 15

List structure, 4, 15-17

Logic, 283-290, 312

in DBMS, 172

programming, 13

Logic Theorist, 4, 79

Logical decision criteria in PIP, 203

LOGO, 225, 232, 291-294

MACLISP, 8, 202, 206, 369

MACSYMA, 8, 29, 79, 82, 85, 143-154

Advisor, 232

Apprentice, 148

current status of, 147-149

Man-machine interaction. See User

interface.

Managing modifications to programs in

Programmer's Apprentice, 344-347

MANIFEST relation in INTERNIST, 198

Manifestations

in INTERNIST, 197-198

in medical diagnosis, 178

Mass spectrometry, 104, 106, 111, 116

half-order theory of, 118-119

zero-order theory of, 118

Mass spectroscopy, 104

Masterscope in INTERLISP, 8

Matching. See also Pattern matching.

goodness of fit in, 202

in PIP, 202

programs to schemas, 319-320

Mathematics, 143

Mathlab 68, 143

Means-ends analysis, 139, 317

Medical diagnosis, 178-179, 274. See also

Diagnosis.

advantages of computers in, 177

errors in, 177

as hypothesis formation, 179-180

as search, 179

thresholding in, 181

Medical diagnosis systems, 80, 81, 177-222.

See also Expert system.

exhaustive solutions in, 177, 190

history of, 179-180

status of, 180-183

x-ray and ultrasound image analysis, 177

420 Subject Index

Memo function in POP-2, 53

Meta-DENDRAL, 84, 104, 106, 116-123

status of, 121-122

Meta-evaluation in SAFE, 340

Meta-knowledge, 85, 89, 91, 240 241, 267

Meta-rules, 88, 92, 130

Methods in CONNIVER, 50

MICRO-PLANNER, 10

Migration, 104

Mineral-exploration systems, 154, 155-162

Missionaries and Cannibals puzzle, 79

Mixed-initiative dialogue, 160, 234, 236-238,

247, 259, 272, 368. See also Natural

language.

in GUIDON, 267

in NLPQ, 370-374

for program specification, 311

in PSI, 326, 329-332

Socratic, 242

Model building

in PROSPECTOR, 155, 161

in SECS, 139

Modularity

in CRYSALIS, 125

in knowledge representation, 83, 155, 263

of productions, 376

in programs, 65

Molecular fragmentation, 111, 116

Molecular structures, 102

analysis of, 102-133

Monitoring dynamic processes

in CASNET, 193 194, 196

in Digitalis Therapy Advisor and VM, 206

Multiple representations of knowledge, 229

Multiprocessing, 45. See also Coroutining.

in SAIL, 52

MYCIN, 82-83, 84, 87, 90, 92, 180, 181, 182,

184-192, 205, 215, 235, 267-278, 288

NEOMYCIN, 205, 228, 277

reasoning in, 189 191

sample protocol from, 184-187

validation of, 267

Natural deduction, 283, 285-286

Natural language (NL)

anaphoric reference in, 250

ellipsis in, 165, 250

in EXCHECK, 283

front end, automatic derivation of, 166

in ICAI systems, 227

interface, 150

LIFER, 165 166

mixed-initiative dialogue, 311

in MYCIN, 192

in NLPQ, 370-374

program specification, 300, 302, 303, 310-

311, 337-338

in Programmer's Apprentice, 345, 348

in PSI, 327, 330-332

in SCHOLAR, 238-239

semantic grammar, 250-251

in SOPHIE, 250-251

in TED, 166-167

Negative evidence, 120

NEOMYCIN, 205, 228, 277

Networks. See also Representation of

Knowledge.

NIL in LISP, 16

NLPQ, 301, 302, 303, 311, 370-374

sample protocol from, 370-372

status of, 374

NLS-SCHOLAR, 236

NOAH, 12

Noise in student model, 260

Nonalgorithmic procedures, 144

Nonmonotonic reasoning, 74-75

Nontutorial CAI, 291-294

Nuclear-magnetic resonance (NMR)
spectroscopy, 122

Numerical problems, 143

ONCOCIN, 180

Opacity

of knowledge, 82, 89-90

of reasoning, 230

Open sets, 240

Open world, 240

Opportunistic problem solving, 129

Opportunistic tutoring in GUIDON, 275

OPS, 84

Optimization of code. See Efficiency of

synthesized programs.

