
T
©if.

J L ©dk
Avron
oarr^

rEdwa.rcl A.
reigenbaurn

^H

VOLUME

Avron
5arr&

Fdwqrd A
reigenboum

This three-volume work contains some 200

articles on AI research—the design of com-

puter programs that exhibit near-human levels

of intelligence. Each article describes a key

concept, an important programming techni-

que, or one of the outstanding examples of AI

programs. In addition, there are overview ar-

ticles about approaches within a subfield, the

issues, and the problems.

Volume I contains five chapters, as well as

an index and bibliography. The first chapter

discusses the goals of AI research, the history

of the field, and the current active areas of

research. It includes an article on The Hand-

book itself that describes how the book is

organized. Finally, there is an article on the

literature of the field, explaining how to access

journal articles and technical reports for fur-

ther reading.

Chapters two and three cover the key con-

cept of "search," computer problem-solving

techniques, search-space and problem-

reduction algorithms, heuristic search and

minimax methods, computer implementations

of search techniques, techniques for represent-

ing knowledge in computer programs, basic

representation paradigms in AI, mathematical

knowledge, semantic networks, production

systems, frames, etc.

Chapter four describes AI research on

"natural languages": grammars and parsing

techniques that have been employed in AI pro-

grams, programs that translate from one

language to another, methods for

"generating" text to express what the com-

puter wants to say, including the ten most im-

portant programs in this area.

Finally, Chapter five discusses the design of

programs that understand spoken language.

Major projects are all described in some detail,

and the chapter's overview article discusses

current status, problems, and directions of

research.

Systemic grammar
I. Case grammars
Parsing

Overview of parsing techniques

}. Augmented transition networks

The General Syntactic Processor

Text generation

Natural language processing systems

Early natural language systems

I. Wilks's machine translation system

LUNAR
SHRDLU

;. MARGIE
!. SAM and PAM
LIFER

iderstanding Spoken Language

)verview

peech systems architecture

^he ARPA SUR projects

HEARSAY
HARPY
HWIM
The SRI/SDC speech systems

ial Intelligence

volume n

rogramming Languages for AI Research

Historical overview

features of AI programming languages

. Overview and comparison

. Data structures

. Control structures

. Pattern matching

. Programming environment

. Truth maintenance

Vlajor AI programming languages

LISP

PLANNER and CONNIVER
QLISP
SAIL
POP-2
FUZZY

ipplications-oriented AI Research: Science and Mathematit

Overview of applications-oriented AI research

TEIRESIAS-Issues in designing expert systems

Research on applications in chemistry

Applications in chemical analysis

The DENDRAL programs

a. DENDRAL
b. CONGEN and its extensions

c. Meta-DENDRAL

Digitized by the Internet Archive

in 2012

http://archive.org/details/handbookofartific01barr

The Handbook of Artificial Intelligence

The Handbook of Artificial Intelligence

Volume I

Edited by

Avron Barr and Edward A. Feigenbaum

Department of Computer Science

Stanford University

HeurisTech Press William Kaufmann, Inc.

Stanford, California Los Altos, California

Library of Congress Cataloging in Publication Data:

The handbook of artificial intelligence.

Bibliography: p. 363

Includes index.

1. Artificial intelligence. I. Barr, Avron, 1949-

n. Feigenbaum, Edward A.

Q335.H36 001.53'5 80-28621

ISBN 0-86576-004-7 (set)

ISBN 0-86576-005-5 (Vol. I)

Copyright © 1981 by William Kaufmann, Inc.

All rights reserved. No part of this publication may be

reproduced, stored in a retrieval system, or transmitted,

in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior

written permission of the publisher. For further infor-

mation, write to: Permissions, William Kaufmann, Inc.,

One First Street, Los Altos, California 94022.

10 987654321

Printed in the United States of America

To the graduate students

CONTENTS OF VOLUME I

List of Contributors / ix

Preface / xi

I. Introduction / 1

A. Artificial Intelligence / 3

B. The AI Handbook / 12

C. The AI literature / 14

E. Search / 19

A. Overview / 21

B. Problem representation / 32

1. State-space representation / 32

2. Problem-reduction representation / 36

3. Game trees / 43

C. Search methods / 46

1. Blind state-space search / 46

2. Blind AND/OR Graph search / 54

3. Heuristic state-space search / 58

a. Basic concepts in heuristic search / 58

b. A*—Optimal search for an optimal solution / 64

c. Relaxing the optimality requirement / 67

d. Bidirectional search / 72

4. Heuristic search of an AND/OR graph / 74

5. Game tree search / 84

a. Minimax procedure / 84

b. Alpha-beta pruning / 88

c. Heuristics in game tree search / 94

D. Sample search programs / 109

1. Logic Theorist / 109

2. General Problem Solver / 113

3. Gelernter's geometry theorem-proving machine / 119

4. Symbolic integration programs / 123

5. STRIPS / 128

6. ABSTRIPS / 135

viii Contents

m. Knowledge Representation / 141

A. Overview / 143

B. Survey of representation techniques / 153

C. Representation schemes / 160

1. Logic / 160

2. Procedural representations / 172

3. Semantic networks / 180

4. Production systems / 190

5. Direct (analogical) representations / 200

6. Semantic primitives / 207

7. Frames and scripts / 216

IV. Understanding Natural Language / 223

A. Overview / 225

B. Machine translation / 233

C. Grammars / 239

1. Formal grammars / 239

2. Transformational grammars / 245

3. Systemic grammar / 249

4. Case grammars / 252

D. Parsing / 256

1. Overview of parsing techniques / 256

2. Augmented transition networks / 263

3. The General Syntactic Processor / 268

E. Text generation / 273

F. Natural language processing systems / 281

1. Early natural language systems / 281

2. Wilks's machine translation system / 288

3. LUNAR / 292

4. SHRDLU / 295

5. MARGIE / 300

6. SAM and PAM / 306

7. LIFER / 316

V. Understanding Spoken Language / 323

A. Overview / 325

B. Systems architecture / 332

C. The ARPA SUR projects / 343

1. HEARSAY / 343

2. HARPY / 349

3. HWIM / 353

4. The SRI/SDC speech systems / 358

Bibliography for Volume I / 363

Name Index for Volume 1/391
Subject Index for Volume I / 397

LIST OF CONTRIBUTORS

The following people have made the Handbook a reality. Together, over

the last five years, they have combed the entire literature of AI and

have attempted to make a coherent presentation of this very diverse

field. These researchers and students, from Stanford and other AI

centers, have contributed to Volumes I and n or are now engaged in

preparing Volume HI (being edited by Paul R. Cohen).

Chapter Editors

Janice Aikins

James S. Bennett

Victor Ciesielski (Rutgers U)

William J. Clancey

Paul R. Cohen

James E. Davidson

Thomas Dietterich

Robert Elschlager

Lawrence Fagan

Anne v.d.L. Gardner

Takeo Kanade (CMU)

Jorge Phillips

Steve Tappel

Stephen Westfold

Contributors

Robert Anderson (Rand)

Douglas Appelt

David Arnold

Michael Ballantyne (u Texas)

David Barstow (Schlumberger)

Peter Biesel (Rutgers U)

Lee Blaine (IMSSS)

W. W. Bledsoe (U Texas)

Rodney Brooks

Bruce Buchanan

Richard Chestek

Kenneth Clarkson

Randall Davis (MIT)

Gerard Dechen

Johan de Kleer (Xerox)

Jon Doyle

R. Geoff Dromey (u Wollongong)

Richard Duda (Fairchild)

Robert Engelmore

Ramez El-Masri (Honeywell)

Susan Epstein (Rutgers U)

Robert Filman (Indiana U)

Fritz Fisher

Christian Freksa (UC Berkeley)

Peter Friedland

Richard Gabriel

Michael Genesereth

Neil Goldman (ISI)

Ira Goldstein (Xerox)

George Heidorn (IBM)

List of Contributors

Douglas Hofstadter (Indiana U)

Elaine Kant (CMU)

William Laaser (Xerox)

Douglas Lenat

William Long (MIT)

Robert London
Pamela McCorduck

Robert Moore (SRI)

Richard Pattis

Neil C. Rowe
Gregory Ruth (MIT)

Daniel Sagalowicz (SRI)

Behrokh Samadi

William Scherlis (CMU)

Andrew Silverman

Donald Smith (Rutgers U)

Phillip Smith (U Waterloo)

Reid G. Smith (Canadian DREA)
William Swartout (MIT)

William van Melle

Richard Waldinger (SRI)

Richard Waters (MIT)

Sholom Weiss (Rutgers U)

David Wilkins (SRI)

Terry Winograd

Reviewers

Harold Abelson (MIT)

Saul Amarel (Rutgers U)

Robert Balzer (ISI)

Harry Barrow (Fairchild)

Thomas Binford

Daniel Bobrow (Xerox)

John Seely Brown (Xerox)

Richard Burton (Xerox)

Lewis Creary

Andrea diSessa (MIT)

Daniel Dolata (UC Santa Cruz)

Lee Erman (ISI)

Adele Goldberg (Xerox)

Cordell Green (SCI)

Norman Haas (SRI)

Kenneth Kahn (MIT)

Jonathan King

Casimir Kulikowski (Rutgers U)

Brian P. McCune (Al&DS)

Donald Michie (U Edinburgh)

Nils Nilsson (SRI)

Glen Ouchi (UC Santa Cruz)

Ira Pohl (UC Santa Cruz)

Herbert Simon (CMU)

David E. Smith

Dennis Smith

Mark Stefik (Xerox)

Albert Stevens (BBN)

Allan Terry

Perry Thorndyke (Rand)

Donald Walker (SRI)

Keith Wescourt (Rand)

Production

Lester Ernest

Marion Hazen

David Fuchs

Dianne Kanerva

Roy Nordblom

Thomas Rindfleisch

Ellen Smith

Helen Tognetti

PREFACE

Artificial Intelligence is of growing interdisciplinary interest and

practical importance. People with widely varying backgrounds and pro-

fessions are discovering new ideas and new tools in this young science.

Theory-minded psychologists have developed new models of the mind

based on the fundamental concepts of AI—symbol systems and infor-

mation processing. Linguists are also interested in these basic notions,

as well as in AI work in computational linguistics, aimed at producing

programs that actually understand language. And philosophers, in

considering the progress, problems, and potential of this work toward

nonhuman intelligence, have sometimes found new perspectives on the

age-old problems of the nature of mind and knowledge.

In other spheres of activity, people often first come across AI in the

form of some "expert" system that is being applied experimentally in

their own area—chemical data interpretation, symbolic integration,

infectious disease diagnosis, DNA sequencing, computer systems debug-

ging, structural engineering, computer-chip design, and so on. As the

cost of computation continues to fall, many new computer applications

become viable. Since, for many of these, there are no mathematical

"cores" to structure the calculational use of the computer, such areas

will inevitably be served by symbolic models and symbolic inference

techniques. Yet those who understand symbolic computation have been

speaking largely to themselves for the first 25 years of AI's history. We
feel that it is urgent for AI to "go public" in the manner intended by

this three-volume Handbook of Artificial Intelligence.

xii Preface

Since the Handbook project began in 1975, dozens of researchers

have labored to produce short, jargon-free explanations of AI pro-

gramming techniques and concepts. With these volumes, we have tried

to build bridges to be crossed by engineers, by professionals and

scientists in other fields, and by our own colleagues in computer science.

We have tried to cover the breadth and depth of AI, presenting general

overviews of the scientific issues, as well as detailed discussions of

particular techniques and exemplary computer systems. And, most

important, we have presented the key concepts—search, divide-and-

conquer, semantic nets, means-ends analysis, hierarchical planning, ATNs,

procedural knowledge, blackboard architecture, scripts and frames, goal-

directed and data-driven processing, learning, and many more—in the

context of their actual application in AI. If they were presented more

abstractly, the unique perspective afforded by AI research on these

universal ideas would be lost. Throughout, we have tried to keep in

mind the reader who is not a specialist in AI.

In short, we have tried to present a survey of AI research that is

motivated historically and scientifically, without attempting to present a

new synthesis of this young, multifaceted, rapidly changing field. One

can view these Handbook volumes as an encyclopedia of AI programming

techniques, their successful applications, some of their limitations, and

the computational concepts that have been used to describe them.

Readers from different fields will interpret these data in different

ways—we hope that many of you will find useful new ideas and new

perspectives.

The Handbook contains several different kinds of articles. Key AI

concepts and techniques are described in core articles (e.g., heuristic

search, semantic nets). Important individual AI programs (e.g., SHRDLU,

MACSYMA, PROSPECTOR) are presented in separate articles that indi-

cate, among other things, the designer's goals, the techniques employed,

and the reasons why the program is important. The problems and

approaches in each major area are discussed in overview articles, which

should be particularly useful to those who seek a summary of the

underlying issues that motivate AI research.

We intend that the Handbook of Artificial Intelligence be a living

and changing reference work. In particular, we hope that our colleagues

will take time to alert us to errors we have made, of omission or

commission, and that we have an opportunity to correct these in future

editions.

Preface xiii

Acknowledgments

Many people have contributed to the Handbook project. On pages

ix-x is an alphabetical list of those who have been involved so far,

including article contributors, reviewers, and the chapter editors who

have spent months working the individual chapters into coherent pre-

sentations of a particular AI subarea. The following is as accurate a

reconstruction as possible of the contributions to this first volume over

the last five years.

The "Search" chapter was written by Anne Gardner, starting from

some articles prepared for a problem seminar in the spring of 1975.

Background material was made available by Nils Nilsson, who also read

earlier drafts, as did Bruce Buchanan, Lewis Creary, James Davidson,

Ira Pohl, Reid Smith, Mark Stefik, and David Wilkins.

"Representation of Knowledge" was edited by Avron Barr and James

Davidson. The article on logic was written by Robert Filman, semantic

nets by Douglas Appelt, semantic primitives by Anne Gardner, and

frames by James Bennett. Mark Stefik carefully reviewed an early draft

of this chapter.

Anne Gardner, James Davidson, and Avron Barr edited "Under-

standing Natural Language." Articles were worked on by Janice Aikins,

Rodney Brooks, William Clancey, Paul Cohen, Gerard Dechen, Richard

Gabriel, Norman Haas, Douglas Hofstadter, Andrew Silverman, Phillip

Smith, Reid Smith, William van Melle, and David Wilkins. Neil Gold-

man reviewed an early draft of the chapter. Terry Winograd made

background material available and also reviewed an early draft.

"Understanding Spoken Language" was prepared by Lawrence Fagan,

Paul Cohen, and Avron Barr, with helpful comments from James Ben-

nett, Lee Erman, and Donald Walker.

The professional editor responsible for the form of the final copy,

including electronic typesetting and page design, was Dianne Kanerva.

Earlier in the project's history, professional editing on several chapters

was done by Helen Tognetti. Ellen Smith also assisted in this impor-

tant work.

The book was set in Computer Modern fonts (Knuth, 1979) and was

produced directly on a computer-driven phototypesetting device. Pub-

lisher William Kaufmann and his staff have been patient and helpful

throughout this process.

xiv Preface

The Advanced Research Projects Agency of the Department of De-

fense and the Biotechnology Resources Program of the National Insti-

tutes of Health supported the Handbook project as part of their long-

standing and continuing efforts to develop and disseminate the science

and technology of AI. Earlier versions of Handbook material were

distributed as technical reports of the Stanford Computer Science

Department. The electronic text-preparation facilities available to Stan-

ford computer scientists on the SAIL, SCORE, and SUMEX computers

were used.

We wish specially to acknowledge Anne Gardner, whose scholarship

during the early years of the Handbook project was invaluable, and

inspirational.

Finally, let us not forget that many of the programs described

herein as landmark events in the history of AI were labored over single-

handedly by graduate students trying to implement their thesis ideas.

These AI systems have consistently been among the most complex and

innovative computer programs of their day. They stand as a tribute to

the caliber and creativity of those who have been drawn to AI research.

Chapter I

Introduction

CHAPTER I: INTRODUCTION

A. Artificial Intelligence / 8

B. The AI Handbook / 12

C. The AI Literature / 14

A. ARTIFICIAL INTELLIGENCE

Artificial Intelligence (AI) is the part of computer science con-

cerned with designing intelligent computer systems, that is, systems that

exhibit the characteristics we associate with intelligence in human
behavior—understanding language, learning, reasoning, solving problems,

and so on. Many believe that insights into the nature of the mind can

be gained by studying the operation of such programs. Since the field

first evolved in the mid-1950s, AI researchers have invented dozens of

programming techniques that support some sort of intelligent behavior.

The Handbook of Artificial Intelligence is an encyclopedia of the major

developments of the field's first 25 years—programs, programming tech-

niques, and the computational concepts used to describe them.

Whether or not they lead to a better understanding of the mind,

there is every evidence that these developments will lead to a new,

intelligent technology that may have dramatic effects on our society.

Experimental AI systems have already generated interest and enthusiasm

in industry and are being developed commercially. These experimental

systems include programs that

1. solve some hard problems in chemistry, biology, geology, engi-

neering, and medicine at human-expert levels of performance,

2. manipulate robotic devices to perform some useful, repetitive,

sensory-motor tasks, and

3. answer questions posed in simple dialects of English (or French,

Japanese, or any other natural language, as they are called).

There is every indication that useful AI programs will play an important

part in the evolving role of computers in our lives—a role that has

changed, in our lifetimes, from remote to commonplace and that, if

current expectations about computing cost and power are correct, is

likely to evolve further from useful to essential.

The Handbook is composed of short articles about AI concepts,

techniques, and systems, grouped into chapters that correspond to the

major subdivisions of the field. This first article of the Handbook

discusses what we mean by "artificial intelligence," both in terms of the

interests and methods of the people doing AI research and in terms of

the kinds of intelligent programs they have studied. We hope that this

brief introduction will elucidate not only the potentially dramatic impact

of intelligent technology on society, but also the possibilities that AI

4 Introduction I

research affords for new insights into the puzzle that human intelligence

is. The other two articles in this introductory chapter are meant as

study guides: One describes the Handbook itself—its organization, what

is in it and what is not—while the second offers guides for finding rel-

evant material in the literature.

The Origins of Artificial Intelligence

Scientific fields emerge as the concerns of scientists congeal around

various phenomena. Sciences are not defined, they are recognized.

(Newell, 1973a, p. 1)

The intellectual currents of the times help direct scientists to the study

of certain phenomena. For the evolution of AI, the two most important

forces in the intellectual environment of the 1930s and 1940s were

mathematical logic, which had been under rapid development since the

end of the 19th century, and new ideas about computation. The logical

systems of Frege, Whitehead and Russell, Tarski, and others showed

that some aspects of reasoning could be formalized in a relatively simple

framework. Mathematical logic has continued to be an active area of

investigation in AI, in part because logico-deductive systems have been

successfully implemented on computers. But even before there were

computers, the mathematical formalization of logical reasoning shaped

people's conception of the relation between computation and intelligence.

Ideas about the nature of computation, due to Church, Turing, and

others, provided the link between the notion of formalization of

reasoning and the computing machines about to be invented. What was

essential in this work was the abstract conception of computation as

symbol processing. The first computers were numerical calculators that

appeared to embody little, if any, real intelligence. But before these

machines were even designed, Church and Turing had seen that num-

bers were an inessential aspect of computation—they were just one way

of interpreting the internal states of the machine. Turing, who has

been called the Father of AI, not only invented a simple, universal, and

nonnumerical model of computation, but also argued directly for the

possibility that computational mechanisms could behave in a way that

would be perceived as intelligent. Douglas Hofstadter's book Godel,

Escher, Bach: an Eternal Golden Braid (1979) gives a thorough and

fascinating account of the development of these ideas about logic and

computation and of their relation to AI.

As Allen Newell and Herbert Simon point out in the "Historical

Addendum" to their classic work Human Problem Solving (1972), there

were other strong intellectual currents from several directions that

A Artificial Intelligence 5

converged in the middle of this century in the people who founded the

science of Artificial Intelligence. The concepts of cybernetics and self-

organizing systems of Wiener, McCulloch, and others focused on the

macroscopic behavior of "locally simple" systems. The cyberneticists

influenced many fields because their thinking spanned many fields,

linking ideas about the workings of the nervous system with information

theory and control theory, as well as with logic and computation. The

ideas of the cyberneticists were part of the Zeitgeist, and in many cases

they influenced the early workers in AI directly as their teachers.

What eventually connected these diverse ideas was, of course, the

development of the computing machines themselves, guided by Babbage,

Turing, von Neumann, and others. It was not long after the machines

became available that people began to try to write programs to solve

puzzles, play chess, and translate texts from one language to another

—

the first AI programs. What was it about computers that triggered

the development of AI? Many ideas about computing relevant to AI

emerged in the early designs—ideas about memories and processors,

about systems and control, and about levels of languages and programs.

But the single attribute of the new machines that brought about the

emergence of a new science was their very complexity, encouraging the

development of new and more direct ways of describing complex

processes—in terms of complicated data structures and procedures with

hundreds of different steps.

Computers, Complexity, and Intelligence

As Pamela McCorduck notes in her entertaining historical study of

AI, Machines Who Think (1979), there has been a long-standing con-

nection between the idea of complex mechanical devices and intel-

ligence. Starting with the fabulously intricate clocks and mechanical

automata of past centuries, people have made an intuitive link between

the complexity of a machine's operation and some aspects of their own

mental life. Over the last few centuries, new technologies have resulted

in a dramatic increase in the complexity we can achieve in the things

we build. Modern computers are orders of magnitude more complex

than anything man has built before.

The first work on computers in this century focused on the kinds of

numerical computations that had previously been performed collabo-

ratively by teams of hundreds of clerks, organized so that each did one

small subcalculation and passed his results on to the clerk at the next

desk. Not long after the dramatic success demonstrated by the first dig-

ital computers with these elaborate calculations, people began to explore

6 Introduction I

the possibility of more generally intelligent mechanical behavior—could

machines play chess, prove theorems, or translate languages?

They could, but not very well. The computer performs its calcu-

lations following the step-by-step instructions it is given—the method

must be specified in complete detail. Most computer scientists are con-

cerned with designing new algorithms, new languages, and new machines

for performing tasks like solving equations and alphabetizing lists

—

tasks that people perform with methods they can explicate. However,

people cannot specify how they decide which move to make in a chess

game or how they determine that two sentences "mean the same thing."

The realization that the detailed steps of almost all intelligent

human activity were unknown marked the beginning of Artificial Intel-

ligence as a separate part of computer science. AI researchers inves-

tigate different kinds of computation and different ways of describing

computation in an effort not just to create intelligent artifacts, but also

to understand what intelligence is. Their basic tenet is that human
intellectual capacity will be best described in the terms that we invent

to describe AI programs. However, we are just beginning to learn

enough about those programs to know how to describe them. The

computational ideas discussed in this book have been used in programs

that perform many different tasks, sometimes at the level of human
performance, often much worse. Most of these methods are obviously

not the same ones that people use to perform the tasks—some of them

might be.