Organic synthesis, 105, 134-142

Overlay model, 231, 256, 261, 270, 282

OWL, 182

Parallel processing, 146

Parsing, 293

in DBMS, 164-165

in SAFE, 339

Partial program specification, 301, 307, 313,

348-349

by humans, 337

in NLPQ, 370-374

in PSI, 326

in SAFE, 337-338, 341

Partial solutions, 273

Partitioned semantic net, 159

Subject Index 421

Pathogenesis of a disease, 178

Pathway in CASNET, 196

Patient management. See Monitoring

dynamic processes.

Patient-specific model, 208 211

Pattern, 35

Pattern-directed invocation, 9, 11, 32, 46, 58

Pattern-directed retrieval, 58

Pattern matching, 32, 58-64, 286

in ICAI, 231

network matching, 160

in PROSPECTOR, 155, 160

in SECS, 137

semantic, 144-145

Pattern variables, 58

PECOS, 302, 304, 305, 330, 350-354, 375,

379

status of, 353-354

Pedagogy. See Education.

Perceptual skills of a computer-based

consultant, 150

Performance grammar. See Semantic

grammar.

Personal computer, 9

PL/1, 365

Plan-generate- test, 131

in DENDRAL, 106-109

in Meta-DENDRAL, 120

Plan in Programmer's Apprentice, 303, 305,

343

Plan library in Programmer's Apprentice,

344, 348

Plan recognition, 147, 149, 232

for cooperative responses, 167

in Programmer's Apprentice, 303

PLANES, 164

Planes of knowledge in CASNET, 193

PLANNER, 8-10, 74, 79

antecedent theorems in, 38, 48, 73

chronological backtracking in, 50

consequent theorems in, 48

control structures in, 47-50

data structures in, 38

MICRO-PLANNER, 10

pattern matching in, 60

programming environment of, 68

vs. CONNIVER, 56

Planning

of program synthesis in SAFE, 339-340

in the SRI computer-based consultant,

151-152

PLATO Project, 255

Plausible reasoning, 158, 179, 199, 201, 236,

239, 241

POP-2, 7, 12

control structures, 53

data structures, 42

dynamic lists, 53

pattern matching, 63

programming environment, 70

POPLER, 12

Positive evidence, 120

Possibility list in CONNIVER, 38

Predicate calculus, 301. See also Logic.

Predicate function, 188

Premise clause of a production rule, 188

Present Illness Program (PIP), 83, 180, 181,

202-205

Probabilistic reasoning, 155, 158 160, 205

Problem area in automatic programming,

300-301

Problem-reduction space, 317

Problem solving, 9, 79. See also Expert

system; Reasoning strategies.

approach to AP, 301, 317-318, 321, 324-

325

plan-generate-test strategy in, 131

Problem-solving expertise, 247, 256, 263.

See also Expertise.

Problem-solving grammar, 229, 232

Problem space, 140

Procedural attachment, 59

Procedural knowledge representation, 9, 73,

151-152, 229, 261

Procedural net, 151, 280

Procedure-formation principle, 359

Process, 45. See also Coroutining;

Multiprocessing.

Production rule, 83, 87, 128, 129-130, 136,

212, 228, 235, 261-263

in EXPERT, 218-220

flexibility, 228, 267

in ICAI systems, 229

in mass spectrometry, 106, 116, 117-118

Production systems. See also Program

transformation as approach to AP.

conflict resolution in, 350

focus of attention in, 351

IRIS, 212-213

LIBRA, 375-379

modularity of, in LIBRA, 376

MYCIN, 187-188

in NLPQ, 370

PECOS, 350

refinement rules in, 350-351

in SAFE, 339

Program model

in LIBRA, 375

422 Subject Index

Program model (continued)

in PSI, 327, 329-330, 333

Program net in PSI, 327, 329, 330, 332

Program representation. See Representation

of programs in AP systems.

Program schemas, 319

Program specification, 297, 299-300, SOB-

SI 1. See also Automatic programming,

ambiguity of, 336-337

AP2 in SAFE, 337

behavioral, 336-338, 343

completeness of, 300

consistency of, 302

constraints in, 302, 336, 338-340

efficiency of, 336

by example, 300, 306-308, 318-325, 329

executability of, 336

formal, 300, 308-310, 355

by generic examples, 307

human, studies of, 337

informality of, 326, 336

interactive, 300

methods of, 306-311

mixed-initiative dialogue in, 311, 326,

329-333, 370-374

natural-language, 300, 302, 310-311, 327,

330-332, 337 338, 341, 345, 348, 370-

374

partial, 301, 307, 313, 326, 337 338, 341,

348-349, 370-374

protocols for, 308

in PSI, 326-332

SSL in Protosystem I, 364-369

by traces, 300, 307-308, 321-325, 329

unambiguous, in DEDALUS, 355

V in CHI, 334

very high level language, 309, 315, 326,

355-363, 364-369

vocabulary of, 336

Program synthesis, 313. See also Automatic

programming,

in PECOS, 350-354

in PSI, 330

Program transformation as approach to AP,

301, 302, 304, 309

conditional-formation principle, 357

in DEDALUS, 355-363

by eliminating redundant computations,

314

by expanding procedure calls, 315

generalization principle, 360-361

by gradual refinement, 350

in LIBRA, 375-379

in NLPQ, 370-374

in PECOS, 330, 350-354

procedure-formation principle, 359-360

recursion-formation principle, 358

by recursion removal, 314

refinement rules in, 316

refinement tree in, 375

simultaneous goals in, 361-362

Program understanding, 303, 305, 343, 364-

369

Programmer's Apprentice, 303, 305, 343-

349

sample protocol from, 344 347

status of, 349

Programmer's assistant in INTERLISP, 8,

68

Programming. See also Automatic

programming; Programming
environment; Programming
languages; Representation of

programming knowledge,

applicative style of, 6-7

codification of programming knowledge in

PECOS, 350-354

current problems in, and AP, 299

debugging in Programmer's Apprentice,

344-347

definition of, 297

documentation in Programmer's

Apprentice, 344-347

in logic, 13

modification management in

Programmer's Apprentice, 344-347

pattern-directed invocation in, 9

recursion in, 6

verification in Programmer's Apprentice,

344-347

Programming environment, 3-4, 32, 65-71,

299

BIP, 230

CHI, 326, 333-335

for instruction, 230, 232, 234

interactive, 28

LISP, 7

Programmer's Apprentice, 343-349

SPADE, 232

Programming knowledge. See

Representation of programming

knowledge.

Programming languages. See also AI

programming languages.

ALGOL, 6

APL, 6

COBOL, 3

FORTRAN, 3, 5

Subject Index 423

very high level, 309, 315, 326, 355-363,

364-369

Programs as data, 7, 15, 26-28. See also

Self-reflective programs.

for explanation, 6

for learning, 6-7

PROLOG, 13

Proof checking, 283

Proof summarization in EXCHECK, 283,

287-289

Proof theory, 283-290

Propagation, 212

in IRIS, 213-215

of probabilistic hypotheses, 160

Property lists, 7, 31

PROSPECTOR, 82, 85, 155-162

natural-language interface, 160

sample protocol from, 155-158

status of, 161-162

Protection mechanism for simultaneous

subgoals, 361

Protein x-ray crystallography, 124

Protocol analysis, 237

Protocols for program specification. See

Traces.

Protosystem I, 302, 304, 364-369

status of, 369

Pruning, 114

PSI, 301, 302, 303-304, 311, 319, 326-335,

350, 375

PECOS and LIBRA, 375, 379

sample protocol from, 330-331

Psychologist module in ICAI system, 263,

265

PUFF, 180, 182-183

PUP, 318

QA4, 11, 79

QLISP, 12, 362

control structures in, 51-52

data structures in, 39-41

pattern matching in, 61-62

programming environment of, 69

segment variables in, 61

unification in, 61-62

Query optimization in QUIST, 170-171

QUIST, 170-171

REACT in CONGEN, 114-115

Reactive learning environment, 227, 247, 283

Reasoning strategies. See also Control

structure; Uncertainty.

about programs in AP, 298

bottom-up, 196, 199-201, 214

in CASNET, 195-196

categorical, 205

consequent, 156, 160-161

data- or event-driven processing, 129, 257

default, 239

dependency-directed backtracking, 73

in EXPERT, 220-222

heuristic, 81, 140, 313

hill-climbing, 145, 317

from incomplete knowledge, 236, 240

inexact, 79, 81

in INTERNIST, 199-201

intersection search, 239-240

means-ends analysis, 139, 317

in MYCIN, 189-191

plausible, 158, 179, 199, 201, 236, 239, 241

probabilistic, 155, 158-160, 205

schema matching, 319-320

in SCHOLAR, 239-241

top-down vs. bottom-up, 201

uncertainty in, 13, 131, 180, 188-191, 193,

195-196, 197, 215, 221, 271, 277

Record, 34

Recursion, 6, 15, 18

Recursion-formation principle, 358

Recursion removal, 314

REDUCE, 146

REF-ARF, 5, 79

Refinement of a program specification, 350.