Consider, for example, computer programs that play chess. Current

programs are quite proficient—the best experimental systems play at the

human "expert" level, but not as well as human chess "masters." The

programs work by searching through a space of possible moves, that is,

considering the alternative moves and their consequences several steps

ahead in the game, just as human players do. Computers can search

through thousands of moves in the same time it takes human players to

search through a dozen or so, and techniques for efficient searching

constitute some of the core ideas of AI. The reason that computers

cannot beat the best human players is that looking ahead is not all

there is to chess—since there are too many possible moves to search

exhaustively, alternatives must be evaluated without knowing for sure

which will lead to a winning game, and this is one of those abilities

that human experts cannot explicate. Psychological studies have shown

that chess masters have learned to "see" thousands of meaningful

configurations of pieces when they look at a chess position, which

presumably helps them decide on the best move, but no one has yet

designed a computer program that can identify these configurations.

A Artificial Intelligence 7

The Status of Artificial Intelligence

Within most scientific disciplines there are several distinct areas of

research, each with its own specific interests, research techniques, and

terminology. In AI, these specializations include research on language

understanding, vision systems, problem solving, AI tools and program-

ming languages, automatic programming, and several others. As is

apparent from its chapter headings, the Handbook is organized around

the different subareas, as are most reviews of progress in AI. (See, e.g.,

Nilsson's thorough, and surprisingly current, survey of AI research,

written in 1974.) The following discussion of the status of AI attempts

to cut across the subfields, identifying some aspects of intelligent be-

havior and indicating the state of relevant AI research.

There is an important philosophical point here that we will sidestep.

Doing arithmetic or learning the capitals of all the countries of the

world, for example, are certainly activities that indicate intelligence in

humans. The issue here is whether a computer system that can per-

form these tasks can be said to know or understand anything. This

point has been discussed at length (see, e.g., Searle, 1980, and appended

commentary), and we will avoid it here by describing the behaviors as

intelligent and not concerning ourselves with how to describe the ma-

chines that produce them. Many intelligent activities besides numerical

calculation and information retrieval have been accomplished by pro-

grams. Many key thought processes—like recognizing people's faces and

reasoning by analogy—are still puzzles; they are performed so "un-

consciously" by people that adequate computational mechanisms have

not been postulated for them.

One word of caution. Like the different subfields of AI, the dif-

ferent behaviors discussed here are not at all independent. Separating

them out is just a convenient way of indicating what current AI

programs can do and what they can't do. Most AI research projects

are concerned with many, if not all, of these aspects of intelligence.

Problem solving. The first big "successes" in AI were programs that

could solve puzzles and play games like chess. Techniques like looking

ahead several moves and dividing difficult problems into easier sub-

problems evolved into the fundamental AI techniques of search and

problem reduction. Today's programs play championship-level checkers

and backgammon, as well as very good chess. Another problem-solving

program that integrates mathematical formulas symbolically has attained

very high levels of performance and is being used by scientists and

engineers across the country. Some programs can even improve their

performance with experience.

8 Introduction I

As discussed above, the open questions in this area involve capa-

bilities that human players have but cannot articulate, like the chess

master's ability to see the board configuration in terms of meaningful

patterns. Another basic open question involves the original conceptu-

alization of a problem, called in AI the choice of problem represen-

tation. Humans often solve a problem by finding a way of thinking

about it that makes the solution easy—AI programs, so far, must be

told how to think about the problems they solve (i.e., the space in

which to search for the solution).

Logical reasoning. Closely related to problem and puzzle solving

was early work on logical deduction. Programs were developed that

could "prove" assertions by manipulating a database of facts, each

represented by discrete data structures just as they are represented by

discrete formulas in mathematical logic. These methods, unlike many
other AI techniques, could be shown to be complete and consistent.

That is, so long as the original facts were correct, the programs could

prove all theorems that followed from the facts, and only those theo-

rems.

Logical reasoning has been one of the most persistently investigated

subareas of AI research. Of particular interest are the problems of

finding ways of focusing on only the relevant facts in a large database

and of keeping track of the justifications for beliefs and updating them

when new information arrives.

Language. The domain of language understanding was also inves-

tigated by early AI researchers and has consistently attracted interest.

Programs have been written that answer questions posed in English from

an internal database, that translate sentences from one language to

another, that follow instructions given in English, and that acquire

knowledge by reading textual material and building an internal data-

base. Some programs have even achieved limited success in interpreting

instructions spoken into a microphone instead of typed into the

computer. Although these language systems are not nearly so good as

people are at any of these tasks, they are adequate for some

applications. Early successes with programs that answered simple

queries and followed simple directions, and early failures at machine

translation, have resulted in a sweeping change in the whole AI

approach to language. The principal themes of current language-

understanding research are the importance of vast amounts of general,

commonsense world knowledge and the role of expectations, based on the

subject matter and the conversational situation, in interpreting sentences.

A Artificial Intelligence 9

The state of the art of practical language programs is represented

by useful "front ends" to a variety of software systems. These pro-

grams accept input in some restricted form—they cannot handle some of

the nuances of English grammar and are useful for interpreting sentences

only within a relatively limited domain of discourse. There has been

very limited success at translating AI results in language and speech

understanding programs into ideas about the nature of human language

processing.

Programming. Although perhaps not an obviously important aspect

of human cognition, programming itself is an important area of re-

search in AI. Work in this field, called automatic programming, has

investigated systems that can write computer programs from a variety of

descriptions of their purpose—examples of input/output pairs, high-level

language descriptions, and even English descriptions of algorithms.

Progress has been limited to a few, fully worked-out examples. Re-

search on automatic programming may result not only in semiautomat-

ed software-development systems, but also in AI programs that learn

(i.e., modify their behavior) by modifying their own code. Related work

in the theory of programs is fundamental to all AI research.

Learning. Certainly one of the most salient and significant aspects

of human intelligence is the ability to learn. This is a good example of

cognitive behavior that is so poorly understood that very little progress

has been made in achieving it in AI systems. There have been several

interesting attempts, including programs that learn from examples, from

their own performance, and from being told. But in general, learning is

not noticeable in AI systems.

Expertise. Recently the area of expert systems, or "knowledge

engineering," has emerged as a road to successful and useful applications

of AI techniques. Typically, the user interacts with an expert system in

a "consultation dialogue," just as he would interact with a human who
had some type of expertise—explaining his problem, performing sug-

gested tests, and asking questions about proposed solutions. Current ex-

perimental systems have achieved high levels of performance in consul-

tation tasks like chemical and geological data analysis, computer system

configuration, structural engineering, and even medical diagnosis. Expert

systems can be viewed as intermediaries between human experts, who

interact with the systems in "knowledge acquisition" mode, and human

users who interact with the systems in "consultation mode." Fur-

thermore, much research in this area of AI has focused on endowing

these systems with the ability to explain their reasoning, both to make

10 Introduction I

the consultation more acceptable to the user and to help the human
expert find errors in the system's reasoning when they occur.

Current research deals with a variety of problems in the design of

expert systems. These systems are built through the painstaking inter-

action of a domain expert, who may not be able to articulate all of his

knowledge, and the systems designer; the knowledge-acquisition process is

the big bottleneck in the construction of expert systems. Current

systems are limited in scope and do not have the same sense as humans

have about knowing when they might be wrong. New research involves

using the systems to teach novices as well as to consult with prac-

titioners.

Robotics and vision. Another part of AI research that is receiving

increasing attention involves programs that manipulate robot devices.

Research in this field has looked at everything from the optimal move-

ment of robot arms to methods of planning a sequence of actions to

achieve a robot's goals. Although more complex systems have been

built, the thousands of robots that are being used today in industrial

applications are simple devices that have been programmed to perform

some repetitive task. Most industrial robots are "blind," but some see

through a TV camera that transmits an array of information back to

the computer. Processing visual information is another very active, and

very difficult, area of AI research. Programs have been developed that

can recognize objects and shadows in visual scenes, and even identify

small changes from one picture to the next, for example, for aerial

reconnaissance.

Systems and languages. In addition to work directly aimed at

achieving intelligence, the development of new tools has always been an

important aspect of AI research. Some of the most important contri-

butions of AI to the world of computing have been in the form of spin-

offs. Computer-systems ideas like time-sharing, list processing, and

interactive debugging were developed in the AI research environment.

Specialized programming languages and systems, with features designed

to facilitate deduction, robot manipulation, cognitive modeling, and so

on, have often been rich sources of new ideas. Most recently, several

knowledge-representation languages—computer languages for encoding

knowledge and reasoning methods as data structures and procedures

—

have been developed in the last five years to explore a variety of ideas

about how to build reasoning programs. Terry Winograd's article

"Beyond Programming Languages" (1979) discusses some of his ideas

about the future of computing, inspired, in part, by his AI research.

Artificial Intelligence 11

Invitation

There has been much activity and progress in the 25-year history of

AI. And there is more activity now than ever. AI is a relatively well-

funded discipline, principally, in the United States, by the Defense

Department's Advanced Research Projects Agency and other government

agencies. There are active AI research groups in other countries, in-

cluding Japan, Canada, Britain, France, Germany, Australia, Italy, and

the USSR. Increasing research support is coming from the private

sector, where interest in using and marketing AI programs is on the

rise. The real shortage is people—there are only a few AI research

groups in universities and corporate laboratories; in terms of the number

of people involved, the field is still quite small.

So, let us end this introduction with an invitation to those of you

who are not working in AI: to join us in this rapidly moving field.

The excitement of creating a powerful new technology is coupled in AI,

as perhaps in no other field these days, with the potential for stumbling

upon new insights into one of the big questions: Physicists ask what

kind of place this universe is and seek to characterize its behavior

systematically. Biologists ask what it means for a physical system to be

living. We in AI wonder what kind of information-processing system can

ask such questions.

B. THE AI HANDBOOK

By the mid-1970s, the science and technology of Artificial Intel-

ligence had matured to the point at which widespread and significant

application appeared to be possible. The move to application, though

deemed desirable by both researchers and supporters, was inhibited by

two factors. First, there was no cadre of industrial scientists and engi-

neers schooled in the principles and techniques of the field. This was a

problem of education. Most scientists and engineers, though very knowl-

edgeable about the "standard" computer methods (e.g., numerical and

statistical methods, simulation methods), simply had never heard about

symbolic computation or Artificial Intelligence. There were so few

courses in so few places, and so little literature accessible to and com-

prehensible by newcomers, that ignorance of AI and how to use it was

almost total. Second, too few new people were being trained in AI,

partly as a result of the same lack of written material that could be

easily taught and easily learned.

The project to write a Handbook of Artificial Intelligence was begun

as an attempt to fill this void. Initially, the Handbook was conceived as

a self-help encyclopedia to which the aspiring practitioner could turn for

explanations of fundamental ideas, descriptions of methods, and discus-

sions of well-known programs as case studies. (This early goal has not

been completely satisfied—within the limits of our energy there always

seemed to be a few loose threads and uncovered topics.) As work pro-

gressed, it became clear that the material would be of great use to the

Computer Science student studying AI, as an adjunct to a course or

under the guidance of a faculty member, and our focus shifted some-

what toward this important audience.

The Handbook has turned out to be the most comprehensive ref-

erence work ever produced of the material that constitutes the science

and technology of AI. But it is not a synthesis of that material, and it

is not a text.

A typical chapter of the Handbook represents, first, the efforts of

Stanford graduate students in AI to collect relevant material and draft

sections; second, the effort of a chapter editor to clarify, reorganize,

often rewrite the draft material, and prepare useful overview sections;

third, the efforts of the Handbook editors to ensure a certain homo-

geneity of style, completeness of material, correctness of material as

checked by specialists they consulted, and of course comprehensibility;

B The AI Handbook 13

and fourth, the effort of a professional book editor to add the final

polish necessary for book form.

The Handbook's organization, printed on the inside covers, is not the

only way to divide up the material of AI. Some topics belong in more

than one place. Other topics do not fit comfortably under any of our

categories. We hope the chosen structure will help the reader to find

what he is looking for most of the time. When this fails, there are

many cross-references in each article that will point the way, as well as

an extensive index for each volume.

The literature references after each article are extensive but certainly

not exhaustive. We reference those readings that we thought would be

of most use to our intended audience. The field of Artificial Intelligence

is young and its literature is not immense, so the references listed with

each article should prove to be adequate indirect pointers to just about

everything published on the subject.

C. THE AI LITERATURE

One of the goals of the Handbook of Artificial Intelligence is to

assist researchers and students in finding relevant material in the lit-

erature. Artificial Intelligence is a relatively young discipline and does

not have a vast bibliography. Nevertheless, it is becoming increasingly

difficult to find and follow publications of interest, partly because of the

diversity of the backgrounds of researchers and the variety of journals

in which they publish. Throughout the Handbook there are extensive

citations of the "best next things to read" on each of the topics

covered. This article is an attempt to map out roughly the geography

of the field's literature and to suggest further readings of general

interest.

Early Work (Through 1965)

The early period of AI research, through the mid-1960s, is well rep-

resented in the collections of papers entitled Computers and Thought and

Semantic Information Processing, which were edited by Feigenbaum and

Feldman (1963) and Minsky (1968), respectively. Both collections con-

tain papers about the history of AI ideas as well as republications of

reports on important early AI systems, many of which were done by

graduate students as part of their research for doctoral dissertations.

Human Problem Solving by Newell and Simon (1972) also contains a

"Historical Addendum," giving their view of the origins of the discipline.

This classic book on information processing psychology summarizes and

synthesizes their 15 years of pioneering research into computational

models of human cognition.

The series of edited volumes entitled Machine Intelligence started

publication in 1967 and now includes nine collections of papers by many
of the most influential AI researchers. Finally, McCorduck (1979) gives

an insightful history of the early days of AI, focusing on the researchers

themselves, in her entertaining book Machines Who Think.

The Middle Period (1966-1975)

The publication of Understanding Natural Language by Winograd

(1972) was a landmark in the period of extensive AI research in lan-

guage processing. Other books describing related work of this period

include the collections of papers entitled Computer Models of Thought

C The AI Literature 15

and Language (Schank and Colby, 1973), The Psychology of Computer

Vision (Winston, 1975), and Representation and Understanding (Bobrow

and Collins, 1975). Several papers on knowledge representation in the

last two volumes were especially influential and discuss topics of active

interest.

Nilsson (1974) provides an excellent short survey of all of the

different AI research areas in the early 1970s, showing their inter-

relations and state of progress. Nilsson also wrote an influential text-

book of Artificial Intelligence (1971), bringing together core ideas in

search and theorem proving.

Textbooks and Other General Introductions

In recent years there have been several books discussing AI and

related topics aimed at the nontechnical audience. These include Arti-

ficial Intelligence and Natural Man by Boden (1977) and the book by

McCorduck (1979) mentioned above. Also of interest along these lines is

Simon's short, but great, Sciences of the Artificial (1969). The book

Gbdel, Escher, Bach: an Eternal Golden Braid, by Hofstadter (1979),

discusses the development of some important ideas about the formal-

ization of reasoning and their relation to AI. These books try to ex-

plain what is important and interesting about AI and how research in

AI progresses through its programs.

Although somewhat more technical, the books by Norman and

Rumelhart (1975) and Schank and Abelson (1977) develop, from first

principles, entire conceptual systems for building AI programs (especially

systems for natural language understanding). In a similar vein, Ander-

son and Bower (1973) present a self-contained introduction to AI-related

work in models of human cognition, specifically the modeling of human
sentence-memory.

The general textbooks on AI available now include those by Jackson

(1974), Raphael (1976), and Winston (1977), as well as a completely new

text by Nilsson (1980). Winston's book, Artificial Intelligence, includes

a useful introduction to programming in LISP, the language of pref-

erence for AI research. Nilsson's recent book attempts to present all of

AI from a formal perspective, stressing the fundamental ideas of search,

logic, and productions. Winograd's forthcoming Language as a Cognitive

Process is an excellent introduction to AI research in understanding

natural language and related work in the representation of knowledge.

Charniak, Riesbeck, and McDermott's Artificial Intelligence Program-

ming (1980) is a thorough introduction to LISP programming techniques.

Siklossy (1976) has written a good, elementary introduction to LISP

16 Introduction I

programming, called Let's Talk LISP. A more technical treatment of

LISP is Anatomy of LISP by Allen (1978).

Recent Technical Publications

Recent AI research is described in the collections of papers on in-

ference systems edited by Waterman and Hayes-Roth (1978), on vision

systems edited by Hanson and Riseman (1978a), on speech understanding

edited by Lea (1980b), on knowledge representation edited by Findler

(1979), and on a variety of MIT research projects edited by Winston

and Brown (1979). These collections all contain some excellent research

reports, although, of course, they don't exhaustively cover current work

in the field. Also of interest is the research of Lehnert (1978) and Mar-

cus (1980) on natural language understanding, Barstow (1979) on auto-

matic programming, and Lindsay, Buchanan, Feigenbaum, and Lederberg

(1980) and Davis and Lenat (in press) on expert systems.

Journals and Conferences

Current research typically appears first in technical reports from the

AI laboratories at universities and private companies. These laboratories

include those at the Massachusetts Institute of Technology, Carnegie-

Mellon University, Stanford University, SRI International, Inc., the Rand
Corporation, Bolt Beranek and Newman, Inc., XEROX Palo Alto Re-

search Center, Yale University, Rutgers University, Edinburgh Univer-

sity, Rochester University, the University of Massachusetts, the Univer-

sity of Texas, the University of Maryland, and many others. Short

papers on very current research, as well as longer review papers, can be

found in the proceedings of the large AI conferences: the biennial

International Joint Conference on AI (IJCAI) and the annual national

meeting of the American Association for Artificial Intelligence (AAAI).

Important AI papers can also often be found in the proceedings of the

conference on Theoretical Issues in Natural Language Processing

(TINLAP), the annual meetings of the Association for Computational

Linguistics (ACL), and the Artificial Intelligence in Medicine workshops

(AIM).

The refereed journals and periodicals publish high-quality, current

research papers. These include the journal Artificial Intelligence and the

journal of the Cognitive Science Society, entitled Cognitive Science.

Also, the ACL publishes a journal, called the American Journal of

Computational Linguistics. The SIGART Newsletter, published by the

special interest group on artificial intelligence of the Association for

Computing Machinery (ACM), and the European AISB Newsletter, contain

C The AI Literature 17

news, book reviews, and short articles on current activity. Finally, the

AAAI has started publication of a semitechnical AI Magazine.

Other periodical publications sometimes containing AI papers include

the journals Cognition, International Journal of Man-Machine Studies,

Behavioral and Brain Sciences, Transactions on Pattern Recognition and

Machine Intelligence of the Institute of Electronic and Electrical Engi-

neers (IEEE), Communications of the Association for Computing Machin-

ery (CACM), the interdisciplinary newsletter Cognition and Brain Theory,

and the popular magazine entitled Robotics Age.

Recommendations

Readings on specific areas of AI research are, of course, suggested

after each article in the Handbook. Almost all of the books mentioned in

this article contain some material that would be appropriate for, and of

interest to, the general reader. Serious students of AI these days follow

the various AI conference proceedings, the two journals Artificial Intel-

ligence and Cognitive Science, the SIGART and AISB newletters, and the

AI Magazine.

Chapter II

Search

CHAPTER H: SEARCH

A. Overview / 21

B. Problem Representation / 82

1. State-space Representation / 32

2. Problem-reduction Representation / 86

8. Game Trees / 48
C. Search Methods / 46

1. Blind State-space Search / 46
2. Blind AND/OR Graph Search / 54

8. Heuristic State-space Search / 58

a. Basic Concepts in Heuristic Search / 58

b. A*—Optimal Search for an Optimal Solution / 64

c. Relaxing the Optimality Requirement / 67

d. Bidirectional Search / 72

4- Heuristic Search of an AND/OR Graph / 74

5. Game Tree Search / 84

a. Minimax Procedure / 84

b. Alpha-Beta Pruning / 88

c. Heuristics in Game Tree Search / 94

D. Sample Search Programs / 109

1. Logic Theorist / 109

2. General Problem Solver / 118

8. Gelernter's Geometry Theorem-proving Machine / 119

4. Symbolic Integration Programs / 128

5. STRIPS / 128

6. ABSTRIPS / 135

A. OVERVIEW

In Artificial Intelligence, the terms problem solving and search

refer to a large body of core ideas that deal with deduction, inference,

planning, commonsense reasoning, theorem proving, and related pro-

cesses. Applications of these general ideas are found in programs for

natural language understanding, information retrieval, automatic pro-

gramming, robotics, scene analysis, game playing, expert systems, and

mathematical theorem proving. In this chapter we examine search as a

tool for problem solving in a more limited area. Most of the examples

to be considered in detail are problems that are relatively easy to

formalize. Some typical problems are:

1. finding the solution to a puzzle,

2. finding a proof for a theorem in logic or mathematics,

3. finding the shortest path connecting a set of nonequidistant

points (the traveling-salesman problem),

4. finding a sequence of moves that will win a game, or the best

move to make at a given point in a game,

5. finding a sequence of transformations that will solve a symbolic

integration problem.

Organization of the Chapter

This overview takes a general look at search in problem solving,

indicating some connections with topics considered in other chapters.

The articles in the next section, Section n.B, describe the problem

representations that form the basis of search techniques. The detailed

examples there of state-space and problem-reduction representations will

clarify what is meant by words like search and problem solving in AI.

Readers to whom the subject of search is new are encouraged to turn

to those articles for more concrete presentations of the fundamental

ideas. Section n.B also discusses game trees, which are a historically

and conceptually important class of representations.

Section n.C deals with the algorithms that use these various problem

representations. Blind search algorithms, which treat the search space

syntactically, are contrasted with heuristic methods, which use infor-

mation about the nature and structure of the problem domain to limit

the search. Various search algorithms are presented in full.

22 Search II

Finally, Section n.D reviews some well-known early programs based

on search. It also describes two programs, STRIPS and ABSTRIPS, that

introduce the closely related topic of planning in problem solving. This

general topic, however, is treated more fully in Chapter XVI, in

Volume m.

Components of Search Systems

Problem-solving systems can usually be described in terms of three

main components. The first of these is a database, which describes both

the current task-domain situation and the goal. The database can

consist of a variety of different kinds of data structures including arrays,

lists, sets of predicate calculus expressions, property list structures, and

semantic networks. In- theorem proving, for example, the current task-

domain situation consists of assertions representing axioms, lemmas, and

theorems already proved; the goal is an assertion representing the

theorem to be proved. In information-retrieval applications, the current

situation consists of a set of facts, and the goal is the query to be

answered. In robot problem solving, a current situation is a world model

consisting of statements describing the physical surroundings of the

robot, and the goal is a description that is to be made true by a

sequence of robot actions.

The second component of problem-solving systems is a set of oper-

ators that are used to manipulate the database. Some examples of

operators include:

1. in theorem proving, rules of inference such as modus ponens

and resolution;

2. in chess, rules for moving chessmen;

3. in symbolic integration, rules for simplifying the forms to be

integrated, such as integration by parts or trigonometric sub-

stitution.

Sometimes the set of operators consists of only a few general rules of

inference that generate new assertions from existing ones. Usually it is

more efficient to use a large number of very specialized operators that

generate new assertions only from very specific existing ones.