See also Program transformation as

approach to AP.

in PECOS, 350-351

rules for, 375

Relational database in MACSYMA, 146

Renal disease, 202-205

RENDEZVOUS, 167-169

Representation of algebraic expressions, 147

Representation of knowledge, 7, 9, 79

about diagnosis, 212, 216

about functional relationships, 245-246

about mass spectrometry, 116-117

articulate expert, 230

associative triple, 188

in automatic programming, 315-316

blackboard architecture, 126

causal model, 193-195

closed-world assumption, 240

in DBMS, 171-173

decision rules, 218-220

decision tables, 214-215

disease model, 199

about disease progression, 196

expertise, 80

424 Subject Index

Representation of knowledge (continued)

in EXPERT, 218-220

facts, algorithms, and heuristics, 128

findings, 219

flexibility of, 89, 130, 228, 267

formal vs. informal, 128

frame, 181, 202-204, 212-213, 316

hierarchical, 237

of hypotheses, 220

in ICAI systems, 227, 229

with inexact knowledge, 180

inference network, 158

inference rules, 159

in INTERNIST, 198-199, 200-201

in IRIS, 212-213

ISPEC, 212-214

knowledge sources in, 125, 126, 326, 342,

348

logic in DBMS, 172 173

in medical diagnosis systems, 177, 180-

181

meta-knowledge in, 85, 89, 240-241, 267,

269

modularity of, 83, 125-129, 155, 263

multiple, 229

partitioned semantic net, 159

problem-solving grammars, 229

procedural, 9, 151-152, 229, 261

procedural net, 151, 280

production rules, 83, 87, 128, 187-188,

212-213, 229, 261-263

program schema, 319

in PROSPECTOR, 158-160

in SCHOLAR, 236-237

script, 243

semantic network, 146, 212-213, 229, 236-

237, 316, 323

semantic primitive in MYCIN, 187

spaces in partitioned semantic nets, 159

for synthetic chemistry, 134-138

taxonomic network, 159

uncertainty in, 180-181, 188-189, 193,

215, 221

Representation of programming knowledge.

See also Knowledge engineering,

conditional-formation principle, 357

in DEDALUS, 355-363

design notebook in Programmer's

Apprentice, 348

generalization principle, 360-361

Internal problem description (IPD), in

NLPQ, 372 373

in LIBRA, 376 378

in PECOS, 350 353

plan in Programmer's Apprentice, 343

plan library in Programmer's Apprentice,

344, 348

procedure-formation principle, 359-360

recursion-formation principle, 358

Representation of programs in AP systems.

See also Program specification,

program model, 327, 329-330, 333, 375

program net, 327, 329, 330, 332

program schema, 319

in PSI, 327

Resolution theorem proving, 11, 313

Reverse chemical reactions, 136

Revision procedure, 74

Rheumatology consultation system, 222

Risch algorithm, 82

ROBOT, 164

Robot planning, 73

Root structure in INTERNIST, 201

ROSIE, 84

Rule-based system. See Production systems.

Rule model, 91, 97-101

RULEGEN in Meta-DENDRAL, 120

RULEMOD in Meta-DENDRAL, 120

Run-time environment, 3, 9

RX, 180

SAD-SAM, 4

SAFE, 301, 302, 304, 310, 336 342

status of, 341 342

SAIL, 11, 317

associations, 41

BAIL, 70

control structures, 52-53

coroutining, 53

data structures, 41 42

demons, 52

items, 41

multiprocessing, 52

pattern matching, 62-63

programming environment, 69-70

Schema, 91, 319

SCHOLAR, 227, 229, 232, 236-241, 242,

246, 267, 292

NLS-SCHOLAR, 236

sample protocol, 238

Schooling, 291. See also Education.

Scope of variables. See Variable scoping.

Scoring of hypotheses, 200

Scripts in WHY, 243

SCSIMP, 145

SDM, 172

Subject Index 425

Search, 72. See also Combinatorial

explosion; Control structure;

Reasoning strategies.

best-first, 141

depth-first, 50, 189-190

heuristics to limit, 313

methods, 39

in SYNCHEM, 141

SECS, 105, 134-142

Segment variable, 61

Selection sort, 352

Self-description of CHI, 334-335

Self-reflective programs, 27. See also

Flexibility of production rules;

Programs as data.

and automatic programming, 297-298, 318

and explanation, 6-7, 89

FOL, 13

HACKER, 318

and learning, 6-7, 89, 318

in LISP, 6-7, 298

and meta-knowledge in production

systems, 89, 267

in TEIRESIAS, 89

Semantic data model (SDM), 172

Semantic grammar, 160, 250-251

Semantic model, 118

Semantic network, 30, 32, 146, 212-213, 229,

231, 238, 316, 323, 372

intersection search in, 239-240

partitioned, in PROSPECTOR, 159

in SCHOLAR, 236-237

Semantic pattern matching, 144-145

Semantic primitives in MYCIN, 187

Semantic query optimization, 171

Sequence extrapolation, 116

Sequential diagnosis, 179

Sequential processing, 200

Set, 34

Set theory, 283-290

Shelf in INTERNIST, 199

SHRDLU, 10, 60

Sign in medical diagnosis, 178

Simplification of expressions, 144

Simulation. See also Expertise module of

ICAI systems.

in ICAI, 229-230, 245-246, 251

of laboratory reactions, 114

Simulation programs

automated synthesis of, in NLPQ, 370-

374

Simultaneous goals, 361

SIN, 143

SIR, 11

SMALLTALK, 293

Socratic tutoring method, 237, 242-246

heuristic rules for, in WHY, 242-243

tutorial goals, 244

in WHY, 234

Software, 299. See also Programming.

SOPHIE, 227, 230, 231, 247 253, 292-293

sample dialogue, 248-250

SOPHIE-I, 230, 247-250

SOPHIE-II, 252

Spaces in partitioned semantic nets, 159

SPADE, 232

Spaghetti stack

in CONNIVER, 10

in QLISP, 12

Specialization of fragmentation rules, 120

Specification of programs. See Program

specification.

Spectroscopy, 104

Speech understanding, 31, 150

Spelling correction, 164

SRI computer-based consultant (CBC), 150-

154

sample dialogue from, 153-154

SSL in Protosystem I, 364-369

Stack frames, 45

State Description Compiler, 317

Statistical learning, 118

Status of hypothesis in CASNET, 195

Stereochemistry, 113, 140

Stochastic learning models, 231

Storage allocation, 18. See also Variable

scoping.

Strategy for control. See Control structure;

Reasoning strategies.

STRIPS, 11, 73

Structure

determination, 102

elucidation, 102, 111

Structure-generation algorithm, 106, 111

Structured growth as programming regimen,

65

Structured programming, 66

Student model, 225, 229, 235, 265. See also

Diagnosis of student misconceptions.

as bugs, 231-233

conceptual bug in, 279-280

constructive bug in, 234

critic in, 233

diagnostic, 233, 279-280

differential modeling of, 255-256

in GUIDON, 270-271

in ICAI systems, 231-233

in the MACSYMA Advisor, 232

426 Subject Index

Student model (continued)

noise in, 260

overlay model of, 231, 256, 261, 270, 282

plan recognition in, 232

problem-solving grammar in, 232

procedural net in, 280

sources of information for, 232

in SPADE, 232

and stochastic learning models, 231

Subgoal

in backward chaining, 190

in conflict resolution, 361

selection function for, 141

Subgraph, 130

isomorphism, 32

Substructure

key, 137

search, 114

specifications, 112

Summarization of proofs in EXCHECK, 283,

287-289

Superatoms, 111

Syllabus in VVUMPUS, 230

Symbol manipulation, 3-5, 15

Symbolic algorithms, 144

Symbolic execution, 323

meta-evaluation in SAFE, 340

in SAFE, 336, 339-340

Symbolic reasoning, 79, 82

Symptom in medical diagnosis, 178

SYNCHEM, 85, 105, 134-142

SYNCHEM2, 137, 140

SYNCOM, 138

Syntactic query optimization, 171

Synthesis of molecular structures, 102, 134-

142

synthesis routes, 134

synthesis tree, 134

Synthetic chemistry, 105, 134-142

Tags in CONNIVER, 38

Target language for automatic

programming, 300

GPSS, in NLPQ, 370

LISP, 28, 355

Target structure of synthesis process, 134,

136

TAXIS, 172

Taxonomic net, 159

Teacherless learning, 293

Team of procedures in QLISP, 12

TED, 166 167, 170

TEIRESIAS, 57, 84, 85, 87-101, 130, 182,

191 192

sample protocol from, 92-101

Text generation, 239

Theorem in PLANNER, 9, 38, 48, 73

Theorem proving, 62

as approach to AP, 301, 308-309, 312-314

resolution, 313

Theory of computation, 15

Theory formation, 84. See also Hypothesis.