The third component of a problem-solving system is a control strat-

egy for deciding what to do next—in particular, what operator to apply

and where to apply it. Sometimes control is highly centralized, in a

separate control executive that decides how problem-solving resources

should be expended. Sometimes control is diffusely spread among the

operators themselves.

A Overview 23

The choice of a control strategy affects the contents and organi-

zation of the database. In general, the object is to achieve the goal by

applying an appropriate sequence of operators to an initial task-domain

situation. Each application of an operator modifies the situation in

some way. If several different operator sequences are worth considering,

the representation often maintains data structures showing the effects on

the task situation of each alternative sequence. Such a representation

permits a control strategy that investigates various operator sequences in

parallel or that alternates attention among a number of sequences that

look relatively promising. This is the character of most of the algo-

rithms considered in this chapter; they assume a database containing de-

scriptions of multiple task-domain situations or states (see, e.g., Article

n.Ci). ., It may be, however, that the description of a task-domain

situation is too large for multiple versions to be stored explicitly; in this

case, a backtracking control strategy may be used (see Article VI.B3, in

Vol. n). A third approach is possible in some types of problems such

as theorem proving, where the application of operators can add new

assertions to the description of the task-domain situation but never can

require the deletion of existing assertions. In this case, the database

can describe a single, incrementally changing task-domain situation;

multiple or alternative descriptions are unnecessary. (See Chap, xn, in

Vol. m.)

Reasoning Forward and Reasoning Backward

The application of operators to those structures in the database that

describe the task-domain situation—to produce a modified situation—is

often called reasoning forward. The object is to bring the situation, or

problem state, forward from its initial configuration to one satisfying a

goal condition. For example, an initial situation might be the place-

ment of chessmen on the board at the beginning of the game; the

desired goal, any board configuration that is a checkmate; and the

operators, rules for the legal moves in chess.

An alternative strategy, reasoning backward, involves another type of

operator, which is applied, not to a current task-domain situation, but

to the goal. The goal statement, or problem statement, is converted to

one or more subgoals that are (one hopes) easier to solve and whose

solutions are sufficient to solve the original problem. These subgoals may
in turn be reduced to sub-subgoals, and so on, until each of them is

accepted to be a trivial problem or its subproblems have been solved.

For example, given an initial goal of integrating l/(cos2 x) dx, and an

operator permitting l/(cos x) to be rewritten as sec x, one can work

24 Search II

backward toward a restatement of the goal in a form whose solution is

immediate: The integral of sec2 x is tan x.

The former approach is said to use forward reasoning and to be

data driven or bottom-up. The latter uses backward reasoning and is goal

directed or top-down. The distinction between forward and backward

reasoning assumes that the current task-domain situation or state is

distinct from the goal. If one chooses to say that a current state is the

state of having a particular goal, the distinction naturally vanishes.

Much human problem-solving behavior is observed to involve

reasoning backward, and many artificial intelligence programs are based

on this general strategy. In addition, combinations of forward and

backward reasoning are possible. One important AI technique involving

forward and backward reasoning is called means-ends analysis; it in-

volves comparing the current goal with a current task-domain situation

to extract a difference between them. This difference is then used to

index the (forward) operator most relevant to reducing the difference. If

this especially relevant operator cannot be immediately applied to the

present problem state, subgoals are set up to change the problem state

so that the relevant operator can be applied. After these subgoals are

solved, the relevant operator is applied and the resulting, modified

situation becomes a new starting point from which to solve for the

original goal. (See Articles n.D2 and n.D5.)

State Spaces and Problem Reduction

A problem-solving system that uses forward reasoning and whose

operators each work by producing a single new object—a new state

—

in the database is said to represent problems in a state-space repre-

sentation (see Article n.Bi).

For backward reasoning, a distinction may be drawn between two

cases. In one, each application of an operator to a problem yields

exactly one new problem, whose size or difficulty is typically slightly less

than that of the previous problem. Systems of this kind will also be

referred to, in this chapter, as employing state-space representations.

Two instances of such representations are presented later in the chapter.

One example is the Logic Theorist program (Article n.Di); the other is

the backward-reasoning part of Pohl's bidirectional search (Articles n.Cl

and n.C3d).

A more complex kind of backward reasoning occurs if applying an

operator may divide the problem into a set of subproblems, perhaps

each significantly smaller than the original. An example would be an op-

A Overview 25

erator changing the problem of integrating 2/ (3? - 1) dx into the three

subproblems of integrating l/(x-l)dx, integrating -l/(x+l) dx, and

adding the results. A system using this kind of backward reasoning,

distinguished by the fact that its operators can change a single object

into a conjunction of objects, will be said to employ a problem-reduction

representation. The relation between problem-reduction and state-space

representations is examined further at the end of Article n.B2.

There may or may not be constraints on the order in which the

subproblems generated by a problem-reduction system can be solved.

Suppose, for example, that the original problem is to integrate

(f (x) -\- g (x)) dx. Applying the obvious operator changes it to the new

problem consisting of two integrations, f(x) dx and g(x) dx. Depending on

the representation, the new problem can be viewed as made up of either

(a) two integration subproblems that can be solved in any order or

(b) two integration subproblems plus the third subproblem of summing

the integrals. In the latter case, the third task cannot be done until

the first two have been completed.

Besides the state-space and problem-reduction approaches, other

variations on problem representation are possible. One is used in game-

playing problems, which differ from most other problems by virtue of

the presence of adversary moves. A game-playing problem must be

represented in a way that takes into account the opponent's possible

moves as well as the player's own. The usual representation is a game

tree (see Article n.B3), which shares many features of a problem-

reduction representation. Another variation is relevant to theorem-

proving systems, many of which use forward reasoning and operators

(rules of inference) that act on conjunctions of objects in the database.

Although the representations discussed here assume that each operator

takes only a single object as input, it is possible to define a theorem-

proving representation that provides for multiple-input, single-output

operators (Kowalski, 1972; see also Chap, xn, in Vol. m).

Graph Representation

In either a state-space or a problem-reduction representation,

achieving the desired goal can be equated with finding an appropriate

finite sequence of applications of available operators. While what one is

primarily interested in—the goal situation or the sequence that leads to

it—may depend on the problem, the term search can always be under-

stood, without misleading consequences, as referring to the search for an

appropriate operator sequence.

26 Search II

Tree structures are commonly used in implementing control strat-

egies for the search. In a state-space representation, a tree may be

used to represent the set of problem states produced by operator

applications. In such a representation, the root node of the tree

represents the initial problem situation or state. Each of the new states

that can be produced from this initial state by the application of just

one operator is represented by a successor node of the root node.

Subsequent operator applications produce successors of these nodes, and

so on. Each operator application is represented by a directed arc of the

tree. In general, the states are represented by a graph rather than by a

tree, since there may be different paths from the root to any given

node. Trees are an important special case, however, and it is usually

easier to explain their use than that of graphs. (See Article n.Bi.)

Besides these ordinary trees and graphs, which are used for state-

space representations, there are also specialized ones called AND/OR
graphs that are used with problem-solving methods involving problem

reduction. For problems in which the goal can be reduced to sets of

subgoals, AND/OR graphs provide a means for keeping track of which

subgoals have been attempted and which combinations of subgoals are

sufficient to achieve the original goal. (See Article n.B2.)

The Search Space

The problem of producing a state that satisfies a goal condition can

now be formulated as the problem of searching a graph to find a node

whose associated state description satisfies the goal. Similarly, search

based on a problem-reduction representation can be formulated as the

search of an AND/OR graph.

It should be noted that there is a distinction between the graph to

be searched and the tree or graph that is constructed as the search

proceeds. In the latter, nodes and arcs can be represented by explicit

data structures; the only nodes included are those for which paths from

the initial state have actually been discovered. This explicit graph,

which grows as the search proceeds, will be referred to as a search

graph or search tree.

In contrast, the graph to be searched is ordinarily not explicit. It

may be thought of as having one node for every state to which there is

a path from the root. It may even be thought of, less commonly, as

having one node for every state that can be described, whether or not a

path to it exists. The implicit graph will be called the state space or,

if generalized to cover non-state-space representations such as AND/OR
graphs or game trees, the search space. Clearly, many problem domains

A Overview 27

(such as theorem proving) have an infinite search space, and the search

space in others, though finite, is unimaginably large. Estimates of

search-space size may be based on the total number of nodes (however

defined) or on other measures. In chess, for example, the number of

different complete plays of the average-length game has been estimated

at 10120 (Shannon, 1950, 1956), although the number of "good" games is

much smaller (see Good, 1968). Even for checkers, the size of the

search space has been estimated at 1040 (Samuel, 1963).

Searching now becomes a problem of making just enough of the

search space explicit in a search graph to contain a solution of the

original goal. If the search space is a general graph, the search graph

may be a subgraph, a subgraph that is also a tree, or a tree obtained

by representing distinct paths to one search space node with duplicate

search graph nodes.

Limiting Search

The critical problem of search is the amount of time and space

necessary to find a solution. As the chess and checkers estimates

suggest, exhaustive search is rarely feasible for nontrivial problems.

Examining all sequences of n moves, for example, would require

operating in a search space in which the number of nodes grows

exponentially with n. Such a phenomenon is called a combinatorial

explosion.

There are several complementary approaches to reducing the number

of nodes that a search must examine. One important way is to recast

the problem so that the size of the search space is reduced. A dra-

matic, if well-known, example is the mutilated chessboard problem:

Suppose two diagonally opposite corner squares are removed from a

standard 8 by 8 square chessboard. Can 31 rectangular dominoes,

each the size of exactly two squares, be so placed as to cover

precisely the remaining board? (Raphael, 1976, p. 31)

If states are defined to be configurations of dominoes on the mutilated

board, and an operator has the effect of placing a domino, the search

space for this problem is very large. If, however, one observes that

every domino placed must cover both a red square and a black one and

that the squares removed are both of one color, the answer is

immediate. Unfortunately, little theory exists about how to find good

problem representations. Some of the sorts of things such a theory

would need to take into account are explored by Amarel (1968), who

gives a sequence of six representations for a single problem, each re-

ducing the search-space size by redefining the states and operators.

28 Search II

A second aspect concerns search efficiency within a given search

space. Several graph- and tree-searching methods have been developed,

and these play an important role in the control of problem-solving

processes. Of special interest are those graph-searching methods that

use heuristic knowledge from the problem domain to help focus the

search. In some types of problems, these heuristic search techniques can

prevent a combinatorial explosion of possible solutions. Heuristic search

is one of the key contributions of AI to efficient problem solving.

Various theorems have been proved about the properties of search

techniques, both those that do and those that do not use heuristic

information. Briefly, it has been shown that certain types of search

methods are guaranteed to find optimal solutions (when such exist).

Some of these methods, under certain comparisons, have also been

shown to find solutions with minimal search effort. Graph- and tree-

searching algorithms, with and without the use of heuristic information,

are discussed at length in Section n.C.

A third approach addresses the question: Given one representation

of a search problem, can a problem-solving system be programmed to

find a better representation automatically? The question differs from

that of the first approach to limiting search in that here it is the

program, not the program designer, that is asked to find the improved

representation. One start on answering the question was made by the

STRIPS program (Article n.D5). STRIPS augments its initial set of

operators by discovering, generalizing, and remembering macro- operators,

composed of sequences of primitive operators, as it gains problem-solving

experience. Another idea was used in the ABSTRIPS program (Article

n.D6), which implements the idea of planning, in the sense of defining

and solving problems in a search space from which unimportant details

have been omitted. The details of the solution are filled in (by smaller

searches within the more detailed space) only after a satisfactory outline

of a solution, or plan, has been found. Planning is a major topic itself;

for further discussion, see Chapter XVI, in Volume m.

The Meaning of Heuristic and Heuristic Search

Although the term heuristic has long been a key word in AI, its

meaning has varied both among authors and over time. In general, its

usage is illustrated by example better than by definition, and several

of the prime examples are included in the programs of Section n.D.

However, a brief review of the ways heuristic and heuristic search have

been used may provide a useful warning against taking any single

definition too seriously.

A Overview 29

As an adjective, the most frequently quoted dictionary definition for

heuristic is "serving to discover." As a noun, referring to an obscure

branch of philosophy, the word meant the study of the methods and

rules of discovery and invention (see Polya, 1957, p. 112).

When the term came into use to describe AI techniques, some

writers made a distinction between methods for discovering solutions and

methods for producing them algorithmically. Thus, Newell, Shaw, and

Simon stated in 1957: "A process that may solve a given problem, but

offers no guarantees of doing so, is called a heuristic for that problem"

(Newell, Shaw, and Simon, 1963b, p. 114). But this meaning was not

universally accepted. Minsky, for example, said in a 1961 paper:

The adjective "heuristic," as used here and widely in the literature,

means related to improving problem-solving performance; as a noun it is

also used in regard to any method or trick used to improve the

efficiency of a problem-solving program. . . . But imperfect meth-

ods are not necessarily heuristic, nor vice versa. Hence "heuristic"

should not be regarded as opposite to "foolproof; this has caused

some confusion in the literature. (Minsky, 1963, p. 407n.)

These two definitions refer, though vaguely, to two different sets

—

devices that improve efficiency and devices that are not guaranteed.

Feigenbaum and Feldman (1963) apparently limit heuristic to devices

with both properties:

A heuristic (heuristic rule, heuristic method) is a rule of thumb,

strategy, trick, simplification, or any other kind of device which

drastically limits search for solutions in large problem spaces.

Heuristics do not guarantee optimal solutions; in fact, they do not

guarantee any solution at all; all that can be said for a useful heuristic

is that it offers solutions which are good enough most of the time. (p. 6;

italics in original)

Even this definition, however, does not always agree with common

usage, because it lacks a historical dimension. A device originally

introduced as a heuristic in Feigenbaum and Feldman 's sense may later

be shown to guarantee an optimal solution after all. When this hap-

pens, the label heuristic may or may not be dropped. It has not been

dropped, for example, with respect to the A* algorithm (Article n.C3b).

Alpha-beta pruning (Article n.C5b), on the other hand, is no longer

called a heuristic.

It should be noted that the definitions quoted above, ranging in

time from 1957 to 1963, refer to heuristic rules, methods, and programs,

but they do not use the term heuristic search. This composite term

30 Search II

appears to have been first introduced in 1965 in a paper by Newell and

Ernst, "The Search for Generality" (see Newell and Simon, 1972,

p. 888). The paper presented a framework for comparing the methods

used in problem-solving programs up to that time. The basic frame-

work, there called heuristic search, was the one called state-space search

in the present chapter. Blind search methods were included in the

heuristic search paradigm.

A similar meaning for heuristic search appears in Newell and Simon

(1972, pp. 91-105). Again, no contrast is drawn between heuristic

search and blind search; rather, heuristic search is distinguished from a

problem-solving method called generate and test. The difference between

the two is that the latter simply generates elements of the search space

(i.e., states) and tests each in turn until it finds one satisfying the goal

condition; whereas in heuristic search the order of generation can depend

both on information gained in previous tests and on the characteristics

of the goal. But the Newell and Simon distinction is not a hard and

fast one. By the time of their 1976 Turing Lecture, they seem to have

collapsed the two methods into one:

Heuristic Search. A second law of qualitative structure for AI is

that symbol systems solve problems by generating potential

solutions and testing them, that is, by searching. (Newell and

Simon, 1976, p. 126)

In the present chapter, the meaning attached to heuristic search

stems not from Newell and Simon but from Nilsson, whose 1971 book

provides the most detailed and influential treatment of the subject that

has yet appeared. For Nilsson, the distinction between heuristic search

and blind search is the important one. Blind search corresponds

approximately to the systematic generation and testing of search-space

elements, but it operates within a formalism that leaves room for

additional information about the specific problem domain to be

introduced, rather than excluding it by definition. If such information,

going beyond that needed merely to formulate a class of problems as

search problems, is in fact introduced, it may be possible to restrict

search drastically. Whether or not the restriction is foolproof, the

search is then called heuristic rather than blind.

References

See Amarel (1968), Feigenbaum and Feldman (1963), Good (1968),

Jackson (1974), Kowalski (1972), Minsky (1963), Newell and Ernst

(1965), Newell, Shaw, and Simon (1963b), Newell and Simon (1972,

A Overview 31

1976), Nilsson (1971), Polya (1957), Raphael (1976), Samuel (1963),

Shannon (1950, 1956), and Vanderbrug and Minker (1975).

B. PROBLEM REPRESENTATION

Bl. State-space Representation

A state-space representation of a problem employs two kinds of

entities: states, which are data structures giving "snapshots" of the

condition of the problem at each stage of its solution, and operators,

which are means for transforming the problem from one state to

another.

A straightforward example of state-space representation is the sim-

ple, well-known puzzle called the 8-puzzle. An 8-puzzle is a square tray

containing eight square tiles of equal size, numbered 1 to 8. The space

for the ninth tile is vacant (see Fig. Bl-1).

2 1 6

4 8

7 5 3

Figure Bl-1. An 8-puzzle.

A tile may be moved by sliding it vertically or horizontally into the

empty square. The problem is to transform some particular tile config-

uration, say, that of Figure Bl-1, into another given tile configuration,

say, that of Figure Bl-2.

1 2 3

8 4

7 6 5

Figure Bl-2. A solution configuration

of the 8-puzzle.

Bl State-space Representation 33

A state is a particular configuration of tiles; each state might be

represented by a 3 X 3 matrix, similar to Figures Bl-1 and Bl-2. The

operators, corresponding to possible moves, might be defined with sep-

arate operators for each of tiles 1 through 8. However, a more concise

definition is made possible by viewing the empty square as the object to

be moved and stating the operators in terms of the movements of this

square. In this formulation, only four operators are used:

UP Move the blank up one square,

DOWN Move the blank down one square,

LEFT Move the blank left one square,

RIGHT Move the blank right one square.

An operator may be inapplicable in certain states, as when it would

move the blank outside the tray of tiles.

The set of all attainable states of a problem is often called its state

space. The 8-puzzle, for example, has a state space of size 9!/2—since

there are 9! configurations of the tiles but only half this number can be

reached from any given starting configuration. This comes to only

181,440 possible states. For comparison, see the discussion of chess and

checkers in Article n.A.

The four operators defined for the 8-puzzle form a set of partial

functions on the state space: Each operator, if it applies to a given

state at all, returns exactly one new state as its result. In more complex

problems, however, the operators often contain variables. If, for a par-

ticular state and operator, the variables can be instantiated in more

than one way, then each instantiation yields one new state, and the

operators of the problem, if they are to be considered as defining

functions, are more accurately termed operator schemata.

The complete specification of a state-space problem has three com-

ponents. One is a set of operators or operator schemata. In addition,

one must define a set S of one or more initial states and find a

predicate defining a set G of goal states. A state-space problem is then

the triple (S, 0, G). A solution to the problem is a finite sequence of

applications of operators that changes an initial state into a goal state.

A state space can be treated as a directed graph whose nodes are

states and whose arcs are operators transforming one state to another.

For example, if state 1 is a state to which any of three operators can

be applied, transforming it to state 2, 3, or 4, then the corresponding

graph would be as in Figure Bl-3. Nodes 2, 3, and 4 are called the

successors of node 1.

34 Search n

node

2

node

1

node

3

node

4

Figure Bl-3. Directed arcs.

In graph notation, a solution to a state-space problem is a path

from an initial node to a goal node. In Figure Bl-4, one solution would

be an application of operator B twice, followed by operator D, to reach

the indicated goal node or final state. There may be other final states

and multiple ways to reach a particular final state.

initial state

*

operator A / \ operator B

state 1

operator C

state 4

operator B

state 3

operator D

final state

Figure Bl-4. A state-space graph.

A common variation on state-space problems requires finding not

just any path but one of minimum cost between an initial node and a

goal node. In this case, each arc of the graph is labeled with its cost.

An example is the traveling-salesman problem: Given a number of

cities to be visited and the mileage between each pair of cities, find a

minimum-mileage trip beginning and ending at city A that visits each of

the other cities exactly once. A sample mileage chart and the corre-

sponding state-space graph are shown in Figure Bl-5. Because different

paths to the same city represent distinct partial solutions, each state is

identified not just as a city name but as a list of the cities visited so

far.

Bl State-space Representation 35

A — 4 6 10

B 7 10

C — 5

D

Mi leage chart

4

AB

10

ABC ABD

10

6

AC

ACB ACD

10 10

10

10

AD

10

ADB

ABCD ABDC ACBD ACDB ADBC

ADC

ADCB

ABCDA ABDCA ACBDA ACDBA ADBCA ADCBA

Figure Bl-5. The state-space graph for

a traveling-salesman problem.

The desired solution is A-B-D-C-A, or its reversal, with a total

mileage of 25. (The two bottom levels of the graph could be omitted,

since the mileage of each tour of n cities is determined by the first

n-1 cities chosen to be visited.)

Because the state-space graph is usually too large to represent

explicitly, the problem of searching for a solution becomes one of

generating just enough of the graph to contain the desired solution

path. Search methods are discussed in Articles n.Ci and n.C3.

References

See Nilsson (1971).

B2. Problem-reduction Representation

Often distinguished from the state-space representation of problems

is a technique called problem-reduction representation. In the problem-

reduction approach, the principal data structures are problem de-

scriptions or goals. An initial problem description is given; it is solved

by a sequence of transformations that ultimately change it into a set of

subproblems whose solutions are immediate. The transformations per-

mitted are defined as operators. An operator may change a single

problem into several subproblems; to solve the former, all the sub-

problems must be solved. In addition, several different operators may
be applicable to a single problem, or the same operator may be appli-

cable in several different ways. In this case, it suffices to solve the

subproblems produced by any one of the operator applications. A
problem whose solution is immediate is called a primitive problem.

Thus, a problem representation using problem reduction is defined by a

triple consisting of

—

1. an initial problem description,

2. a set of operators for transforming problems to subproblems,

3. a set of primitive problem descriptions.

Reasoning proceeds backward from the initial goal.

An Example

An example that lends itself nicely to problem-reduction repre-

sentation is the famous Tower of Hanoi puzzle. In one common version

there are three disks, A, B, and C, of graduated sizes. There are also

three pegs, 1, 2, and 3. Initially the disks are stacked on peg 1, with

A, the smallest, on top and C, the largest, at the bottom. The

problem is to transfer the stack to peg 3, as in Figure B2-1, given that

(a) only one disk can be moved at a time and (b) no disk may be

placed on top of a smaller disk.

Initial State Goal State

A -
B —
C

peg 1 peg 2 peg 3

- A

- B

C

peg 1 peg 2 peg 3

Figure B2-1. The Tower of Hanoi puzzle.

B2 Problem-reduction Representation 37

Only one operator need be used in the solution: Given distinct

pegs i, j, and k, the problem of moving a stack of size n > 1 from

peg % to peg k can be replaced by the three problems:

1. moving a stack of size

2. moving a stack of size

3. moving a stack of size

n - 1 from i to ;

1 from i to k

n - 1 from ; to k

The only primitive problem is that of moving a single disk from one

peg to another, provided no smaller disk is on the receiving peg. If a

smaller disk were present, this problem would be unsolvable (in view of

the definition of the only available operator).