Therapy selection

drug-preference categories, 191

in MYCIN, 184, 191

THINGLAB, 293

THNOT, 74

Thresholding in medical decision making,

181

Tools for building expert systems, 84

AGE, 84, 126

EMYCIN, 84, 183, 276

EXPERT, 217-222

GUIDON, 267-278

IRIS, 212-216

Top-down processing, 201. See also

Backward chaining; Consequent

reasoning; Control structure;

Reasoning strategies.

Tower of Hanoi puzzle, 22-24, 79

TQA, 165

Traces

completeness of, 308

generic, 308

problem-solver generated, 324-325

protocols from, 308, 322-325

in PSI, 329, 330-334

Training instances in DENDRAL, 117

Transfer of expertise, 72, 80, 81-83, 88-89,

116. See also Expert system; Knowledge

acquisition; Knowledge engineering.

Transformation of programs. See Automatic

programming; Production systems;

Program transformation as approach

to AP.

Transforms in synthetic chemistry, 136

Transparency of reasoning, 89. See also

Opacity.

Treatment-regimen system, 206

Triggering, 73, 121, 203-204

Troubleshooting, 247-253. See also

Diagnosis.

Truth maintenance, 72-76

Tuple in QLISP, 34, 39-41

Turtle geometry, 291-292

Tutor module of ICAI system, 263, 266

Subject Index 427

Tutorial dialogue. See Dialogue

management; Intelligent computer-

assisted instruction; Tutoring

strategies in ICAI.

Tutorial goals, 244

Tutorial programs, 225-294

Tutorial rule, 267, 272

Tutoring module of ICAI systems, 233-235

Tutoring strategies in ICAI, 227-228, 233,

237. See also Diagnosis of student

misconceptions; Dialogue management.

case-method tutor, 235, 242

computer coach, 231, 234, 254-255, 257-

259, 261-266

computer gaming, 234, 252, 254, 261-266

constructive bug, 234, 254

in GUIDON, 272-273

issues and examples, 256

opportunistic, 275-276

pedagogical style in, 275-276

principles of, 259

in SCHOLAR, 237-238

Socratic method, 234

tutorial goals in, 244

TYPE property, 199

Ultrasound image analysis, 177

Uncertainty, 188-191, 215, 271, 277, 195-

196, 221, 131. See also Certainty factor;

Reasoning strategies.

in CASNET, 193

in FUZZY, 13

in INTERNIST, 197

representation of, 180

Unification, 61-62

Unity path in MYCIN, 191

User education in MACSYMA, 144, 146-148

User interface, 81. See also Dialogue

management.

computer-generated speech in EXCHECK,
283

in CONGEN, 112

cooperative responses in COOP, 167

in DBMS, 164-171

graphics in SECS, 139

and human engineering, 84

in ICAI, 227

incremental query formulation, 167

in KLAUS, 169-170

laser pointer, 150

on-line assistance in MACSYMA, 144,

146-148

menu driver in RENDEZVOUS, 167

mixed-initiative dialogue, 160, 234, 236-

238, 247, 272, 311, 326, 329-332, 370

natural discussion of proofs in EXCHECK,
283-284

natural-language, 150, 164-167, 192, 227

in PROSPECTOR, 155

speech, 150, 153-154

for synthetic chemistry programs, 135

vision, 153-154

User model, 150. See also Plan recognition;

Student model.

V in CHI, 334

Validation

of AP systems. See Verification of

synthesized code.

of expert systems, 182, 192, 211, 267

of ICAI systems, 280

Variable scoping, 32-33

dynamic, 18, 33

Verification of synthesized code

in DEDALUS, 355

in Programmer's Apprentice, 344-347

of synthesized program in AP, 320

Verification trees in EXCHECK, 289

Version space, 121

Very high level language, 315

AP2, 337

in DEDALUS, 355

for program specification, 300, 309

in PSI, 326

SSL in Protosystem I, 364-369

V, 334

Vision in the SRI computer-based

consultant, 153

VM, 180, 206

Well-formed programs in SAFE, 338-340

WEST, 232, 234, 254-260, 261, 267, 292

evaluation of, 260

WEST-I, 230, 231

WHY, 229, 234, 235, 241, 242-246, 267

sample dialogue from, 243-244

WUMPUS, 230, 234, 261-266, 267, 288, 292

WUSOR, 261-266, 292

sample protocol from, 264-265

X-ray image analysis, 177

Zero-order theory of mass spectrometry, 118

ABOUT THIS BOOK

The Handbook of Artificial Intelligence was designed and edited by Dianne

Kanerva, who also established the production procedures and managed the

production team that typeset the volumes.