Each problem description can now be given by specifying the size n

of the stack to be moved, the number of the sending peg, and the

number of the receiving peg. The original problem, moving a stack of

three disks from peg 1 to peg 3, would then be represented as (n = 3,

1 to 3), and the transformation of the original problem to primitive

problems can be represented by a tree, as shown in Figure B2-2:

(i)

n=3

1 to 3

(2)

n=2

1 to 2

(3)

n=l

1 to 3

n=2

2 to 3

(5)

n=l

1 to 3

(6)

n=l

1 to 2

(?)

n=l

3 to 2

(J)

n=l

2 to 1

(9)

n=l

2 to 3

(10)

n=l

1 to 3

Figure B2-2. Solution of the Tower of Hanoi puzzle.

There happen to be two possible operator sequences that transform

the original problem to primitive problems: Apply the operator to

node 1, then node 2, and then node 4; or apply the operator to node 1,

then node 4, and then node 2. Since node 3 is a primitive problem, it

needs no further attention. Node 2 represents the subproblem of

moving the top two disks on peg 1 to peg 2. This subproblem is

solved by expanding it to the primitive problems at nodes 5, 6,

and 7—which are solved by moving the smallest disk to peg 3, moving

38 Search n

the middle disk to peg 2, and finally putting the small disk back on

top of the middle one.

The sequence of operators to be applied should be distinguished

from the sequence of actions to be taken to achieve the goal. In the

Tower of Hanoi example, the actions are the actual movements of the

disks. This sequence is given by the terminal nodes of the tree, read

left to right. Whether or not it is considered important to assemble

such a sequence of actions depends on the particular problem domain.

AND/OR Graphs

In the example above, a tree was used to display a problem-

reduction solution to the Tower of Hanoi puzzle. The tree notation

must be generalized if it is to represent the full variety of situations

that may occur in problem reduction. This generalized notation for

problem reduction is called an AND/OR graph.

According to one common formulation (Nilsson, 1971), an AND/OR
graph is constructed according to the following rules:

1. Each node represents either a single problem or a set of prob-

lems to be solved. The graph contains a start node correspond-

ing to the original problem.

2. A node representing a primitive problem, called a terminal node,

has no descendants.

3. For each possible application of an operator to problem P,

transforming it to a set of subprobiems, there is a directed arc

from P to a node representing the resulting subproblem set.

For example, Figure B2-3 illustrates the reduction of P to three

different subproblem sets: A, B, and C. Since P can be solved

if any one of sets A, B, or C can be solved, A, B, and C are

called OR nodes.

Figure B2-3. An AND/OR tree.

B2 Problem-reduction Representation 39

4. Figure B2-3 illustrates further the composition of sets A, B, and

C. Here, A = {£),£'}, B consists of a single (unnamed) problem,

and C== {F, G, H}. In general, for each node representing a set

of two or more subproblems, there are directed arcs from the

node for the set to individual nodes for each subproblem. Since

a set of subproblems can be solved only if its members can all

be solved, the subproblem nodes are called AND nodes. To
distinguish them from OR nodes, the arcs leading to AND-node
successors of a common parent are joined by a horizontal line.

5. A simplification of the graph produced by rules 3 and 4 may be

made in the special case where only one application of an

operator is possible for problem P and where this operator

produces a set of more than one subproblem. As Figure B2-4

illustrates, the intermediate OR node representing the subproblem

set may then be omitted. (Another example of this construc-

tion was given in Fig. B2-2.)

Figure B2-4. An AND/OR tree with one

operator at problem P.

In the figures above, every node represents a distinct problem or set

of problems. Since each node except the start node has just one

parent, the graphs are in fact AND/OR trees. As a variation on

Figure B2-3, assume that problem A is reducible to D and E; and prob-

lem C, to E, G, and H. Then E may be represented either by two

distinct nodes, or by a single node as shown in Figure B2-5. The

choice makes a difference in the search algorithms, which are discussed

later in the chapter. For example, if node E is in turn reducible to C,

the general graph representation simply adds another directed arc to

Figure B2-5, but the corresponding tree becomes infinite.

40 Search n

Figure B2-5. An AND/OR graph.

The constructions discussed so far concern graphs depicting the

entire problem search space. To find a solution to the initial problem,

one need only build enough of the graph to demonstrate that the start

node can be solved. Such a subgraph is called a solution graph or, in

the more restricted case of an AND/OR tree, a solution tree. The

following rules apply:

A node is solvable if

—

1. it is a terminal node (a primitive problem),

2. it is a nonterminal node whose successors are AND nodes that

are all solvable, or

3. it is a nonterminal node whose successors are OR nodes and at

least one of them is solvable.

Similarly, a node is unsolvable if

—

1. it is a nonterminal node that has no successors (a nonprimitive

problem to which no operator applies),

2. it is a nonterminal node whose successors are AND nodes and

at least one of them is unsolvable, or

3. it is a nonterminal node whose successors are OR nodes and all

of them are unsolvable.

Methods of searching an AND/OR graph for such a solution are dis-

cussed in Articles n.C2 and n.C4.

Relation Between Problem-reduction and State-space Representations

Some interesting general relationships can be found between problem-

reduction and state-space representations. In the first place, although

one representation often seems the more natural for a given problem, it

B2 Problem-reduction Representation 41

is often possible to recast the problem definition so that it uses the

other form. For example, the Tower of Hanoi puzzle can also be solved

by a state-space search using operators that move a single disk and that

represent all the legal moves in a given configuration. In comparison to

the problem-reduction representation, which in fact gives an algorithm

for solving the puzzle, the state-space representation would be a poor

one since it leaves room for searching down unnecessarily long paths.

Second, it is possible to translate mechanically between state-space

representations and problem-reduction representations without any fun-

damental shift in the way a problem is viewed. The ways of making

such translations can provide helpful insight into many search programs

in which the concepts of state-space and problem-reduction representa-

tion appear to be intermixed. Several translation schemes are described

below. (Some readers may wish to skip the following material at first

reading.)

State-space to problem-reduction representation. Two approaches

suggest themselves for translating state-space representations to problem-

reduction representations. In one, the state-space graph is understood as

an AND/OR graph containing only OR nodes. Each state of the state-

space version corresponds to the problem of getting from that state to a

goal state, and a goal state of the state space becomes the primitive

problem of getting from that goal state to itself. In other words, data

structures representing states are simply reinterpreted as representing

problem descriptions, where a problem consists of state information

together with an implicit goal.

Alternately, there is a slight variation of the first approach that

requires redefining the operators of the state-space representation. Each

such operator, taking state i to state j, becomes an operator applicable

to the problem of getting from state i to a goal state. Its effect is to

reduce the problem to a pair of subproblems: (a) go from state i to

state j (a primitive problem) and (b) go from state j to a goal state.

Figure B2-6 illustrates this correspondence.

State i Go from state i to goal state

State
j

Go from state i Go from state
j

to state j to goa I state

(a primitive problem)

00 (b)

Figure B2-6. (a) Part of a state-space tree; (b) the corresponding

part of an AND/OR (problem-reduction) tree.

42 Search II

Problem-reduction to . state-space representation. The translation from

a problem-reduction representation to a state-space representation is a

little more complex, assuming that the problem-reduction operators in

fact produce AND nodes. The initial problem of the problem-reduction

representation can be understood as having two components: (a) the

description of the goal to be achieved, as discussed at the beginning of

this article, and (b) the description of an initial state of the world.

These components will be denoted g and s , respectively. Some ex-

amples are

1. O
= a theorem to be proved, and

Sq = the axioms from which to prove it;

2. 0q = a configuration of objects to be achieved, and

Sq = their existing configuration.

Each state S of the corresponding state-space representation is a pair

consisting of a stack of goals {gv . . ., g) to be achieved and a current

state s of the world. Thus, the initial state Sq of the state-space repre-

sentation is Sq = {(go), s). A final state is one in which the stack of

goals to be achieved has been emptied.

For each problem-reduction operator, mapping a problem or goal g

to a set of subgoals {gm ,
. . ., <7n }, the state-space representation has a

corresponding operator mapping state Sv where S
1
= (($, . .

., g), s), to

a state S2 in which {<?m , . . ., <7n } have been added to the top of the

goal stack (in the order in which they should be carried out, if

relevant), and the state of the world 5 is unchanged; that is, S2
= ((0m> • • •» 9w 9v • • •> 9q), s)-

The state-space representation also needs a second type of operator,

which becomes applicable whenever the goal on top of the stack

represents a primitive problem. Its function is to remove that primitive

problem from the stack and, at the same time, to change the state s to

reflect its solution. In the Tower of Hanoi puzzle, for example, the new

state would reflect the changed position of a single disk. In a theorem-

proving problem, the new state would differ from the old one by the

addition of one formula to those that had been given as axioms or

established from having solved previous subproblems. A representation

of this type is used explicitly in Fikes and Nilsson's STRIPS program,

described in Article n.D5.

References

See Jackson (1974) and Nilsson (1971).

B3. Game Trees

Most games played by computer programs, including checkers, chess,

Go, and tic-tac-toe, have several basic features in common. There are

two players who alternate in making moves. At each turn, the rules

define both what moves are legal and the effect that each possible move

will have; there is no element of chance. In contrast to card games in

which the players' hands are hidden, each player has complete in-

formation about his opponent's position, including the choices open to

him and the moves he has made. The game begins from a specified

state, often a configuration of men on a board. It ends in a win for

one player and a loss for the other, or possibly in a draw.

A complete game tree is a representation of all possible plays of

such a game. The root node is the initial state, in which it is the first

player's turn to move. Its successors are the states he can reach in one

move, their successors are the states resulting from the other player's

possible replies, and so on. Terminal states are those representing a

win, loss, or draw. Each path from the root node to a terminal node

gives a different complete play of the game.

An important difference between a game tree and a state-space tree

(Article n.Bi) is that the game tree represents moves of two opposing

players, say, A and B, whereas the arcs of a state-space tree are all

"moves" of a single problem-solving agent. An AND/OR tree (Article

n.B2), however, is sufficient to reflect this opposition. The game tree is

ordinarily drawn to represent only one player's point of view. In a

game tree drawn from A'& standpoint, A's possible moves from a given

position are represented by OR nodes since they are alternatives under

his own control. The moves that B might make in return are AND
nodes, since they represent sets of moves to which A must be able to

respond. Because the players take turns, OR nodes and AND nodes

appear at alternate levels of the tree. In the language of AND/OR
graphs, the tree displays the search space for the problem of showing

that A can win. A node representing a win for A corresponds to a

primitive problem; a node representing a win for B or a draw, to an

unsolvable problem. Unlike the usual AND/OR graph terminology, both

of these kinds of nodes will be called terminal nodes.

As an example, Figure B3-1 shows a portion of the game tree for

tic-tac-toe. The players are X and 0, X has the first move, and the

tree is drawn from X's standpoint. Positions are considered identical if

one can be obtained from the other by rotation or reflection of the grid.

44 Search n

1

X** ***
1

*** *x* X**

1

*** ***

1

0**

x

0

x

1

1

0
1

xo*
1

0
1

0

x *x* XX* *x*

X** *** *** *x*

Figure B3-1. A game tree for Tic-tac-toe.

The tree could also be drawn from O's standpoint, even though X
has the first move. In this case, the AND nodes would become OR
nodes, and vice versa, and the labels "win" and "lose" would be

reversed. An alternate formulation of game trees, not explicitly dis-

tinguishing between AND and OR nodes, is given in Article n.C5a.

Methods of searching a game tree for a winning strategy are

B3 Game Trees 45

discussed in Section n.C5. As with search in other domains, the source

of difficulty in challenging games is the unimaginably large search space.

A complete game tree for checkers, for instance, which is harder than

tic-tac-toe but far simpler than chess or Go, has been estimated as

having about 1040 nonterminal nodes (Samuel, 1963). If one assumed

that these nodes could be generated at the rate of 3 billion per second,

generation of the whole tree would still require around 1021 centuries!

References

See Nilsson (1971) and Samuel (1963).

C. SEARCH METHODS

CI. Blind State-space Search

As discussed in Article n.Bi, a problem in the state-space search

paradigm is defined by a triple (S, 0, G), where

S is a set of one or more initial states,

is a set of operators on states, and

G is a set of goal states.

The state space is commonly identified with a directed graph in which

each node is a state and each arc represents the application of an

operator transforming a state to a successor state. A solution is a path

from a start state to a goal state. Goal states may be defined either

explicitly or as the set of states satisfying a given predicate.

The search for a solution is conducted by making explicit just

enough of the state-space graph to contain a solution path. If the order

in which potential solution paths are considered is arbitrary, using no

domain-specific information to judge where the solution is likely to lie,

the search is called blind search. Although blind search is impracticable

for nontrivial problems, because of the large proportion of the state

space it may explore, it provides a useful foundation for the under-

standing of heuristic search techniques, discussed in Section n.C3.

Several blind-search methods are described below; they differ from

one another mainly in the order in which nodes are examined. In each

case, it is assumed that there is a procedure for finding all the suc-

cessors of a given node—that is, all the states that can be reached from

the current state by a single operator application. Such a procedure is

said to expand the given node.

The first three algorithms also make two other assumptions:

1. The state-space graph is a tree. The implication is that there is

only one start state (the root) and that the path from the start

node to any other node is unique. Modifications to the search

methods needed for a general directed graph are noted in

Nilsson (1971) and in Article n.C3a.

2. Whenever a node is expanded, creating a node for each of its

successors, the successor nodes contain pointers back to the par-

ent node. When a goal node is finally generated, this feature

makes it possible to trace the solution path.

CI Blind State-space Search 47

Breadth-first Search

The breadth-first method expands nodes in order of their proximity

to the start node, measured by the number of arcs between them. In

other words, it considers every possible operator sequence of length n

before any sequence of length n+1. Thus, although the search may be

an extremely long one, it is guaranteed eventually to find the shortest

possible solution sequence if any solution exists.

Breadth-first search is described by the following algorithm:

1. Put the start node on a list, called OPEN, of unexpanded

nodes. If the start node is a goal node, a solution has been

found.

2. If OPEN is empty, no solution exists.

3. Remove the first node, n, from OPEN and place it in a list,

called CLOSED, of expanded nodes.

4. Expand node n. If it has no successors, go to (2).

5. Place all successors of node n at the end of the OPEN list.

6. If any of the successors of node n is a goal node, a solution has

been found. Otherwise, go to (2).

As an example of breadth-first search, consider a world consisting of

a table and three toy blocks. The initial state of the world is that

blocks 2 and 3 are on the table, and block 1 is on top of block 2 (see

Fig. Cl-1). We wish to reach a goal state in which the three blocks

are stacked with block 1 on top, block 2 in the middle, and block 3 on

the bottom.

In i tia I state Goa I state

Figure Cl-1. A sample problem for breadth-first search.

The only operator is MOVE X to Y, which moves object X onto

another object, Y. As preconditions to applying the operator, it is

required (a) that X, the object to be moved, be a block with nothing

on top of it and (b) that if Y is a block, there must be nothing on Y.

Finally, the operator is not to be used to generate the same state more

than once. (This last condition can be checked from the lists of ex-

panded and unexpanded nodes.)

48 Search n

Figure CI-2 shows the search tree generated by the breadth-first

algorithm. The nodes are states SQ through S10 ; node S^ for example,

corresponds to the successor state of £ reached by "MOVE block 1 to

the table." The nodes are generated and expanded in the order given

by their numbers, that is, S , 51? S2 , . . ., S10 . When the algorithm ter-

minates, finding S10 to be the goal, the list of expanded nodes contains

S through S5 , and the OPEN list still contains Sq through S10 .

SO: l

2 3

SI: S2: l S3: 3

1 2 3 2 3 1

2

S8: 2

S4: 2 S5: 2 3 S7:' 3 1

1 3 13 12 12 3

S9: 3 S10: 1

2 2

1 3

Figiire C 1-2. The search tree for Figure CM.

Uniform- cost Search

The breadth-first algorithm can be generalized slightly to solve the

problem of finding the cheapest path from the start state to a goal

state. A nonnegative cost is associated with every arc joining two

nodes; the cost of a solution path is then the sum of the arc costs

along the path. The generalized algorithm is called a uniform- cost

search. If all arcs have equal cost, the algorithm reduces to breadth-first

search. The need for assigning costs to the arcs is illustrated by the

traveling-salesman problem, described in Article n.Bi, where the different

distances between cities correspond to the arc costs and the problem is

to minimize the total distance traveled.

In the uniform-cost algorithm given below, the cost of the arc from

node i to node j is denoted by c(i,j). The cost of a path from the

start node to any node i is denoted g(i).

CI Blind State-space Search 49

1. Put the start node, s, on a list, called OPEN, of unexpanded
nodes. If the start node is a goal node, a solution has been

found. Otherwise, set g(s) = 0.

2. If OPEN is empty, no solution exists.

3. Select from OPEN a node i such that g(i) is minimum. If

several nodes qualify, choose node i to be a goal node if there

is one; otherwise, choose among them arbitrarily. Move node i

from OPEN to a list, CLOSED, of expanded nodes.

4. If node i is a goal node, a solution has been found.

5. Expand node i If it has no successors, go to (2).

6. For each successor node j of node i, compute g(j) = g{i)

+ c (i, j) and place all the successor nodes j in OPEN.

7. Go to (2).

Depth-first Search

Depth-first search is characterized by the expansion of the most re-

cently generated, or deepest, node first. Formally, the depth of a node

in a tree is defined as follows:

1. The depth of the start node is 0.

2. The depth of any other node is one more than the depth of its

predecessor.

As a consequence of expanding the deepest node first, the search follows

a single path through the state space downward from the start node;

only if it reaches a state that has no successors does it consider an

alternate path. Alternate paths systematically vary those previously

tried, changing only the last n steps while keeping n as small as

possible.

In many problems, of course, the state-space tree may be of infinite

depth, or at least may be deeper than some known upper bound on the

length of an acceptable solution sequence. To prevent consideration of

paths that are too long, a maximum is often placed on the depth of

nodes to be expanded, and any node at that depth is treated as if it

had no successors. It should be noted that, even if such a depth bound

is used, the solution path found is not necessarily the shortest one.

The following algorithm describes depth-first search with a depth bound:

1. Put the start node on a list, OPEN, of unexpanded nodes. If it

is a goal node, a solution has been found.

2. If OPEN is empty, no solution exists.

3. Move the first node, n, on OPEN to a list, CLOSED, of ex-

panded nodes.

4. If the depth of node n is equal to the maximum depth, go

to (2).

50 Search n

5. Expand node n. If it has no successors, go to (2).

6. Place all successors of node n at the beginning of OPEN.

7. If any of the successors of node n is a goal node, a solution has

been found. Otherwise go to (2).

As an example, consider the following simple problem: A pawn is

required to move through the matrix in Figure Cl-3 from top to

bottom. The pawn may enter the matrix anywhere in the top row.

From a square containing 0, the pawn must move downward if the

square below contains 0; otherwise, it must move horizontally. From a

square containing 1, no further moves are possible. The goal is to

reach a square containing in the bottom row. A depth bound of 5 is

assumed.

3 4

1

1

1

1

Figure Cl-3. A sample problem for depth-first search.

The search tree generated by the depth-first algorithm is shown in

Figure Cl-4. At node S , the pawn has not yet entered the grid. At

the other nodes, its position is given as a pair of the form (row

number, column number). The numbering of nodes gives the order in

which they are moved out of the OPEN list of unexpanded nodes.

When the algorithm terminates, the OPEN list contains «917 (a goal

node) and S18 ; all other nodes are on the expanded list. The solution

found, which is one move longer than the minimum, calls for the pawn

to enter at (1, 3), move one square right, and then go straight down to

(4, 4). Had no depth bound been used, the tree would have been one

level deeper, since node 512 has a successor, (4, 1). Since the algorithm

treats the state space as a tree, not as a general graph, it does not

discover that the distinct nodes S2 and 59 in fact represent the same

state. Consequently, the search downward from S$ duplicates the work

already done from 52 .

CI Blind State-space Search 51

so

S]

(1,1)

S2

(1,2)

S3

(2,2)

S8

(1,3)

S9 S14

(1,2) (1,4)

S4 S7 S10 S15

(2,1) (2,3) (2,2) (2,4)

S5

(3,1)

S6

(4,1)

Sll S13 S16

(2,1) (2,3) (3,4)

S12

(3,1)

S17

(4,4)

S18

(1,4)

Figure Cl-4. The search tree for Figure Cl-3.

Bidirectional Search

Each of the algorithms given above uses forward reasoning, working

from the start node of a state-space tree towards a goal node and using

operators that each map a node i to a successor node j. In some cases,

the search could equally well use backward reasoning, moving from the

goal state to the start state. An example of this is the 8-puzzle, in

which (a) the goal state can be fully described in advance and (b) it is

easy to define inverse operators—each applicable operator mapping

node j to a predecessor node i Since backward search through a tree

is trivial, it is assumed that node j can have more than one

predecessor—that is, several inverse operators may apply at node j.

For example, in the pawn-maze problem, Figure Cl-4, position (1, 2)

—

at nodes S2 and Sg—would have both nodes S and Ss as predecessors.

Forward and backward reasoning can be combined into a technique

called bidirectional search. The idea is to replace a single search graph,

which is likely to grow exponentially, by two smaller graphs—one

starting from the initial state and one starting from the goal. The

search terminates (roughly) when the two graphs intersect.

A bidirectional version of the uniform-cost algorithm, guaranteed to

52 Search II

find the shortest solution path through a general state-space graph,

is due to Pohl (1969, 1971). Empirical data for randomly generated

graphs showed that Pohl's algorithm expanded only about one-fourth as

many nodes as unidirectional search.

An algorithm for blind bidirectional search is given in detail below.

A related algorithm for heuristic bidirectional search is discussed in

Article n.C3d.

The following notation is used in the algorithm:

1. The start node is s; the goal or terminal node, t.

2. S-OPEN and S-CLOSED are lists of unexpanded and expanded

nodes, respectively, generated from the start node.

3. T-OPEN and T-CLOSED are lists of unexpanded and expanded

nodes, respectively, generated from the terminal node.

4. The cost associated with the arc from node n to node x is de-

noted c(n, x).

5. For a node x generated from the start node, gs(x) measures the

shortest path found so far from s to x.

6. For a node x generated from the terminal node, gi(x) measures

the shortest path found so far from x to t.

The algorithm is as follows:

1. Put 5 in S-CLOSED, with gs(s) = 0. Expand node s, creating a

node for each of its successors. For each successor node x,

place x on S-OPEN, attach a pointer back to 5, and set gs(x) to

c(s, x). Correspondingly, put t in T-CLOSED, with gt(t) = 0.

Expand node t, creating a node for each of its predecessors. For

each predecessor node x, place x on T-OPEN, attach a pointer

forward to t, and set gt (x) = c (x, t).

2. Decide whether to go forward or backward. If forward, go

to (3); if backward, to (4). (One way to implement this step is

to alternate between forward and backward moves. Another

way, which Pohl found to give better performance, is to move
backward if T-OPEN contains fewer nodes than S-OPEN; other-

wise, forward. It is assumed that a solution path does exist, so

the chosen list will be nonempty.)

3. Select from S-OPEN a node n at which gs(ri) is minimum. Move
n to S-CLOSED. If n is also in T-CLOSED, go to (5). Other-

wise, for each successor x of n:

a. If x is on neither S-OPEN nor S-CLOSED, then add it to

S-OPEN. Attach a pointer back to n and the path cost

gs(x) = gs(n) + c (n, x).

b. If x was already on S-OPEN, a shorter path to x may have

just been found. Compare the previous path cost, gs{x), with

CI Blind State-space Search 53

the new cost gs(n) -\- c(n, x). If the latter is smaller, set

gs(x) to the new path cost and point x back to n instead of

its predecessor on the longer path.

c. If x was already on S-CLOSED, do nothing; although a new
path to x has been found, its cost must be at least as great

as the cost of the path already known. (For further con-

sideration of this point, see Article n.C3b.)

Return to (2).

4. Select from T-OPEN a node n at which gt(n) is minimum. Move
n to T-CLOSED. If n is also in S-CLOSED, go to (5). Other-

wise, for each predecessor x of n:

a. If x is on neither T-OPEN nor T-CLOSED, then add it to

T-OPEN. Attach a pointer forward to n and the path cost

gi(x) = gt(n) + c (x, n).

b. If x was already on T-OPEN and a shorter path from x to t

has just been found, reduce the stored value of gi{x) and

point x forward to n (instead of to its successor on the

longer path).

c. If x was already on T-CLOSED, do nothing.

Return to (2).

5. Consider the set of nodes that are in both S-CLOSED and

either T-CLOSED or T-OPEN. Select from this set a node n

for which gs(n) -\- gi{n) is minimum and exit with the solution

path obtained by tracing the path from n back to s and

forward to t.

References

See Nilsson (1971) and Pohl (1969, 1971).

C2. Blind AND/OR Graph Search

A problem to be solved using AND/OR-graph search can be defined

by specifying a start node (representing an initial goal or problem

description), a set of terminal nodes (descriptions of primitive problems),

and a set of operators for reducing goals to subgoals. The rules for

constructing an AND/OR graph, together with the use of such graphs

for problem-reduction representation, were discussed in Article n.B2. To

recapitulate briefly, each possible application of an operator at a node n

(see Fig. C2-1) is represented by a directed arc from node n to a

successor node; these successor nodes are called OR nodes, since only

one of the operator applications will ever be needed to solve the

problem that node n represents. Each OR node successor of node n

represents a set of subproblems. If the set of subproblems represented

by an OR node m has more than one element, then there are directed

arcs from m to nodes representing the individual elements of the set.

These successors are called AND nodes, because all of the elements of

the set must be solved in order to solve the subproblem set represented

by node ra. To distinguish AND nodes visually from OR nodes, the arcs

in the graph from ra to its AND successors are joined by a horizontal

line.

OR nodes

AND nodes

Figure C2-1. AND/OR graph notation.

Formally, a node or problem is said to be solved if one of the

following conditions holds:

1. The node is in the set of terminal nodes (primitive problems).

(In this case, the node has no successors.)

2. The node has AND nodes as successors and all these successors

are solved.

3. The node has OR nodes as successors and any one of these

successors is solved.

C2 Blind AND/OR Graph Search 55

A solution to the original problem is given by a subgraph of the

AND/OR graph sufficient to show that the start node is solved. In

Figure C2-2, for example, assuming that nodes 5, 6, 8, 9, 10, and

11 are all terminal, there are three possible solution subgraphs:

{1, 2, 4, 8, 9}, {1, 3, 5, 6, 7, 10}, and {1, 3, 5, 6, 7, 11}.

Figure C2-2. An AND/OR graph.

A node is said to be unsolvable if one of the following conditions is

true:

1. The node has no successors and is not in the set of terminal

nodes. That is, it is a nonprimitive problem to which no

operator can be applied.

2. The node has AND nodes as successors and one or more of

these successors are unsolvable.

3. The node has OR nodes as successors and all of these successors

are unsolvable.

Again in Figure C2-2, node 1 would be unsolvable if all nodes in any of

the following sets were unsolvable: {8, 5}, {8, 6}, {8, 10, 11}, {9, 5},

{9, 6}, {9, 10, 11}.

Two algorithms for the blind search of an AND/OR tree (breadth-

first and depth-first) are given at the end of this article. They have

several features in common with blind state-space search algorithms

(Article n.Ci): The operation of expanding a node is again present, and

again the algorithms differ mainly in the order in which nodes are

considered for expansion. It should be noted that the expansion of a

node may differ slightly from the case of state-space search. In

Figure C2-2, for example, two operators apply at node 1: One reduces

it to a single equivalent problem (node 2) and the other to a set

(node 3) of three subproblems (nodes 5, 6, and 7). In this case,

nodes 2, 3, 5, 6, and 7 would all be generated in expanding node 1,

56 Search II

and each new node would be given a pointer to its immediate pre-

decessor, but only nodes 2, 5, 6, and 7 would be placed on the list of

unexpanded nodes.

In contrast to the state-space search algorithms, most of which use

forward reasoning, the search algorithms below reason backward from

the initial goal. The algorithms described here make two important

simplifying assumptions: (a) The search space is an AND/OR tree and

not a general graph, and (b) when a problem is transformed to a set of

subproblems, the subproblems may be solved in any order. The first

assumption implies that identical subproblems may arise at different

nodes of the search tree and will need to be solved anew whenever one

of them is encountered. Modifications needed for searching a general

AND/OR graph are discussed in Nilsson (1971). A way of eliminating

the second assumption, that all subproblems are independent, is dis-

cussed in Article n.C4.

Breadth-first Search of an AND/OR Tree

The following algorithm describes the breadth-first search of an

AND/OR tree. If a solution tree exists, this algorithm finds a solution

tree of minimum depth, provided that intermediate OR nodes are ig-

nored in calculating the depth of the tree. The start node is assumed

not to be a terminal node.

1. Put the start node on a list, OPEN, of unexpanded nodes.

2. Remove the first node, n, from OPEN.

3. Expand node n—generating all its immediate successors and, for

each successor m, if m represents a set of more than one sub-

problem, generating successors of m corresponding to the indi-

vidual subproblems. Attach, to each newly generated node, a

pointer back to its immediate predecessor. Place all the new
nodes that do not yet have descendants at the end of OPEN.

4. If no successors were generated in (3), then

a. Label node n unsolvable.

b. If the unsolvability of n makes any of its ancestors unsolv-

able, label these ancestors unsolvable.

c. If the start node is labeled unsolvable, exit with failure.

d. Remove from OPEN any nodes with an unsolvable ancestor.

5. Otherwise, if any terminal nodes were generated in (3), then

a. Label these terminal nodes solved.

b. If the solution of these terminal nodes makes any of their

ancestors solved, label these ancestors solved.

C2 Blind AND/OR Graph Search 57

c. If the start node is labeled solved, exit with success.

d. Remove from OPEN any nodes that are labeled solved or

that have a solved ancestor.

6. Go to (2).

Depth-first Search of an AND/OR Tree

A bounded depth-first search can be obtained by changing only

step 3 of the breadth-first algorithm. The revised step 3 is as follows:

3'. // the depth of n is less than the depth bound, then:

Expand node n—generating all its immediate successors and, for

each successor m, if m represents a set of more than one sub-

problem, generating successors of m corresponding to the indi-

vidual subproblems. Attach, to each newly generated node, a

pointer back to its immediate predecessor. Place all the new
nodes that do not yet have descendants at the beginning of

OPEN.

The depth-first search will find a solution tree, provided one exists

within the depth bound. As with breadth-first search, the notion of

depth is more meaningful if intermediate OR nodes are not counted.

For this purpose one might add the following to the end of step 3':

For each node x added to OPEN, set the depth of x to be the

depth of node n, plus 1.

Given that the start node has depth 0, the depth of any node x will

then be the length of the operator sequence that must be applied to

reach node x from the start node.

References

See Nilsson (1971).

C3. Heuristic State-space Search

C3a. Basic Concepts in Heuristic Search

In the blind search of a state-space (Article n.Ci) or an AND/OR
graph (Article n.C2), the number of nodes expanded before reaching

a solution is likely to be prohibitively large. Because the order of

expanding the nodes is purely arbitrary and does not use any properties

of the problem being solved, one usually runs out of space or time (or

both) in any but the simplest problems. This result is a manifestation

of the combinatorial explosion.

Information about the particular problem domain can often be

brought to bear to help reduce the search. In this section, it is

assumed that the definitions of initial states, operators, and goal states

all are fixed, thus determining a search space; the question, then, is how

to search the given space efficiently. The techniques for doing so

usually require additional information about the properties of the specific

problem domain beyond that which is built into the state and operator

definitions. Information of this sort will be called heuristic information,

and a search method using it (whether or not the method is foolproof)

will be called a heuristic search method (Nilsson, 1971).

The Importance of Heuristic Search Theory

Heuristic search methods were employed by nearly all early problem-

solving programs. Most of these programs, though, were written to

solve problems from a single domain, and the domain-specific infor-

mation they used was closely intertwined with the techniques for using

it. Thus, the heuristic techniques themselves were not easily accessible

for study and adaptation to new problems, and there was some like-

lihood that substantially similar techniques would have to be reinvent-

ed repeatedly. Consequently, an interest arose in developing generalized

heuristic search algorithms, whose properties could be studied inde-

pendently of the particular programs that might use them. (See Newell

and Ernst, 1965; Feigenbaum, 1969; Sandewall, 1971.) This task, in turn,

required a way of describing problems that generalized across many
different domains. Such generalized problem formulations have been

discussed in Section n.B, in an approach generally following Nilsson

(1971). Given a generalized problem representation, the most basic

heuristic-search techniques can be studied as variations on blind search

methods for the same type of problem representation.

C3a Basic Concepts in Heuristic Search 59

The current state of heuristic search theory has been diversely

judged. One of the best known students of the subject has remarked,

"The problem of efficiently searching a graph has essentially been solved

and thus no longer occupies AI researchers" (Nilsson, 1974, p. 787).

Other work makes it clear, however, that the theory is far from com-

plete (e.g., Simon and Kadane, 1975; Gaschnig, 1977). Its kinship with

complexity theory now tends to be emphasized (see Pohl, 1977).

Ways of Using Heuristic Information

The points at which heuristic information can be applied in a search

include

—

1. deciding which node to expand next, instead of doing the ex-

pansions in a strictly breadth-first or depth-first order;

2. in the course of expanding a node, deciding which successor or

successors to generate—instead of blindly generating all possible

successors at one time; and

3. deciding that certain nodes should be discarded, or pruned, from

the search tree.

A state-space search algorithm is presented below that uses heuristic

information only at the first of these points, deciding which node to

expand next, on the assumption that nodes are to be expanded fully or

not at all. The general idea is always to expand the node that seems

"most promising." A search that implements this idea is called an

ordered search or best-first search. Ordered search has been the subject

of considerable theoretical study, and several variations on the basic

algorithm below are reviewed in Articles n.C3b through n.C3d (on ordered

state-space search) and Article n.C4 (on ordered AND/OR graph search).

The other two uses of heuristic information can be discussed more

briefly. Decisions of the second kind—determining which successors to

generate—are often decisions of operator selection, determining which

operator to apply next to a given node. A node to which some but not

all applicable operators have been applied is said to have been partially

developed or partially expanded. The use of heuristic information to

develop nodes partially, reserving the possibility of fuller expansion at a

later point in the search, has been investigated by Michie (1967) and by

Michie and Ross (1970). Other applications of the idea of limiting the

successors of a given node occur in game-playing programs (see Article

n.C5c). Another important variant of the idea is means-ends analysis,

which, instead of deciding on an applicable operator, chooses an operator

most likely to advance the search whether or not it is immediately

applicable. The problem of making the operator applicable, if necessary,

is addressed secondarily. (See Articles n.D2 and n.D5.)

60 Search II

The third use of heuristic information, for pruning, amounts to

deciding that some nodes should never be expanded. In some cases, it

can be definitely determined that a node is not part of a solution, and

the node may then be safely discarded, or pruned, from the search tree.

In other cases, pruning may be desirable even though the nodes pruned

cannot be guaranteed inessential to a solution. One reason, in con-

junction with a best-first search, is simply to save the space that would

be required to retain a large number of apparently unpromising nodes

on a list of candidates for possible future expansion. For examples, see

Doran (1967) and Harris's bandwidth search (Article n.C3c). Another

reason for pruning is as a restriction on a search that is otherwise blind.

For example, a breadth-first search could be modified to choose between

expansion and pruning for each node it considers. This pruning to

control the search is also very important for problems in which all

solutions, rather than just a single solution, must be found: Finding all

solutions implies an exhaustive exploration of all unpruned parts of the

search space. An example of a search for all solutions is the DENDRAL
program (see Article VH.C2, in Vol. n).

Ordered State-space Search

An ordered or best-first search, as mentioned above, is one that

always selects the most promising node as the next node to expand.

The choice is ordinarily assumed to be global, that is, to operate on the

set of all nodes generated but not yet expanded. A local choice would

also be possible, however; for example, an ordered depth-first search

would be one that always expands the most promising successor of the

node last expanded.

The promise of a node can be defined in various ways. One way,

in a state-space problem, is to estimate its distance from a goal node;

another is to assume that the solution path includes the node being

evaluated and estimate the length or difficulty of the entire path. Along

a different dimension, the evaluation may consider only certain pre-

determined features of the node in question, or it may determine the

relevant features by comparing the given node with the goal. In all

these cases, the measure by which the promise of a node is estimated is

called an evaluation function.

A basic algorithm for ordered state-space search is given by Nilsson

(1971). The evaluation function is /*; it is defined so that the more

promising a node is, the smaller is the value of /*. The node selected

for expansion is one at which /* is minimum. The state space is

assumed to be a general graph.

C3a Basic Concepts in Heuristic Search 61

The algorithm is as follows:

1. Put the start node 5 on a list, called OPEN, of unexpanded

nodes. Calculate f*(s) and associate its value with node s.

2. If OPEN is empty, exit with failure; no solution exists.

3. Select from OPEN a node i at which /* is minimum. If several

nodes qualify, choose a goal node if there is one, and otherwise

choose among them arbitrarily.

4. Remove node i from OPEN and place it on a list, called

CLOSED, of expanded nodes.

5. If i is a goal node, exit with success; a solution has been found.

6. Expand node i, creating nodes for all its successors. For every

successor node j of i:

a. Calculate f*(j).

b. If 7* is neither in list OPEN nor in list CLOSED, then add it

to OPEN, with its /* value. Attach a pointer from j back

to its predecessor i (in order to trace back a solution path

once a goal node is found).

c. If j was already on either OPEN or CLOSED, compare the /*

value just calculated for j with the value previously

associated with the node. If the new value is lower, then

i. Substitute it for the old value,

ii. Point j back to i instead of to its previously found

predecessor,

hi. If node j was on the CLOSED list, move it back to

OPEN.

7. Go to (2).

Step 6c is necessary for general graphs, in which a node can have

more than one predecessor. The predecessor yielding the smaller value

°f f*{j) is chosen. For trees, in which a node has at most one pre-

decessor, step 6c can be ignored. Note that even if the search space is

a general graph, the subgraph that is made explicit is always a tree,

since node j never records more than one predecessor at a time.

Breadth-first, uniform-cost, and depth-first search (Article n.Ci) are

all special cases of the ordered-search technique. For breadth-first search,

we choose /*(*) to be the depth of node i. For uniform-cost search,

f*(i) is the cost of the path from the start node to node i. A depth-

first search (without a depth bound) can be obtained by taking f*(i) to

be the negative of the depth of the node.

The purpose of ordered search, of course, is to reduce the number of

nodes expanded as compared to blind-search algorithms. Its effectiveness

62 Search II

in doing this depends directly on the choice of /* which should dis-

criminate sharply between promising and unpromising nodes. If the

discrimination is inaccurate, however, the ordered search may miss an

optimal solution or all solutions. If no exact measure of promise is

available, therefore, the choice of /* involves a trade-off between time

and space, on the one hand, and the guarantee of an optimal solution,

or any solution, on the other.

Problem Types and the Choice of f*

The measure of a node's promise—and consequently the appro-

priateness of a particular evaluation function—depends on the problem

at hand. Several cases can be distinguished by the type of solution

they require. In one, it is assumed that the state space contains mul-

tiple solution paths with different costs; the problem is to find the

optimal (i.e., minimum cost) solution. This first case is well understood;

see Article n.C3b on the A* algorithm.

The second situation is similar to the first but with an added

condition: The problem is hard enough that, if it is treated as an

instance of the first case, the search will probably exceed bounds of

time and space before finding a solution. The key questions for the

second case are (a) how to find good (but not optimal) solutions with

reasonable amounts of search effort and (b) how to bound both the

search effort and the extent to which the solution produced is less than

optimal.

A third kind of problem is one in which there is no concern for the

optimality of the solution; perhaps only one solution exists, or any

solution is as good as any other. The question in this third case is how

to minimize the search effort—instead of, as in the second case, trying

to minimize some combination of search effort and solution cost.

An example of the third case comes from theorem proving, where

one may well be satisfied with the most easily found proof, however

inelegant. A clear example of the second case is the traveling-salesman

problem, in which finding some circuit through a set of cities is trivial,

and the difficulty, which is very great, is entirely in finding a shortest

or close-to-shortest path. Most treatments, however, do not clearly dis-

tinguish between the two cases. A popular test problem, the 8-puzzle,

can be treated as being in either class. For further discussion of the

second and third cases, see Article n.C3c.

C3a Basic Concepts in Heuristic Search 63

References

See Doran (1967), Feigenbaum (1969), Gaschnig (1977), Michie

(1967), Michie and Ross (1970), Newell and Ernst (1965), Newell and

Simon (1972), Nilsson (1971, 1974), Pohl (1977), Sandewall (1971), and

Simon and Kadane (1975).

C3b. A*—Optimal Search for an Optimal Solution

The A* algorithm, described by Hart, Nilsson, and Raphael (1968),

addresses the problem of finding a minimal-cost path joining the start

node and a goal node in a state-space graph. This problem subsumes

the problem of finding the path between such nodes containing the

smallest number of arcs. In the latter problem, each arc (representing

the application of an operator) has cost 1; in the minimal-cost-path

problem, the costs associated with arcs can be arbitrary. Historically,

the predecessors of A* include Dijkstra's algorithm (1959) and Moore's

algorithm (1959). A class of algorithms similar to A* is used in oper-

ations research under the name of branch-and-bound algorithms (see Hall,

1971; Hillier and Lieberman, 1974; Lawler and Wood, 1966; Reingold,

Nievergelt, and Deo, 1977).

The algorithm used by A* is an ordered state-space search (see

Article n.C3a). Its distinctive feature is its definition of the evaluation

function, f*. As in the usual ordered search, the node chosen for ex-

pansion is always one at which /* is minimum.

Since /* evaluates nodes in light of the need to find a minimal-cost

solution, it considers the value of each node n as having two com-

ponents: the cost of reaching n from the start node and the cost of

reaching a goal from node n. Accordingly, /* is defined by

f*(n) = g*(n) + h*{n)
,

where g* estimates the minimum cost of a path from the start node to

node n, and h* estimates the minimum cost from node n to a goal.

The value f*(n) thus estimates the minimal cost of a solution path

passing through node n. The actual costs, which /* g*, and h* only

estimate, are denoted by /, g, and h, respectively. It is assumed that

all arc costs are positive.

The function g*, applied to a node n being considered for expansion,

is calculated as the actual cost from the start node 5 to n along the

cheapest path found so far by the algorithm. If the state space is a

tree, then g* gives a perfect estimate, since only one path from s to n

exists. In a general state-space graph, g* can err only in the direction

of overestimating the minimal cost; its value is adjusted downward if a

shorter path to n is found. Even in a general graph, there are certain

conditions (mentioned below) under which g*(n) can be shown to be a

perfect estimate by the time node n is chosen for expansion.

The function h* \% the carrier of heuristic information and can be

C3b A*—Optimal Search for an Optimal Solution 65

defined in any way appropriate to the problem domain. For the

interesting properties of the A* algorithm to hold, however, h* should

be nonnegative, and it should never overestimate the cost of reaching

a goal node from the node being evaluated. That is, for any such

node n, it should always hold that h*(n) is less than or equal to h(n),

the actual cost of an optimal path from n to a goal node. This last

condition is called the admissibility condition.

Admissibility and Optimality of A*

It can be shown that if h* satisfies the admissibility condition and

if, in addition, all arc costs are positive and can be bounded from below

by a positive number, then A* is guaranteed to find a solution path of

minimal cost if any solution path exists. This property is called the

property of admissibility.

Although the admissibility condition requires h* to be a lower bound

on h, it is to be expected that the more nearly h* approximates h, the

better the algorithm will perform. If h* were identically equal to h, an

optimal solution path would be found without ever expanding a node off

the path (assuming only one optimal solution exists). If h* is identically

zero, A* reduces to the blind uniform-cost algorithm (Article n.Ci).

Two otherwise similar algorithms, say, A
1

and A2 , can be compared

with respect to their choices of the h* function, say, * and h^*.

Algorithm A
x

is said to be more informed than A2 if, whenever a

node n (other than a goal node) is evaluated,

K*{n) > VM •

On this basis an optimality result for A* can be stated: If A and A*
are admissible algorithms such that A* is more informed than A, then

A* never expands a node that is not also expanded by A. A proof

(correcting the proof given in Nilsson, 1971) appears in Gelperin (1977).

Optimality and Heuristic Power

The sense in which A* yields an optimal search has to do only with

the number of nodes it expands in the course of finding a minimal-cost

solution. But there are other relevant considerations. First, the difficulty

of computing h* also affects the total computational effort. Second, it

may be less important to find a solution whose cost is absolutely min-

imum than to find a solution of reasonable cost within a search of mod-

erate length. In such a case, one might prefer an h* that evaluates

nodes more accurately in most cases but sometimes overestimates the

distance to a goal, thus yielding an inadmissible algorithm. (See Article

66 Search II

n.C3c.) The choice of h* and the resulting heuristic power of the algo-

rithm depend on a compromise among these considerations.

A final question one might consider is the number of node ex-

pansions, as opposed to the number of distinct nodes expanded by A*.

The two totals will be the same provided that whenever a node n is

expanded (moved to the CLOSED list), an optimal path to n has

already been found. This condition is always satisfied in a state-space

tree, where g*(n) = g(n) necessarily. It will also be satisfied in a

general state-space graph if a condition called the consistency assumption

holds (see Hart, Nilsson, and Raphael, 1968). The general idea of the

assumption is that a form of the triangle inequality holds throughout

the search space. Specifically, the assumption is that for any nodes m
and n, the estimated distance h*(m) from m to a goal should always be

less than or equal to the actual distance from m to n plus the

estimated remaining distance, h*(n), from n to a goal. For an h* not

satisfying the consistency assumption on a general state-space graph,

Martelli (1977) has shown that A* is not optimal with respect to the

number of expansions and has given an algorithm that runs more

efficiently under these circumstances.