The Handbook is unusual in that, from the soliciting and writing of

manuscripts through the production of camera-ready copy, it was prepared

entirely through the facilities of the three computer systems (SUMEX, SCORE,
and SAIL) available to the Heuristic Programming Project at Stanford Univer-

ity. Volumes II and III were typeset at the Department of Computer Science

using Donald Knuth's Tau Epsilon Chi (TgX), a computer-based typesetting

system designed for mathematical text. The text of the volumes is set in

the Computer Modern family of fonts designed by Knuth with his META-
FONT system. Intermediate copy was produced with a Xerox Dover laser

printer; final camera-ready copy was produced with an Alphatype CRS photo-

typesetter.

Jose Gonzalez was responsible for tailoring and implementing a TgX
macro package designed by Max Diaz to the requirements of the Handbook.

Gonzalez prepared the camera-ready copy of Volumes II and III of the Hand-

book and participated in editing. Dikran Karagueuzian prepared and typeset

the bibliographies and name indexes of these last two volumes. The other

individuals who participated in typesetting the Handbook were David Eppstein

(especially the design of macros for the figures in Chap. XV and for the

indexes), Jonni Kanerva (especially the layout and typesetting of Chap. XIIl),

and Janet Feigenbaum and Barbara Laddaga (especially the initial applica-

tion of T^X to the task). Christopher Tucci operated the Alphatype CRS
phototypesetter

.

Printing, binding, jacket design, and artwork are by the publisher, William

Kaufmann, Inc.