References

See Dijkstra (1959), Gelperin (1977), Hall (1971), Hart, Nilsson, and

Raphael (1968, 1972), Hillier and Lieberman (1974), Lawler and Wood
(1966), Martelli (1977), Moore (1959), and Reingold, Nievergelt, and Deo

(1977).

C3c. Relaxing the Optimality Requirement

The A* algorithm (Article n.C3b) is an ordered state-space search

using the evaluation function f* = g* + h*. If the appropriate con-

ditions are met, including most importantly the admissibility condition

that the estimate h*{n) is always less than or equal to h(n), then A* is

guaranteed to find an optimal solution path if one exists. Again under

suitable conditions, the performance of A* is optimal in comparison with

other similarly defined admissible algorithms. Still, several questions

remain:

1. One may be more concerned with minimizing search effort than

with minimizing solution cost. Is /* = g* -\- h* an appropriate

evaluation function in this case?

2. Even if solution cost is important, the combinatorics of the

problem may be such that an admissible A* cannot run to

termination. Can speed be gained at the cost of a bounded

decrease in solution quality?

3. It may be hard to find a good heuristic function h* that

satisfies the admissibility condition; with a poor but admissible

heuristic function, A* deteriorates into blind search. How is the

search affected by an inadmissible heuristic function?

Minimizing Search Effort

An approach to the first question can be stated as follows. The

reason for including g* in the evaluation function is to add a breadth-

first component to the search; without g*, the evaluation function would

estimate, at any node n, the remaining distance to a goal and would

ignore the distance already covered in reaching n. If the object is to

minimize search effort instead of solution cost, one might conclude that

g* should be omitted from the evaluation function. An early heuristic

search algorithm that did just this was Doran and Michie's Graph

Traverser (Doran and Michie, 1966; Doran, 1967); the evaluation

function used was of the form /* = h*, and the object was to minimize

total search effort in finding solutions to the 8-puzzle and other prob-

lems. A generalization covering the Graph Traverser algorithm, A*, and

others has been defined by Pohl (1969, 1970a, 1970b) as the Heuristic

Path Algorithm (HPA). This algorithm gives an ordered state-space

search with an evaluation function of the form

/*=(!_ w)g* + wh*
,

68 Search II

where w is a constant in [0, 1] giving the relative importance to be

attached to g and h. Choosing w = 1 gives the Graph Traverser algo-

rithm, w = gives breadth-first search, and w = .5 is equivalent to

the A* function f* = g* + h*.

Pohl's results concerning HPA indicate that, at least in special cases,

omitting g* from the evaluation function is a mistake. One case is that

in which h* is the most accurate heuristic function possible: If h*(n)

= h(ri) at every node n, the evaluation function f* = h* still expands

no fewer nodes than /* = g* + h*- The other case assumes a sim-

plified state space, whose graph is an infinite ra-ary tree, and assumes

that the error in /i*—which may underestimate or overestimate h—is

bounded by a nonnegative integer e. In this situation, it is shown that

the maximum number of nodes expanded with f* = h* is greater than

the maximum number expanded with f* = g* + h*, and that the dif-

ference between the maxima is exponential in the error bound e. This

analysis by Pohl is one of the earliest applications of oracle or adversary

analysis for discovering worst-case algorithmic efficiency. As such, it is

an important precursor to work on NP (nondeterministic polynomial-

time) complete problems and their attempted solution by heuristics.

(For a general introduction to NP-completeness, see Aho, Hopcroft, and

Ullman, 1974.)

The two functions f* = h* and /* = g* + h* have not been

analyzed with respect to their average-case, as opposed to worst-case,

behavior. Pohl's empirical results suggest that ordered search may
typically expand the fewest nodes, provided the h* function is fairly

good, if g* is included but given less weight than h*—that is, with w
greater than .5 but less than 1. These results were obtained for the

15-puzzle, a task exactly like the 8-puzzle except that it uses 15 tiles in

a 4 X 4 array.

For problems that differ from the 15-puzzle, in that some states lead

to dead ends rather than only to longer solutions, a somewhat different

approach has been taken recently by Simon and Kadane (1975). Whereas

the evaluation functions /* = g* + h* and f* = h* are based on the

estimated solution cost at a given node, Simon and Kadane propose that

the function should also take explicit account of the probability that the

node is in fact on a solution path. With such a function, an expected

long search with high probability of success could readily rate just as

favorably as one that is potentially shorter but that has a higher chance

of failing.

C3c Relaxing the Optimality Requirement 69

Solution Quality and Heuristic Error

The second question, of speed versus solution quality, has been

studied by Pohl (1973, 1977) and Harris (1973, 1974). Harris's work

concerns the third question (inadmissible heuristic functions) as well, as

do Pohl's results, which were summarized above. Both Harris and Pohl

consider the traveling-salesman problem, which is NP-complete (Karp,

1972).

Pohl's approach is a further generalization of the HPA evaluation

function: Now f*(ri) = g*{n) + w(ri)h*(ri). That is, the relative weight

w to be attached to g* and h* is no longer constant; the function w(n),

which may be greater than or equal to 1, is defined to vary with the

depth of node n. This approach is called dynamic weighting. With a

definition of w that weights h* less heavily as the search goes deeper,

and with the assumption that /i* is a lower bound on h, Pohl shows

that HPA will find a solution to the traveling-salesman problem whose

cost is bounded by the ratio

cost of tour found

cost of optimal solution

where e is a constant in [0, 1), which appears in the definition of w.

Dynamic weighting was tested on an instance of the traveling-

salesman problem, known as the Croes problem, which involves 20 cities

and has a known optimal-solution cost of 246. An admissible A*—
which produces an optimal solution if it produces any—had still not

terminated after expanding 500 nodes. With dynamic weighting,

however, together with an appropriate choice of e and the same h*

function, a solution with cost 260 was found by expanding only 53

nodes.

Harris's approach, called bandwidth search, is somewhat different

from Pohl's. It assumes that no good h* function satisfying the admis-

sibility condition is available. In its place, he introduces the bandwidth

condition, which requires that for all nongoal nodes n,

(1) h*{n) < h{n) + e

and

(2) h(n) - d < h*{n) .

It is assumed that h* satisfies the consistency assumption (see Article

n.C3b).

70 Search II

With respect to the first part of the condition, it can be shown that

if h* never overestimates the distance to a goal by more than e, the

cost of a solution found by A* will not exceed the cost of an optimal

solution by more than e. With such an h*, the algorithm is said to be

e- admissible; and the goal it finds, e- optimal.

Once the bandwidth search finds some solution, a further application

of condition (1) may show that the cost of the solution found is in fact

closer than e to an optimal solution. This is possible because (a) the

cost of the solution found is known and (b) a lower bound on the cost

of every other solution is the minimum, over all nodes n remaining on

the OPEN list, of f*(n) - e. If the difference between these two quan-

tities is too big, the search can be continued until it finds a solution

that is acceptably close to the optimum.

The second part of the bandwidth condition, condition (2), can be

used to save storage space by dropping nodes from the OPEN list,

without any risk of dropping a node that is in fact on an optimal path

to a goal. Let node q be a node that, having a minimum value of /*

has been selected for expansion. Then any node m may safely be

dropped from OPEN if f*{m) is hopelessly big compared to f*{q).

Specifically, it can be shown that all nodes m can be dropped if there is

a node q such that

f*(m) - (e + d) > f\q) .

Harris notes that it may be difficult to find a heuristic function h*

that satisfies both parts of the bandwidth condition. One may instead

define two heuristic functions, one to order the search and one to

determine which nodes can be dropped. Such functions, say, h±* and

Iiq*, should then satisfy

(1') h*in) < h
(
n

) + e

and

(2') h(n) - d < VM •

Using two such heuristic functions, Harris tested the bandwidth

search on several instances of the traveling-salesman problem, including

the 20-city Croes problem mentioned above. Harris's results, including a

comparison with A* using an admissible heuristic function, are sum-

marized in Figure C3-1. The OPEN list was limited to 500 nodes.

C3c Relaxing the Optimality Requirement 71

BANDWIDTH SEARCH ADMISSIBLE SEARCH

No. of Qua 1 i ty Nodes Qua 1 i ty Nodes

cities of solution expanded of solution expanded

5—opti ma I

opti ma I 14 opt i ma I 18

11 optima 14 none 500 open nodes

20 4—optima I 42 none 500 open nodes

Figure C3-1. Comparison of bandwidth search and admissible search.

References

See Aho, Hopcroft, and Ullman (1974), Doran (1967), Doran and

Michie (1966), Harris (1973, 1974), Karp (1972), Nilsson (1971), Pohl

(1969, 1970a, 1970b, 1973, 1977), and Simon and Kadane (1975).

C3d. Bidirectional Search

Earlier articles in this chapter described (a) heuristic state-space

search methods using forward reasoning and (b) a blind state-space

search combining forward and backward reasoning into a bidirectional

algorithm. The kinds of problems to which a bidirectional state-space

method applies were considered in Article n.Ci; in general, it must be

possible in these problems to search either forward, from the initial state

toward the goal, or backward, from the goal toward the initial state. A
bidirectional search pursues both lines of reasoning in parallel, growing

two search trees and terminating when they meet. The motivation is

that, in many cases, the number of nodes in a search tree grows ex-

ponentially with its depth; if a solution can be found by using two trees

of half the depth, the search effort should be reduced significantly.

Blind bidirectional search was in fact found to expand far fewer nodes

than its unidirectional counterpart. A natural next question is whether

heuristic bidirectional search can give still greater improvements in

efficiency.

This question was investigated by Pohl (1969, 1971). Whereas his

blind bidirectional algorithm used forward and backward uniform-cost

search, his heuristic algorithm used forward and backward ordered

search. Otherwise, the two algorithms differed mainly in their termi-

nation conditions. In both cases, the termination condition was compli-

cated by the fact that the algorithms were designed to find an optimal

path between the start and goal nodes; they could be simplified if any

path would do.

As evalution functions, Pohl's heuristic bidirectional algorithm used

functions parallel to those of A*. For a node x in the forward search

tree:

gs(x) measured the shortest path found so far from the start

node, s, to x;

hs(x) estimated the minimum remaining distance from x to the

terminal node, t; and

fs(x) = gs(x) -\- hs(x) was the evaluation function.

Similarly, for a node x generated in the backward search:

gi(x) measured the shortest path found so far from x to t;

hi(x) estimated the minimum distance from s to x; and

fi(x) = gi(x) -\- hi{x) was the evaluation function.

C3d Bidirectional Search 73

Constraints were placed on the heuristic functions hs and ht, corre-

sponding to the admissibility condition and the consistency assumption

of A*, in order to guarantee the optimality of the solution.

Pohl's results, in experiments using bidirectional heuristic search on

the 15-puzzle, were disappointing. It was hoped that the search trees

rooted at the start and goal nodes would meet near the middle of the

solution path. In blind search, this had happened necessarily because

both trees were expanded breadth-first. (Recall that uniform-cost search

is a generalization of the breadth-first algorithm.) In the heuristic case,

however, the search in each direction was narrowed. Since each prob-

lem had many alternate solutions, the typical outcome was that both

search trees grew to include nearly complete, but different, solution

paths before intersecting.

Several ideas have been advanced for forcing the trees to meet

earlier while retaining the benefit of heuristic information (Pohl, 1971,

1977; Kowalski, 1972; de Champeaux and Sint, 1977). One that has

been tested is that of de Champeaux and Sint (1977), which redefines

the heuristic functions hs and ht as follows:

Let T-OPEN be the list of unexpanded nodes of the backward

search tree. For a node x in the forward search tree, hs(x) esti-

mates the minimum distance from x to the goal t by way of some

node y in T-OPEN. That is, hs(x) is the minimum, over all

nodes y on T-OPEN, of the estimated distance from x to y plus

gt(y), the length of the shortest known path from y to the goal.

The function ht is defined analogously. The authors reported, for the

same problems Pohl had used, that the algorithm generally produced

shorter solution paths, with fewer nodes expanded, and that the search

graphs now did meet near the middle of the search space. Unfor-

tunately, however, hs and ht were so expensive to compute—since for

each node x to be expanded, its distance must be estimated to every

node y on the opposite OPEN list—that the algorithm still ran much

more slowly than unidirectional heuristic search.

References

See de Champeaux and Sint (1977), Kowalski (1972), and Pohl

(1969, 1971, 1977).

C4. Heuristic Search of an AND/OR Graph

This article returns to the problem of searching an AND/OR graph,

as opposed to an ordinary state-space graph. The distinction between

the two is the presence of AND nodes, which add conceptual com-

plications to the search problem. Each node of the AND/OR graph

represents a goal to be achieved. It will be assumed throughout that

reasoning is backward, from an initial goal (the root) toward an

equivalent set of subgoals, all of which have immediate solutions. On
this assumption, an AND/OR graph constitutes (in the terminology of

this chapter) a problem-reduction representation. This identification gives

another way of stating the distinction between problem-reduction and

state-space representations: State-space operators always take exactly

one input and produce exactly one output; a problem-reduction operator

also takes a single input but may produce multiple outputs (see Sec.

n.B).

To put the matter further into perspective, one may also conceive of

searching an AND/OR graph in the forward direction—from the prim-

itive problems, whose solutions are already known, toward the problem

one actually wishes to solve. Just such a graph search is the one

typically conducted by a resolution theorem-prover, as it brings together

two or more axioms or previous conclusions and applies to them an

operator yielding one new deduction as its result. (See Chap, xn, in

Vol. m.) Forward reasoning in an AND/OR graph, then, would be

distinguished from a state-space search by the presence of multiple-

input, single-output operators. For further discussion, including an

algorithm for bidirectional search of an AND/OR graph, see Kowalski

(1972); see also Martelli and Montanari (1973).

The search of an AND/OR graph using backward reasoning raises

numerous problems. Previous articles (n.B2 and n.C2) have considered

—

1. what constitutes a solution subgraph of an AND/OR graph, and

2. blind-search algorithms for finding a solution subgraph.

This article considers three additional problems:

3. What might one mean by an optimal solution subgraph?

4. How can heuristic information be brought to bear on the search

for an optimal solution?

C4 Heuristic Search of an AND/OR Graph 75

5. What limitations are there on AND/OR graphs and the asso-

ciated search algorithms as general tools for problem solving?

The Definition of an Optimal Solution

A solution of an AND/OR graph is a subgraph demonstrating that

the start node is solved. As in a state-space search, one may ask for a

solution of minimal cost. The cost of a solution tree can be defined in

either of two ways (Nilsson, 1971):

1. The sum cost of a solution tree is the sum of all arc costs in

the tree.

2. The max cost of a solution tree is the sum of arc costs along

* the most expensive path from the root to a terminal node.

For example, if every arc in the solution tree has cost 1, then the sum

cost is the number of arcs in the tree and the max cost is the depth of

the deepest node.

If the entire search space had been explored, then an optimal solu-

tion tree could be constructed and its cost measured as follows. Let

c(n, m) be the cost of the arc from node n to a successor node m.

Define a function h(ri) by:

1. If n is a terminal node (a primitive problem), then h(n) = 0.

2. If n has OR successors, then h(n) is the minimum, over all its

successors m, of c(n, m) -\- h{m).

3. If n has AND successors and sum costs are used, then h (n) is

the summation, over all successors m, of c (n, m) -J- h (m).

4. If n has AND successors and max costs are used, then h(n) is

the maximum, over all successors m, of c (n, m) -\- h (m).

5. If n is a nonterminal node with no successors, then h (n) is

infinite.

According to this definition, h(ri) is finite if and only if the problem

represented by node n is solvable. For each solvable node n, h(n) gives

the cost of an optimal solution tree for the problem represented by

node n. If s is the start node, then h(s) is the cost of an optimal

solution to the initial problem.

Consider, for example, the AND/OR tree of Figure C4-1, with arc

costs as indicated. Each node without successors is marked t or u

according to whether it is terminal or unsolvable.

76 Search n

tl t2 t3

1 1

ul t4 u2

Figure C4-1. An AND/OR tree.

If sum costs are used, the values of h are as shown in Figure C4-2,

and the optimal solution is the subgraph comprising nodes S, B, D, E,

%, and %. The abbreviation in} denotes infinity.

tl t2 t3 C

h=0 h=0 h=0 h=inf

D

h=4

1 1

ul t4 u2 E

h=inf h=0 h=inf h=2

1 1

t5 t6

h=0 h=0

Figure C4-2. Sum costs.

C4 Heuristic Search of an AND/OR Graph 77

If max costs are used, then the values of h are as shown in

Figure C4-3, and the optimal solution is the subgraph comprising nodes

S, A, tit ^2, and t%.

ul t4 u2 E

h=inf h=0 h=inf h=l

t5 t6

h=0 h=0

Figure C4-3. Max costs.

Ordered-search Algorithms for an AND/OR Graph

In an ordered state-space search, one may use an evaluation function

f* that, applied to node n, returns the estimated minimum cost of a

solution path passing through node n. The next node expanded is

always one at which f* is minimum—that is, one extends the most

promising potential solution path. The successors of node n are new

nodes, but one could just as well think of them as new potential

solution paths, each differing from a parent (potential solution path) by

the inclusion of one more step.

In the extension of heuristic search to AND/OR graphs, there is no

longer a one-to-one correspondence between the choice of a node to

expand and the choice of a potential solution to be extended. Consider,

for example, the search graph of Figure C4-4.

78 Search II

Figure C4-4. An AND/OR graph containing

two potential solution trees.

Since C and D are OR nodes, an actual solution of node S will con-

tain only one of them. To expand node A is thus to extend two

potential solution trees,

and

Conversely, a decision to extend the potential solution tree on the left

can be carried out by expanding either node A or node C. One must

be clear, therefore, about what kind of object the expansion process is

to apply to. This decision will affect the definition of the evaluation

function.

Nilsson's algorithm. An approach taken by Nilsson (1969, 1971)

selects individual nodes to expand by a two-step process: First, identify

the most promising potential solution tree; then, choose a node within

that tree for expansion. To accomplish the first step, an evaluation

function h* is defined at every node n of the tree that has not been

shown to be unsolvable. This function is an estimate of h(n); that is, it

estimates the cost of an optimal solution to the problem at node n. If n

is known to be a terminal node, then by definition h*(n) = h(n) = 0.

Otherwise, if n has not yet been expanded, then the estimate must be

based on whatever heuristic information is available from the problem

domain. For example, in the search tree of Figure C4-4, h* would

provide heuristic estimates of the cost of solving nodes A, C, and D.

The following rule then permits h* to be computed for each node whose

successors have already been generated (and to be recomputed as the

search tree is expanded):

C4 Heuristic Search of an AND/OR Graph 79

1. If n has OR successors m, then h*(n) is the minimum, over these

successors, of c(n,m) -f- h*(m).

2. If n has AND successors m and sum costs are used, then h*(n) is

the summation, over these successors, of c(n,m) -f- h*(m).

3. If n has AND successors m and max costs are used, then h*(n)

is the maximum, over these successors, of c(n, m) -f- h*(m).

Finally, the most promising potential solution tree, T, is defined in

terms of h*:

1. The start node s is in T.

2. If the search tree (the part of the search space generated so far)

contains a node n and AND successors of n, then all these

successors are in T.

3. If the search tree contains a node n and OR successors m of n,

then one successor m is in T such that c(n, m) -f- h*(m) is min-

imal.

The estimated cost of T is h*(s). If all the other potential solution

trees for the same search tree were constructed, it would be found that

T is one for which h*(s) is minimal. An ordered-search algorithm for

an AND/OR tree can now be stated as follows:

1. Put the start node, s, on a list, OPEN, of unexpanded nodes.

2. From the search tree constructed so far (initially, just s), com-

pute the most promising potential solution tree T.

3. Select a node n that is on OPEN and in T. Remove node n

from OPEN and place it on a list called CLOSED.

4. If n is a terminal node, then

a. Label node n solved.

b. If the solution of n makes any of its ancestors solved, label

these ancestors solved.

c. If the start node is solved, exit with T as the solution tree.

d. Remove from OPEN any nodes with a solved ancestor.

5. Otherwise, if node n has no successors (i.e., if no operator can

be applied), then

a. Label node n unsolvable.

b. If the unsolvability of n makes any of its ancestors un-

solvable, label all such ancestors unsolvable as well.

c. If the start node is labeled unsolvable, exit with failure.

d. Remove from OPEN any nodes with an unsolvable ancestor.

6. Otherwise, expand node n, generating all its immediate suc-

cessors and, for each successor m representing a set of more

than one subproblem, generating successors of m corresponding

to the individual subproblems. Attach, to each newly generated

80 Search II

node, a pointer back to its immediate predecessor and compute

h* for each newly generated node. Place all the new nodes

that do not yet have descendants on OPEN. Finally, recompute

h*(ri) and h* at each ancestor of n.

7. Go to (2).

The ordered-search algorithm can be shown to be admissible—that

is, it will find a minimum-cost solution tree if any solution exists

—

provided that: (a) h*{n) is less than or equal to h(n) for each open

node n and (b) all arc costs are greater than some small positive

number d. The efficiency of the algorithm, however, depends both on

the accuracy of h* and on the implementation of step 3, in which,

having found the most promising potential solution tree to expand, one

must decide to expand a specific node within that tree. If the partial

tree T is in fact part of an optimum solution, the choice is immaterial.

If it is not, however, then the best node to expand would be the one

that will earliest reveal the error.

Chang and Slagle's algorithm. A different approach has been taken

by Chang and Slagle (1971). Here the objects expanded are potential

solution graphs. A tip node in such a graph is any node that does not

yet have successors. To expand the potential solution graph, one ex-

pands all its nonterminal tip nodes at once and then forms all the new

potential solution graphs that result. Each graph is represented on the

OPEN list by the conjunction of its tip nodes, representing a set of

subproblems to which the start node can be reduced.

For example, suppose that expansion of the initial graph, consisting

of only the start node S, shows that S can be reduced to problems A
and B or to problem C. The OPEN list then becomes (A&B, C).

Assume that A&B is selected for expansion, that A can be reduced to D
or E, and that B can be reduced to F or G. There are four new

potential solution trees, and the OPEN list is now (D&F, D&G, E&F,

E8lG, C). The search succeeds when it selects for expansion a potential

solution graph represented by a conjunction of nodes all of which are

terminal.

The Chang and Slagle approach assimilates AND/OR graph search to

the problem of state-space search. Each distinct conjunction of prob-

lems to be solved corresponds to a distinct state of a state-space graph.

The evaluation function used, /* is also parallel to the function used in

A*: It is defined by /* = g* + h*, where g* measures the cheapest

way found so far to reduce the start node to a given conjunction of

subproblems and h* estimates the minimum remaining cost of a graph

sufficient to solve all those subproblems.

C4 Heuristic Search of an AND/OR Graph 81

The treatment of AND/OR graph search as an instance of state-

space search has several consequences. One is that the search of a

general AND/OR graph, as opposed to an AND/OR tree, now raises no

special problems. Another is that the algorithm can be shown (Chang

and Slagle, 1971), under appropriate conditions, to be not only admis-

sible but also optimal with respect to the number of potential solution

graphs expanded. It does not, however, appear to be optimal (in some

reasonable sense of that term) in comparison with algorithms that ex-

pand only one node at a time (see Kowalski, 1972).

Interdependent Subproblems

The discussion so far has assumed that whenever the start node is

reduced to a conjunction of subproblems, all subproblems can be solved

independently, so that the solution to one has no effect on the solution

to any other. This assumption is frequently unjustified, and much of

Chapter XVI (in Vol. m) explores ways of dealing with interacting

subproblems. Two kinds of examples, given by Levi and Sirovich (1975,

1976) with explicit reference to the AND/OR graph formalism, are:

(a) problems requiring consistent binding of variables and (b) problems

involving the expenditure of scarce resources.

An illustration of the former is the well-known problem of showing

that there exists a fallible Greek, given that the entire search space is

as follows (Fig. C4-5):

Find a fa I I i bl e Greek

Find something fallible Find something Greek

Find something human Socrates is Greek

/ \
Turing Socrates

is human is human

Figure C4-5. An AND/OR graph requiring consistent binding

of the variable something.

An algorithm like Nilsson's fails here for two reasons. First, it has

no mechanism for discovering that Turing is human and Socrates is

Greek fail to constitute a solution. Second, even if such a mechanism

were introduced, the algorithm has no means for undoing the solution to

82 Search II

a subproblem once it has been solved. If Turing is human is the first

problem found to be primitive, then Find something human and Find

something fallible are marked solved; Socrates is human is removed from

the OPEN list as no longer in need of consideration; and Find something

Greek, using the previous value of something, then becomes unsolvable.

An example of the second type of problem is the following: Show

that John can seduce the actress, given that seducing the actress can be

reduced to getting a car and getting a yacht—and that John has

$5,000, a car costs $5,000, and a yacht costs $5,000. Here, either of the

algorithms given above would wrongly conclude that John can seduce

the actress. A variant of the scarce-resource problem arises in robot

planning tasks (such as those performed by STRIPS, Article n.D5), where

application of an operator representing a robot action solving one sub-

problem may make inapplicable the operator needed to solve another

subproblem.

To handle problems of these kinds, Levi and Sirovich define a

generalized AND/OR graph, which differs most importantly from an

ordinary AND/OR graph in that reduction operators are permitted to

take two or more nodes as input. For example, let R be a resource

that can be used only once. Then if, in the standard formulation, the

original problem is to accomplish P
1

and P2 , the problem is reformu-

lated as Pi & P2 & R. Suppose the following reduction operators are

available (where "—" means can be reduced to and T denotes a trivial

problem):

1. S -> P
x
& P2 & R

2. P
x
& R -> T

3. Pi ^Ps
4. P2 & R -+ P3
5. P3-+ T

6. R -> T

Then there is only one solution, which is achieved using operators 1, 3,

4, and 5.

In the ordered search of a generalized AND/OR graph, the objects

placed on the OPEN list are potential solution graphs, not individual

nodes. Expansion of a potential solution graph (PSG) consists of apply-

ing all possible operators to obtain a new set of PSGs, each differing

from its parent by virtue of one additional operator application. If the

same subproblem occurs more than once within a PSG, each occurrence

is represented by a separate node. If the same PSG is generated more

C4 Heuristic Search of an AND/OR Graph 83

than once, later occurrences are simply discarded. Since distinct PSGs

are retained, alternate solutions to the same subproblem are available.

As in the usual ordered search, the object chosen for expansion next

is always one where the evaluation function is minimum. The eval-

uation function is h*; for each PSG, it is computed similarly to the h*

of Nilsson's algorithm. The value of each potential solution graph is

then the evaluation of the start node, h*(s), as computed for that

graph. Both admissibility and optimality—the latter with respect to the

number of PSGs expanded—can be shown.

References

See Chang and Slagle (1971), Kowalski (1972), Levi and Sirovich

(1975, 1976), Martelli and Montanari (1973), and Nilsson (1969, 1971).

C5. Game Tree Search

C5a. Minimax Procedure

The Minimax Formalism

The minimax procedure is a technique for searching game trees (see

Article n.B3). As a first example, Figure C5-1 gives a simple game tree

to which the procedure may be applied. Each node represents a posi-

tion in the game. Nonterminal nodes are labeled with the name of the

player, A or B, who is to move from that position. It is A'% turn, and

the problem is to find his best move from position 1. Exactly three

moves remain in the game. Terminal nodes are marked with their

value to player A by the words "win," "lose," or "draw."

l

A

3

B

10 11 12 13 14 15 16 17

win win lose win lose lose draw draw

18 19 20 21

win draw lose draw

Figure C5-1. A game tree from the standpoint of

player A, who is to move next.

According to the minimax technique, player A should move to

whichever one of positions 2 or 3 has the greater value to him. Given

the values of the terminal positions, the value of a nonterminal position

is computed, by backing up from the terminals, as follows:

C5a Minimax Procedure 85

(1)

The value to player A of a node with OR successors (a node

from which A chooses the next move) is the maximum value

of any of its successors.

The value to A of a node with AND successors (a node from

which B chooses the next move) is the minimum value of any

of its successors.

In the example, node 2 evaluates to a loss for A (since B can then

force a loss by moving to node 6), and node 3 evaluates to a draw

(since the best B can then do is move to node 7 or 9). It will be

noted that the prediction of the opponent's behavior assumes he is also

using minimax: In evaluating a node with AND successors, A must

assume that B will make his best possible move. The technique ignores

the possibility that B might overlook his chance for a sure win if A
goes to node 2. Similarly, it supplies no basis on which B might choose

to move to node 9 in preference to node 7.

Because of the way in which nodes are evaluated, player A (whose

viewpoint the tree represents) is often called MAX, and player B, MIN.

The names PLUS and MINUS are also sometimes used. If the tree of

Figure C5-1 were to be evaluated from MEN's standpoint instead of

MAX's, it would appear as in Figure C5-2. The AND and OR nodes

are reversed, and the value of each node to MIN is the opposite of its

value to MAX.

l

A

draw

4

A

ose

2

B

wi n

5

A

ose

6

A

wi n

7

A

draw

3

B

draw

8

A

ose

9

A

draw

10 11 12 13 14 15 16 17 18 19 20 21

lose lose win lose win win draw draw lose draw win draw

Figure C5-2. The game tree of Figure C5-1 from 5's standpoint.

86 Search n

The Negmax Formalism

Knuth and Moore (1975) have given a game-tree representation that

unifies Figures C5-1 and C5-2 and conveniently permits a single pro-

cedure to return optimal moves for both players A and B. In this rep-

resentation, the value given each node is its value to the player whose

turn it would be to move at that node. If n is a terminal node, its

value is an integer denoted f(n). (The value of n to the other player is

-f(n).) The value of every node is then returned by a function F
defined as follows:

F(n) = f(n), if n has no successors;

F(n) = max {-F(ni), . . .,-F(nk)}, if n has successors n1? . . ., % .

The best move for either player is then to a node with maximum value;

that is, the player whose turn it is at node n should move from node n

to a node r^ with -F(n
i)
= F(n). This formulation, which is equivalent

to minimax, is called negmax. The tree it produces for the game of

Figures C5-1 and C5-2 is shown in Figure C5-3. The numerical value of

a win is assumed to be +1; of a loss, -1; and of a draw, 0.

l

A

F=0

4

A

F=+l

2

B

F=+l

5

A

F=+l

6

A

F=-l

7

A

F=0

3

B

F=0

8

A

F=+l

9

A

F=0

10 11 12 13 14 15 16 17 18 19 20 21

F=-l F=-l F=+l F=-l F=+l F=+l F=0 F=0 F=-l F=0 F=+l F=0

Figure C5-3. The game tree of Figure C5-1 in NEGMAX notation.

C5a Minimax Procedure 87

Searching a Partial Game Tree

In the above descriptions of the minimax and negmax algorithms, it

was assumed that a complete game tree had already been generated.

For most games, however, the tree of possibilities is far too large to be

generated fully and searched backward from the terminal nodes for an

optimal move. An alternative is to generate a reasonable portion of the

tree, starting from the current position; make a move on the basis of

this partial knowledge; let the opponent reply; and then repeat the pro-

cess beginning from the new position. A "reasonable portion of the

tree" might be taken to mean all legal moves within a fixed limit of

depth, time, or storage, or it might be refined in various ways. For

discussion of the refinements, see Article n.C5c.

Once the partial tree exists, minimaxing requires a means for esti-

mating the value of its tip nodes, that is, the nodes of the partial tree

without successors. A function assigning such a value is called a static

evaluation function; it serves a purpose comparable to that of the

heuristic function h* used in Nilsson's ordered search of an AND/OR
tree (Article n.C4). If the partial game tree contains any nodes that are

terminal for the entire tree, the static evaluation function conventionally

returns positive infinity for a win, negative infinity for a loss, and zero

for a draw. At other tip nodes, the function has a finite value which, in

the minimax formulation, is positive for positions favorable to MAX and

negative at positions favorable to MIN. The minimax procedure then

assigns backed-up values to the ancestors of the tip nodes in accordance

with the rules given in condition (1) in the preceding discussion of the

minimax formalism. It is assumed that the backed-up evaluations give

a more accurate estimate of the true value of MAX's possible moves

than would be obtained by applying the static evaluation function

directly to those moves and not looking ahead to their consequences.

References

See Knuth and Moore (1975), Nilsson (1971), Slagle (1971), and

Winston (1977).

C5b. Alpha-Beta Pruning

The minimax procedure described in Article n.C5a decides on a best

move from node n, in a full or partial game tree, by evaluating every

node in the tree that descends from node n. Frequently, this exhaustive

evaluation is a waste of time. Two examples are shown in Figures

C5-4 and C5-5. Each node is marked with the name of the player who
is to move from that position.

1

MAX

/ \

1

MAX

/ \

/ \
2

MIN

F(2)=15 I

3

MIN
'

\

\
5

MAX

/
2

MIN

/ \

\
3

MIN

1
4

MAX

F(4)=10

/ \
4 5

MAX MAX

F(4)=20 / \
\/

6

MIN

F(6)=25

\
7

MIN

Figure C5-4. An alpha cutoff. Figure C5-5. A beta cutoff.

In Figure C5-4, nodes 2 and 4 have been evaluated either by the

static evaluation function or by backing up from descendants omitted

from the figure. If MAX moves to node 2, he achieves a position whose

estimated value is 15. If he moves to node 3, MIN can hold him to 10.

Therefore, the value of node 3 is at most 10, so MAX should decide to

move to node 2. The important point is that this decision can be made

without evaluating node 5 or any of its possible descendants.

In Figure C5-5, node 4 has an estimated value to MAX of 20.

When node 6 is evaluated at 25, it becomes clear that MIN should

avoid moving to node 5. Node 2 can therefore be assigned a value of

20 without any need to evaluate node 7 or any of its descendants.

The alpha-beta technique for evaluating nodes of a game tree elim-

inates these unnecessary evaluations. If, as is usual, the generation of

C5b Alpha-Beta Pruning 89

nodes is interleaved with their evaluation, then nodes such as the

descendants of node 5 in Figure C5-4 and of node 7 in Figure C5-5

need never even be generated. The technique uses two parameters,

alpha and beta. In Figure C5-4, the parameter alpha carries the lower

bound of 15 on MAX's achievement from node 1; the elimination of

node 5 is an alpha cutoff. In Figure C5-5, the parameter beta is set to

20 at node 4, representing an upper bound on the value to MAX of

node 2; the elimination of node 7 is a beta cutoff. The procedure guar-

antees that the root node of the tree will have the same final value as

if exhaustive minimaxing were employed.

A concise statement of the alpha-beta procedure has been given by

Knuth and Moore (1975). It uses their negmax representation in which

both players are treated as wishing to maximize (see Article n.C5a).

Figure C5-6 shows how Figures C5-4 and C5-5 are transformed in the

negmax representation.

1

MAX

/ \

1

MAX

/ \

/ \
2

MIN

F(2)=-15
J

3

MIN

\

/
2

MIM

/ \

\
3

MIN

1

4

MAX

F(4)=10

\
5

NAX

/ \
4 5

MAX MAX

F(4)=20 / \

6
'

MIM

F(6) = -25

\
7

MIN

Figure C5-6. The NEGMAX representation of Figures C5-4 and C5-5.

To evaluate node 1 of either tree, the procedure is called with the

parameters POSITION = node 1, ALPHA = negative infinity, and BETA
= positive infinity. The static evaluation function is called /. The pro-

cedure, here called VALUE, is as follows:

90 Search II

integer procedure VALUE (position p, integer alpha, integer beta):

begin

integer m, i, t, d;

determine the successor positions pj, p2 , • • •> Pd of position p;

if d = then VALUE := /(p) else

begin m := a/p/ia;

for i
' := 1 step 1 until d do

begin

t := -VALUE (p^ -6e£a, -m);

if t > m then m := £;

if ra > 6eta then go to done;

end;

done: VALUE := ra;

end;

end;

For an intuitively developed LISP version of the alpha-beta procedure,

see Winston (1977). An excellent review of the historical development of

the technique appears in Knuth and Moore (1975).

Ordering of Successors

The degree to which the alpha-beta procedure represents an im-

provement in efficiency over straight minimaxing varies with the order

in which successor nodes are evaluated. For example, no cutoff would

occur in Figure C5-4 if node 3 were considered before node 2.

In general, it is desirable that the best successor of each node be

the first one evaluated—that is, that the first move MAX considers be

his best move, and that the first reply considered for MIN be the move

that is best for MIN and worst for MAX. Several schemes for ordering

the successors of a node have been described to try to achieve this state

of affairs. One possibility, an example of fixed ordering, is to apply the

static evaluation function to the successors, taking the results of this

preliminary evaluation as an approximation of their expected backed-up

values. A method of this sort will result in depth-first generation and

evaluation of the partial game tree, subject to the depth bound or other

criteria for terminating generation. For some other possibilities, see

Article n.C5c.

C5b Alpha-Beta Pruning 91

Efficiency in Uniform Game Trees

Since the alpha-beta procedure is more complicated than minimax-

ing, although it yields the same result, one may inquire how great an

increase it produces in search efficiency. Most theoretical results on this

question deal with uniform game trees: A tree is said to be uniform if

every tip node has depth d and every nontip node has exactly b suc-

cessors. Here, b is called the branching factor or degree of the tree.

The results reviewed below come from Knuth and Moore (1975) and,

for the best case, Slagle and Dixon (1969). For other related work, see

Fuller, Gaschnig, and Gillogly (1973), Newborn (1977), and Baudet

(1978).

The best case. A uniform game tree of depth d and degree b con-

tains exactly bd tip nodes, all of which must be examined by minimax.

In the worst case, alpha-beta also must examine every tip node. In the

best case, alpha-beta examines only about twice the square root of the

number of tip nodes. More precisely, assuming the value of the root is

not infinite, the number of tip nodes examined in the best case is

tf(d+l)/2] + &[d/2] _ i

(where square brackets represent the greatest integer function); and the

nodes examined in the tree as a whole are precisely the critical nodes,

defined as follows:

Type 1 critical nodes are the root node and all first successors of

type 1 nodes.

Type 2 critical nodes are all further successors (except the first) of

type 1 nodes and all successors of type 3 nodes.

Type S critical nodes are the first successors of type 2 nodes.

Figure C5-7 illustrates the distribution of critical nodes in a uniform

tree of degree 3 and depth 3.

Knuth and Moore have shown that the best case occurs for a

uniform tree if the best move is considered first at each critical node of

types 1 and 2. Attempts to order the successors of type 3 positions

contribute nothing to efficiency, since these successors are type 2 nodes,

which must all be examined anyway.

92 Search n

1223XX3XX
/l\ /l\ /l\ /l\ /l\ /l\ /l\ /l\ /l\1223XX3XX222XXXXXX222XXXXXX

Figure C5-7. Distribution of critical nodes.

Random uniform game trees. Knuth and Moore also show that the

alpha-beta technique is optimal in the sense that no algorithm can

evaluate any game tree by examining fewer nodes than alpha-beta does

with an appropriate ordering of successors. Realistically, of course, one

cannot expect to achieve the optimal successor ordering, since this would

imply full knowledge of the game tree before it is generated. Assuming,

therefore, that the tip nodes of the tree have distinct random values,

Knuth and Moore show that the expected number of tip nodes ex-

amined, in evaluation of a uniform tree with branching factor b and

depth d, has an asymptotic upper bound of

((./(log 6))d

as d goes to infinity.

Totally dependent, uniform game trees. One other type of tree

considered by Knuth and Moore, perhaps more realistic than the one in

which tip nodes have random values, corresponds to games in which

each move is critical: If a poor move is ever chosen, there is no way

to recoup. The model is a uniform game tree that is totally dependent:

For any two successors of node p, these successors can be labeled q

and r, so that every tip node descended from node q has greater value

than any tip node descended from node r. In this type of tree, if the

degree is at least 3, the expected number of tip positions examined is

bounded by a constant (depending on the degree) multiplied by the

C5b Alpha-Beta Pruning 93

number of tip nodes examined by the alpha-beta method in the best

case.

References

See Baudet (1978), Fuller, Gaschnig, and Gillogly (1973), Knuth and

Moore (1975), Newborn (1977), Nilsson (1971), Slagle (1971), Slagle and

Dixon (1969), and Winston (1977).

C5c. Heuristics in Game Tree Search

In the search of a game tree (Article n.B3), as in other kinds of

search, there are various points at which heuristic information may be

applied. The parallel is not exact, however. In one-person problem

solving, the main uses for heuristic information are to decide which node

to expand next, which operator to apply next, and, in some algorithms,

which nodes to prune from the search tree (see Article n.C3a). These

questions are also present in game-playing programs, but with a shift in

emphasis. In addition, some new questions arise: When should the

search be terminated? How should a move be chosen on the basis of

the search that has been made?

The simplest answers to these questions were described in Article

n.C5a: Expand every node completely, in any convenient order and with

no pruning, until every tip node represents a termination of the game.

Then, working back from the end of the game, use the minimax pro-

cedure to find a winning line of play (if one exists) and follow this line

of play throughout the game. Article n.C5b described an improvement

on this approach that yields the same final result with greater efficiency.

A program using only these basic techniques would play a theo-

retically perfect game; its task would be like searching an AND/OR tree

for a solution to a one-person problem. For a simple game like tic-tac-

toe (see Article n.B3), such a program would no doubt be feasible. For

complex games, however, it has been recognized from the beginning that

searching from the start of the game to its end would be impossible.

In chess, for example, with around 30 legal moves from each position

and about 40 moves for each player in a typical game, there are some

(302)
40 or 10 120 different plays of the game (Shannon, 1950).

Because of the magnitude of the search space in chess, checkers, and

other nontrivial games, there is a major difference between programs

that play such games and programs that use the methods of this chap-

ter to solve nonadversary problems. The latter either find a solution or

fail, having run out of time or space; much of the research assumes

that some solution can be found and deals with how to guarantee that

it is optimal or nearly optimal (see Sec. n.C3). The question for a chess

program, in contrast, is how to play a good game even though it has

not found a solution to the problem of winning. Repeatedly the program

must become committed to its next move long before the end of the

game comes into view. Whether the move chosen is in fact part of a

winning strategy is unknown until later in the game.

C5c Heuristics in Game Tree Search 95

For a nontrivial game-playing program, then, the issues listed at the

beginning of this article are all aspects of a broader question: Can the

basic search techniques, designed for seeking a guaranteed win, be

successfully adapted to the problem of simply choosing the next move?

In addition, one might well ask whether there are alternatives to search

as the basis for move selection. Most of the work exploring these

questions has been done in the specific domain of chess. In general, the

discussion below is limited to chess programs and Samuel's checkers

program (1963, 1967).

Alternatives to Search

An example of choosing a move on a basis other than search is the

use of "book moves" in the opening of a chess game (see Frey, 1977,

pp. 77-79). More generally, there is an emphasis in the recent computer-

chess literature on treating the problem of move choice as a problem of

recognizing patterns on the board and associating appropriate playing

methods with each pattern (e.g., Charness, 1977, p. 52; Bratko, Kopec,

and Michie, 1978; Wilkins, 1979).

It is not expected, however, that search can be eliminated entirely

from chess programs; even human players do some searching. Rather,

the choice-of-move problem is seen as involving a trade-off between the

amount of specialized chess knowledge a program has and the amount

of search it needs to do. (See, e.g., Berliner, 1977c; Michie, 1977.) And
there are limits on the amount of knowledge a program can be given:

The combinatorics of chess preclude storing an exhaustive representation

of the game, and even the knowledge possessed by chess masters, which

greatly restricts search in human play, also remains very far from com-

plete formalization.

The last section of this article reviews several programs that attempt

to use human-like knowledge to eliminate most searching. The sections

preceding it concern techniques used in programs in which search rather

than knowledge is predominant.

Search-based Programs

The most successful game-playing programs so far have made search

rather than knowledge their main ingredient. These include, among the

earlier programs, Samuel's checkers program (1963, 1967), which came

close to expert play, and Greenblatt's chess program (1967), which was

the first to compete in tournaments and which earned a rating of

1400-1450, making it a Class C player. (Current classes of the United

States Chess Federation are E through A, Expert, Master, and Senior

96 Search II

Master; see Hearst, 1977, p. 171.) Notable later programs include the

Soviet program KAISSA (Adelson-Velskiy, Arlazarov, and Donskoy,

1975), which won the first world computer-chess championship in 1974,

and Slate and Atkin's CHESS 4.5 (1977), whose current standing is men-

tioned below under "Iterative deepening." (For general reviews of

computer-chess competition, see Newborn, 1975; Mittman, 1977; Berliner,

1978a.)

All the programs referred to above follow the basic search paradigm

formulated by Shannon in 1950. In its simplest form, which was called

a Type A program, Shannon's paradigm made just two changes to the

procedure mentioned above that calls for searching exhaustively all the

way to the end of the game. First, the game tree was to be generated

only to a fixed depth. Second, since the nodes at the depth limit

would normally be nonterminal, a means of estimating the promise of

these nodes was required. The estimate was to be given by a static

evaluation function, whose values could then be backed up by mini-

maxing to determine the next move. After this move was made and

the opponent had replied, the search process would be repeated begin-

ning from the new position.

Shannon noted that a simple Type A program would play chess

both badly and slowly. He suggested two directions for improvement in

a Type A program, with which the program would become Type B.

The general objectives were, first, to let the exploration of a line of

play continue to a reasonable stopping point instead of invariably cut-

ting it off at an arbitrary depth and, second, to provide some selectivity

about the lines of play considered, so that more time could be spent

investigating strong moves and less on pointless ones.

Even a Type B program, Shannon concluded, seemed to rely too

much on brute-force calculation rather than on knowledgeable analysis of

the situation to choose a move. Nevertheless, his proposals established

a framework that most competitive game-playing programs have adopt-

ed. The framework raises a large number of interrelated issues, which

are discussed in the following sections.