428

The Handbook of Artificial Intelligence

Volumes I and II by Avron Barr and Edward A. Feigenbaum

Volume HI by Paul R. Cohen and Edward A. Feigenbaum

VOLUME I

I. Introduction

A. Artificial Intelligence

B. The AI Handbook

C. The AI literature

II. Search
A. Overview

B. Problem representation

1. State-space representation

2. Problem-reduction representation

3. Game trees

C. Search methods

1. Blind state-space search

2. Blind AND/OR graph search

3. Heuristic state-space search

a. Basic concepts in heuristic search

b. A*—Optimal search for an optimal solution

c. Relaxing the optimality requirement

d. Bidirectional search

4. Heuristic search of an AND/OR graph

5. Game tree search

a. Minimax procedure

b. Alpha-beta pruning

c. Heuristics in game tree search

D. Sample search programs

1. Logic Theorist

2. General Problem Solver

3. Gelernter's geometry theorem-proving machine

4. Symbolic integration programs

5. STRIPS
6. ABSTRIPS

DI. Knowledge Representation
A. Overview

B. Survey of representation techniques

C. Representation schemes

1. Logic

2. Procedural representations

3. Semantic networks

4. Production systems

5. Direct (analogical) representations

6. Semantic primitives

7. Frames and scripts

rV. Understanding Natural Language
A. Overview

R. Machine translation

C. Grammars
1. Formal grammars
2. Transformational grammars
3. Systemic grammar
4. Case grammars

D. Parsing

1. Overview of parsing techniques

2. Augmented transition networks

3. The General Syntactic Processor

E. Text generation

F. Natural language processing systems

1. Early natural language systems

2. Wilks's machine translation system

3. LUNAR
4. SHRDLU
5. MARGIE
6. SAM and PAM
7. LIFER

Understanding Spoken Language
A. Overview

B. Systems architecture

C. The ARPA SUR projects

1. HEARSAY
2. HARPY
3. HWIM
4. The SRI/SDC speech systems

volume n

VI. Programming Languages for AI Research
A. Overview

B. LISP

C. AI programming-language features

1. Overview

2. Data structures

3. Control structures

4. Pattern matching

5. Programming environment

D. Dependencies and assumptions

VQ. Applications-oriented AI Research: Science

A. Overview

B. TEIRESIAS
C. Applications in chemistry

1. Chemical analysis

2. The DENDRAL programs

a. Heuristic DENDRAL
b. CONGEN and its extensions

c. Meta-DENDRAL
3. CRYSALIS
4. Applications in organic synthesis

D. Other scientific applications

1. MACSYMA
2. The SRI Computer-based Consultant

3. PROSPECTOR
4. Artificial Intelligence in database management

Vill. Applications-oriented AI Research: Medicine

A. Overview

B. Medical systems

1. MYCIN
2. CASNET
3. INTERNIST

1. Present Illness Program

5. Digitalis Therapy Advisor

6. IRIS

7. EXPERT

DC. ,\.pplications-oriented AI Research: Education
A. Overview

B. ICAI systems design

C. Intelligent CAI systems

1. SCHOLAR
2. WHY
3. SOPHIE
4. WEST
5. WUMPUS
6. GUIDON
7. BUGGY
8. EXCHECK

D. Other applications of AI to education

X. Automatic Programming
A. Overview

B. Methods of program specification

C. Basic approaches

D. Automatic programming systems

1. PSI and CHI
2. SAFE
3. The Programmer's Apprentice

4. PECOS
5. DEDALUS
6. Protosystem I

7. NLPQ
8. LIBRA

volume m

XI. Models of Cognition

A. Overview

B. General Problem Solver

C. Opportunistic problem solving

D. EPAM
E. Semantic network models of memory

1. Quillian's semantic memory system

2. HAM
3. ACT
4. MEMOD

F. Belief systems

XH. Automatic Deduction
A. Overview

B. The resolution rule of inference

C. Nonresolution theorem proving

D. The Boyer-Moore Theorem Prover

E. Nonmonotonic logics

F. Logic programming

Xm. Vision

A. Overview

B. Blocks-world understanding

1. Roberts

2. Guzman
3. Falk

4. Huffman-Clowes

5. Waltz

6. Shirai

7. Mackworth
8. Kanade

C. Early processing of visual data

1. Visual input

2. Color

3. Preprocessing

4. Edge detection and line finding

5. Region analysis

6. Texture

D. Representation of scene characteristics

1. Intrinsic images

2. Motion

3. Stereo vision

4. Range finders

5. Shape-from methods

6. Three-dimensional shape description

and recognition

E. Algorithms for vision

1. Pyramids and quad trees

2. Template matching

3. Linguistic methods for computer vision

4. Relaxation algorithms

F. Devices and systems

1. Robotic vision

2. Organization and control of vision systems

3. ACRONYM

XTV. Learning and Inductive Inference

A. Overview

B. Rote learning

1. Issues

2. Rote learning in Samuel's Checkers Player

C. Learning by taking advice

1. Issues

2. Mostow's operationalizer

D. Learning from examples

1. Issues

2. Learning in control

and pattern-recognition systems

3. Learning single concepts

a. Version space

b. Data-driven knowledge-space operators

c. Generating and testing plausible hypotheses

d. Schema instantiation

4. Learning multiple concepts

a. AQ11
b. Meta-DENDRAL
c. AM

5. Learning to perform multiple-step tasks

a. Samuel's Checkers Player

b. Waterman's Poker Player

c. HACKER
d. LEX
e. Grammatical inference

XV. Planning and Problem Solving

A. Overview

B. STRIPS and ABSTRIPS
C. Nonhierarchical planning

D. Hierarchical planners

1. NOAH
2. MOLGEN

E. Refinement of skeletal plans

"As to artificial intelligence, we have hardly begun to under-

stand what this abundant and cheap intellectualpower will do to

our lives. It has already started to change physically the research

laboratories and the manufacturing plants. It is difficult for the

mind to grasp the ultimate consequences for man and

society . .
."

—Jean Riboud, Chairman and President

Schlumberger Limited

What is a "heuristic problem-solving program?" How do com-

puters understand English? What are "semantic nets" or

"frames?" Can computer programs outperform human ex-

perts? Such questions—asked by scientists, engineers, students,

and hobbyists encountering Artificial Intelligence for the first

time—can now be readily answered by The Handbook of
Artificial Intelligence, a work which makes the full scope of im-

portant techniques and concepts of AI available for the first

time to the rapidly expanding world of computer technologists

and users.

The scope of this handbook is broad: over two hundred short ar-

ticles covering all of the important ideas, techniques, and

systems developed during twenty-five years of research in the AI
field. The articles are written for people with no background in

AI. Some articles serve as overviews, discussing the various

approaches within a subfield, the issues, and the problems. The

handbook is a reference work, a textbook, a guide to program-

ming techniques and to the extensive literature of the field, and a

book for intellectual browsing. Jargon has been eliminated in

each of the short, penetrating articles, and the hierarchical

organization of the book allows readers to choose how deeply

they wish to delve into a particular subject.

Conceived and produced at Stanford University's Department

of Computer Science, with contributions from universities and

laboratories across the nation, The Handbook of Artificial

Intelligence promises to become the standard reference work in

the rapidly growing AI field.

ISBN 0-86576-006-3

William Kaufmann, Inc. • 95 First Street • Los Altos, California