Static Evaluation

A static evaluation function, by definition, is one that estimates the

value of a board position without looking at any of that position's suc-

cessors. An ideal function would be one that reports whether the

position leads to a win, a loss, or a draw (provided neither side makes

a mistake). Even more informatively, the function might report the

number of moves required to win, with an arbitrarily large value if no

C5c Heuristics in Game Tree Search 97

win is possible. But functions that can distinguish between winning and

losing positions are known only for simple games; an example of such a

function for the game Nim is given in Shannon (1950).

Where perfect evaluation functions are unavailable, the actual static

evaluator must return an estimate. Unlike the evaluation function used

in an ordinary state-space or AND/OR graph search (see Articles n.C3a

and n.C4), the static evaluation function of a game-playing program does

not normally attempt directly to estimate the distance to a win from

the position evaluated. (For a proposal that the function should do just

this, see Harris, 1974.) Instead, the function is usually a linear poly-

nomial whose terms represent various features of the position, high

values being given for features favorable to the program and low ones

for those favoring the opponent. In chess, the most important feature

is material; the corresponding term of the evaluation function might be

computed by assigning a numerical value to each kind of piece and

finding the difference between the total values of the two players' pieces

on the board. Other typical features, familiar to chess players, include

king safety, mobility, center control, and pawn structure.

The most extended treatment of evaluation functions in the liter-

ature is provided by Samuel (1963, 1967). For checkers, he concluded

that the optimal number of features to be used in the evaluation func-

tion was between 20 and 30 (1967, p. 611). Samuel's main interest was

in machine learning; one approach he took was to provide his checkers

program with a large set of features for possible use in the evaluation

function and to let the program determine, as it gained playing ex-

perience, both which of these features should be included and what their

relative weights should be. In a later version of the program, the

emphasis was shifted to taking the interactions among features into

account in evaluating positions. With this change, the evaluation

function became nonlinear, and considerable improvement was reported

in its quality as measured by the correlation with moves chosen in

master play (Samuel, 1967; see also Griffith, 1974). For further dis-

cussion of Samuel's work, see Chapter XV, in Volume m.

Reasonably accurate static evaluation, then, requires a rather com-

plex function. But there is an important limit on the complexity that

is feasible, especially for a program that plays in tournaments, under

time limitations. As the total number of tip nodes in the search tree

increases, the time available for evaluating any single tip node goes

down. Thus Gillogly's chess program TECH (1972), which was intended

as an experiment in how much could be accomplished on advanced

machines by simple brute-force search, and which generates up to

500,000 tip nodes even with alpha-beta pruning, uses material as the

only factor in its static evaluations.

98 Search II

Backed-up Evaluation

The Shannon paradigm assumes that the step between static evalu-

ation and the choice of a move is simply minimaxing: The program

moves to any position with the best backed-up minimax value. This

step is indeed very commonly used. But it is worth noting that, since

the static evaluation function may be wrong, the minimax procedure no

longer serves its original purpose of defining and identifying a move that

is theoretically correct. Instead, minimaxing has itself become a heu-

ristic for the choice of move. Several programs have therefore experi-

mented with varying or supplementing the minimax procedure. Slagle

and Dixon (1970), for example, in experiments with the game of Kalah,

compute the backed-up value of a node by taking into account not only

the value of its best successor but also whether the node has several

good successors or just one. Gillogly's TECH (1972), having computed

minimax values on the basis of an extremely simple static evaluation,

breaks ties between moves with equal minimax values by an analysis of

features not considered by the evaluation function. Newell, Shaw, and

Simon (1963a) set a value in advance that the search is expected to

achieve; the first move found that meets this standard is made, and

only if no move is good enough is the best minimax value used to

determine the move (see also Newell and Simon, 1972).

Depth of Search

If perfect evaluation functions were available, a game-playing pro-

gram could proceed at each turn by generating all legal moves, evalu-

ating each of the resulting positions, and choosing the move leading to

the best value. The reason for looking farther ahead is to compensate

for errors in the static evaluation. The assumption is that, since static

evaluation has a predictive aspect, there will be less room for mistaken

prediction if a deep tree is generated before the evaluation function is

applied.

The controlling fact about search depth is the combinatorial explo-

sion. If the average number of legal moves from a position, the

branching factor, is b, the game tree will have about 6d nodes at

depth d. According to Shannon's estimate for chess, a complete tree

carried to depth 6—three moves for each player—would already have

about one billion tip nodes. At the same time, Shannon noted, a world

champion may occasionally look ahead, along a single line of play, to a

depth as great as 15 or 20. More recently, Hans Berliner, a former

World Correspondence Chess Champion, has said he finds it necessary at

least once in a game to look ahead to a depth of 14 or more (1974,

C5c Heuristics in Game Tree Search 99

p. 1-8). The question, then, is how to get the needed depth, in the

right places, without succumbing to the combinatorial explosion. An
alternative question would be how to avoid the need for so deep a

search. The remainder of this article concerns attempts to solve or at

least alleviate these problems. First, however, experience with the use

of depth bounds as such will be reviewed.

Fixed-depth search with extensions for quiescence. The simplest look-

ahead procedure, which was called for by Shannon's Type A strategy, is

to set a fixed depth, or ply, to which the game tree is to be generated

and to apply the static evaluation function only to nodes at this depth.

Thus a four-ply search would statically evaluate the positions reached

after exactly two turns for each player. There are serious drawbacks in

this procedure, as Shannon observed, and it was used only in very early

programs (Kister et al., 1957; Bernstein et al., 1959). For example, a

chess evaluation function based mainly on material cannot return a

realistic value if, at the depth limit, the players happen to be halfway

through an exchange of pieces. The concept of a quiescent, or dead,

position was introduced to get around such difficulties (Shannon, 1950;

see also Turing, 1953): Search would be extended beyond the normal

limit, from nonquiescent positions only, until all tip nodes were rela-

tively stable or perhaps until some absolute depth-bound had been

reached.

This introduction of a quiescence search was one of the two features

that changed a program, in Shannon's terminology, from Type A to

Type B. On Shannon's suggested definition, a position was considered

nonquiescent if "any piece is attacked by a piece of lower value, or by

more pieces than defences or if any check exists on a square controlled

by opponent" (1950, p. 271). Many programs have adopted a similar

definition, with the result that the only moves examined beyond the

normal limit are checks and immediate captures (e.g., Gillogly, 1972;

Adelson-Velskiy et al., 1975; Slate and Atkin, 1977). If such a quies-

cence search is combined with considering all legal moves down to the

normal depth limit, the program is still called Type A in current ter-

minology (e.g., Berliner, 1978b).

The horizon effect. Searching to an arbitrarily limited depth, even

with extensions for checks and captures, creates a phenomenon that

Berliner (1973, 1974) has called the horizon effect Berliner's general

observation is that, whenever search is terminated (short of the end of

the game) and a static evaluation function is applied, the program's

"reality exists in terms of the output of the static evaluation function,

and anything that is not detectable at evaluation time does not exist as

far as the program is concerned" (1974, p. 1-1).

100 Search II

Two kinds of errors ensue. The first is called the negative horizon

effect: The program manipulates the timing of moves to force certain

positions to appear at the search horizon, and it thus may conclude

that it has avoided some undesirable effect when in fact the effect has

only been delayed to a point beyond the horizon. A second kind of

error, the positive horizon effect, involves reaching for a desirable con-

sequence: Either the program wrongly concludes that the consequence is

achievable or it fails to realize that the same consequence could also be

achieved later in the game in a more effective form. This last problem,

Berliner believes, can be met only by finding ways to represent and use

more chess knowledge than traditional programs have included (1974,

p. 1-7).

For most of the errors coming from the horizon effect, however, the

diagnosis is that the typical definitions of quiescence are highly over-

simplified. Ideally, a position would be considered quiescent only when

the static evaluation function, applied to that position, could return a

realistic value, that is, when the value of every term included in the

function had become stable. A quiescence search that pursues only se-

quences of captures and checking moves, however, seeks stability only in

the material term. The material term itself, moreover, usually reflects

only the presence of the pieces on the board; its value will be un-

changed by a move that guarantees a capture later instead of making a

capture now.

To get around the problems arising from inadequate quiescence

analysis, a first approach called secondary search was developed by

Greenblatt (1967): Whenever a move seemed, on the basis of the reg-

ular search (including quiescence), to be the best move considered so far,

the predicted line of play was extended by searching another two ply

(plus quiescence) to test the evaluation. Berliner points out, however:

"The horizon effect cannot be dealt with adequately by merely shifting

the horizon" (1974, p. 1-4). One direction in current work, therefore, is

toward a much fuller quiescence analysis as a substitute for arbitrary

depth bounds. (See Harris, 1975, 1977a; Slate and Atkin, 1977, pp. 115-

117; and, for an early example, Newell and Simon, 1972, pp. 678-698.)

Berliner (1977c, 1978a), meanwhile, is developing a general algorithm,

not limited to chess, for causing tree search to terminate with a best

move, even though no depth limit has been set and no full path to a

win has been found.

Iterative deepening. Despite its drawbacks, most current programs

still use a fixed-depth search, extended for checks and capture sequences.

A variation used by CHESS 4.5 (Slate and Atkin, 1977) is called iter-

ative deepening: A complete search, investigating all legal moves (sub-

C5c Heuristics in Game Tree Search 101

ject to alpha-beta pruning), is done to depth 2, returning a move. The

search is then redone to depth 3, again to depth 4, and so on, until a

preset time limit is exceeded. For efficiency, information from earlier

iterations is saved for use in later ones. Running on the very fast CDC
Cyber 176 computer, the program searches to an average depth of six

plies in tournament play, with search trees averaging 500,000 nodes

(Newborn, 1978). It is the first program to have achieved an Expert

rating in human play. In the fall of 1978 a new version, CHESS 4.7,

was reportedly rated 2160 (Levy, 1979); Master ratings begin at 2200.

It remains an open question how much stronger the program can be-

come.

Ordering of Search

The Shannon paradigm did not specify any particular order in which

the nodes of the search tree were to be explored or any order in which

moves from a given node were to be considered. For efficient use of

space, the order of node expansion is usually depth-first; a depth-first

algorithm needs to store explicitly only those nodes on the path it is

currently investigating and not the parts of the tree in which search has

been completed.

With the invention of alpha-beta pruning, the order of considering

moves within a depth-first search became highly significant. If the order

is ideal, then in a tree with branching factor b, the number of nodes

that must be examined at depth d is reduced from 6d to only about

26d/2 (see Article n.C5b). For example, Shannon's estimated 109 chess

positions at depth 6 would be reduced to around 50,000. It also follows

that, for a constant number of tip nodes examined, correct ordering of

the moves for alpha-beta cutoffs would allow the search depth to be

roughly doubled. In general, the desired ordering is one in which the

first move considered at a position is the best move for the player

whose turn it is. Usually, of course, there is no method guaranteed to

achieve this ordering, for if there were, it would enable moves to be

chosen with no search at all. Several heuristics have been used, how-

ever, to try to approximate optimal ordering.

Perhaps the simplest idea for move ordering is the fixed-ordering

method mentioned in Article n.C5b: For each move from a node, gen-

erate a new node for the resulting position, apply the static evaluation

function to the position, and order the nodes according to this pre-

liminary estimate. For greater efficiency, several programs have used a

separate function for move ordering, which applies to the move itself

instead of to the position that results from it (Greenblatt, 1967;

102 Search II

Berliner, 1974, p. 11-16; Adelson-Velskiy et al., 1975). In either case,

the game tree is explored by an ordered depth-first search (Article

n.C3a).

A fuller basis for choosing which move to consider first is provided

by Slate and Atkin's iterative deepening technique, which makes re-

peated depth-first searches. Each iteration constructs a line of play,

down to its depth limit, consisting of apparently best moves. The

following iteration, going one ply deeper, thus has available an estimated

best move from each position along this line of play. (See Slate and

Atkin, 1977, pp. 102-103.)

A further approach to move ordering makes explicit the idea of a

refutation move: For each move that is not a best move, it should be

shown as quickly as possible that the move is bad. To do this, strong

replies should be considered first, which may refute the move proposed.

Typical implementations consider all capturing moves first and then con-

sider killer moves. The idea here, called the killer heuristic, is that if a

move has served as a refutation in some previously examined position

that is similar to the current one, it is likely to be a refutation in the

current position, too. For more on the killer heuristic and other refu-

tation techniques, see Gillogly (1972), Adelson-Velskiy et al. (1975), Frey

(1977, pp. 54-81), and Slate and Atkin (1977).

Once the moves have been ordered at a given node and the search

has moved downward, following the move that seemed best, it may turn

out that this move is actually a very bad one for reasons that were not

apparent earlier. Since accurate move-ordering is important to maxi-

mizing alpha-beta cutoffs, it might be worthwhile at this point to go

back, reorder the moves, and start again with a different estimated best

move. Such a procedure, called dynamic ordering, was investigated by

Slagle and Dixon (1969), using the game of Kalah. They reported a

modest improvement over fixed ordering for trees of depth at least 6.

On the other hand, Berliner's chess program experienced a serious in-

crease in running time when dynamic ordering was used (1974,

p. IV-14). A procedure somewhat similar to dynamic ordering was also

used by Samuel (1967).

If dynamic ordering is carried to its limit, so that reordering is

considered every time a node is expanded instead of only under more

limited conditions, the search procedure in effect changes from depth-first

to best-first That is, the move considered next (or the position to which

it leads) is on some estimate the most promising in the entire search

tree generated so far, subject to whatever depth limit exists. Nilsson

(1969, 1971) implements this idea by adapting his algorithm for best-first

C5c Heuristics in Game Tree Search 103

AND/OR-tree search (Article n.C4) to game trees. Harris (1975, 1977a)

suggests another adaptation in which the motivation of maximizing

alpha-beta pruning no longer plays a role and instead the objective is

to expand the most active positions first, applying a thorough quies-

cence analysis rather than a depth limit as the criterion for search ter-

mination.

Width of Search

The techniques discussed so far are consistent with the idea that all

legal moves from a position must be examined, at least sufficiently to

establish that they can be safely pruned by the alpha-beta method.

This consideration of all legal moves is referred to as full-width search-

ing. Some of the earliest programs used a full-width search for sim-

plicity; in programs strong by current standards, it is used because of

the great difficulty in determining, without search, which moves can be

safely ignored (Turing, 1953; Kister et al., 1957; Gillogly, 1972; Adelson-

Velskiy et al., 1975; Slate and Atkin, 1977). The problem, of course, is

that an excellent move may look very poor at first sight.

Yet the average number of legal moves from a chess position is at

least 30, and even with a maximum of alpha-beta pruning, the tree

grows exponentially. Making the search more selective was Shannon's

second requirement to change a program from Type A to Type B. Many
people have been convinced that such selectivity is essential to a strong

chess program, both to increase search depth and to permit more

sophisticated evaluation of the nodes remaining in the search tree.

Berliner, for example, has advocated reducing the total search tree size

to at most 5,000 nodes, with a branching factor of less than 1.9 (1974,

p. 1-16). Although some reconsideration of these ideas has been

prompted by the success of CHESS 4.7 with full-width search, it appears

that that program is still weak at long end-game sequences (see Berliner,

1978b; Michie and Bratko, 1978). Moreover, there are other games for

which it is even clearer that full-width search is not the answer. For

the game of Go, for example, the average branching factor has been

estimated at perhaps 200 (Thorp and Walden, 1970), and for back-

gammon, where legal moves depend on the throw of the dice as well as

the board position, the factor is over 800 (Berliner, 1977a).

Various devices have been tried in the effort to increase the selec-

tivity of the search without missing good moves. Some are conceptually

simple, introducing little or no new chess-specific knowledge into the

program. Others attempt to formulate and use chess concepts as sophis-

ticated as those a chess master might employ. The remainder of this

104 Search II

section reviews chiefly the earlier search-controlling devices. The

following section mentions work, some of which moves outside the

Shannon paradigm, in which the effort to capture expert chess

knowledge becomes primary.

Forward pruning. One way of limiting the number of moves to be

considered introduces no new complications: Simply generate all legal

moves at a position, use a fixed-ordering scheme to sort them according

to their apparent goodness, or plausibility, and then discard all but the

best few moves. Such a technique, called plausible-move generation or

forward pruning, was used by Kotok (1962) and Greenblatt, Eastlake,

and Crocker (1967); see also Samuel (1967). A further feature of these

programs, sometimes called tapered forward pruning, was that the num-

ber of moves retained was a function of the depth at which they were

generated. For example, Greenblatt 's program in tournament play re-

tained 15 moves from a position at either of the top two levels of the

tree, 9 moves at the next two levels, and 7 moves thereafter. These

figures could be increased in special cases—for example, to be sure that

moves of more than a single piece were considered.

Another form of forward pruning, distinct from plausible-move gen-

eration, operates not at the time when moves are originally generated

but later, when one of these moves (or the position to which it leads) is

being selected for further exploration. At this point, a preliminary esti-

mate of the value of the move or position may already have been made

by the move-ordering scheme. If this estimate is outside the limits

alpha and beta, the currently known bounds on the outcome of the

entire search (see Article n.C5b), the node is pruned without further

investigation. It is possible, of course, that the actual backed-up value

of the node would have turned out to be between alpha and beta. In

that case, a good move may have been missed. (See Samuel, 1967;

Berliner, 1974, p. IV-13.)

Still another basis for forward pruning has been explored by

Adelson-Velskiy et al. (1975). They observe that KAISSA's search trees

include many lines of play that a human would consider absurd, not

necessarily because the moves are bad a priori but because the human
player has already considered and rejected the same moves in an anal-

ogous position. The proposal, then, is to remember moves that have

been found to be absurd (on some definition) and to reject them in

other positions, too, unless there has been an appropriate change of cir-

cumstances. In effect, this method of analogies involves trying to estab-

lish conditions under which a refutation is guaranteed to be effective.

C5c Heuristics in Game Tree Search 105

Then the line of play constituting the refutation would not need to be

explored separately every time it is applicable. (See Frey, 1977, p. 68.)

Goal-directed move generation. Returning to the initial generation

of moves, there is another kind of plausible-move generator that comes

closer to mimicking the way that humans might decide which moves are

worth considering. Instead of generating all legal moves and discarding

some, this approach does not generate moves at all unless they seem

relevant to some goal. The earliest step in this direction was Bernstein's

program (1959), which contained a sequence of board features to be

tested for and a procedure for generating moves in response to each

feature that was present. The first few tests in the sequence were, first,

whether the king is in check; second, whether material can be gained,

lost, or exchanged; and, third, whether castling is possible. A maximum
of seven plausible moves was returned. Questions later in the sequence

were not asked if earlier questions caused the maximum to be reached.

Searching to a fixed depth of four ply, the program generated trees with

about 2,400 tip nodes.

More explicitly goal-directed move-generation was included in Newell,

Shaw, and Simon's 1958 chess program (Newell, Shaw, and Simon,

1963a; Newell and Simon, 1972). Indeed, the entire program was orga-

nized in terms of goals, although only three—material, center control,

and piece development—were actually implemented. At each turn, the

program began by making a preliminary analysis to decide which of the

goals were relevant to the situation; these were entered, in order of

importance, on a current goal-list. It was intended, in a more fully

developed program, that as the game progressed, the goals of center

control and development would drop out, since they are important

mainly in the opening, and would be replaced by others more appro-

priate to later phases of the game.

Each active goal in the Newell, Shaw, and Simon program was re-

sponsible for generating relevant moves at the first level of the tree. In

addition, each goal contained its own separate generator for moves at

deeper levels, its own criteria for whether a position was dead, and its

own static evaluation function. The search proceeded, in a highly selec-

tive manner, until the tip nodes were dead with respect to all active

goals. Static evaluations with respect to the various goals were com-

bined lexicographically, so that the highest priority goal was dominant

and the others served only as tiebreakers. Newell and Simon (1972,

p. 694) report that the program's average search tree contained only 13

nodes—with no apparent loss in playing power compared to other

programs up to that time.

106 Search II

Knowledge-based Programs

The Bernstein program and the Newell, Shaw, and Simon program

were early efforts to introduce significant chess knowledge, organized in

human terms, to limit brute-force search. The actual knowledge was

very sketchy; apparently neither program ever won a game (see Newell

and Simon, 1972, pp. 677, 690).

An attempt at fuller use of chess knowledge was made in Berliner's

program, CAPS-II (1974, 1977b). Much of the work involved developing

a representation suitable for use in selectively generating moves, making

preliminary evaluations of the moves so proposed, and describing the

actual consequences discovered when a move was tried. The moves gen-

erated depend on the current goal state, which may be King in Check,

Aggressive, Preventive Defense, Nominal Defense, Dynamic Defense, or

Strategy. In contrast to the Newell, Shaw, and Simon program, the goal

states are mutually exclusive, and state transitions take place dynam-

ically as the tree is searched, in accordance with a complex flowchart.

An important feature of the program, the Causality Facility, relates to

both move generation and move ordering, as well as to pruning in some

cases. The problem it attacks is a general one in tree searching: When
a path has been explored and found unsatisfactory, most programs have

no way to diagnose what went wrong or to use this information in

deciding where to search next.

The basic search algorithm in CAPS-n is depth-first, with mini-

maxing and alpha-beta pruning. The Causality Facility operates as a

refinement on this search. A first new feature is that, whenever a value

is backed up in the search tree as a tentative minimax value, certain

information is accumulated about the consequences of the move or

moves that produced the value. The data structure in which the in-

formation is stored is called a Refutation Description. As the basis for

making use of the Refutation Description, the program uses a variable

representing the expected value of the position at the root of the search

tree; this value, which may be updated during the search, lies some-

where between the bounds given by alpha and beta. Now, the tentative

value newly backed up to a node can be compared with the expected

value. If the comparison is unsatisfactory, the Causality Facility uses the

Refutation Description to decide whether the last move tried from the

node could have been responsible. It generates a list of alternative

moves from the node, with the aim of avoiding the unsatisfactory result.

These moves are compared with the list of moves from the node that

had been generated earlier but that have not yet been tried. The

comparison is used to reorder moves already on the untried list and,

C5c Heuristics in Game Tree Search 107

depending on the state the program is in, to add new moves to the list

and to prune old ones.

Whereas Berliner's program plays the full game of chess, there are

several other recent programs that, in their emphasis on representing

chess knowledge, limit their task to solving problems involving only-

selected aspects of the game. Two of these are the programs by Pitrat

(1977) and Wilkins (1979). In each, the task is to find a line of play

that wins material, beginning from a given middle-game position. The

approach in both programs is to work backward from the goal of

winning material to a structure of subgoals that constitutes a plan (see

Chap. XVI, in Vol. m). Wilkins's program, PARADISE, for example, has

as a main theme the expression of chess concepts, like making a square

safe for a piece or safely capturing a piece, in terms that can be used

as subgoals and eventually reduced to specific moves. Initially, a plan is

based not on search but on an extensive analysis of the originally given

position; it may contain conditional branches depending on general cat-

egories of moves with which the opponent might reply. The general plan

is then used to guide search, generating a very small tree. Moves consid-

ered for the program to make are only those relevant to the current

subgoal; for the simulated opponent, all reasonable defensive moves are

considered. If search shows that the plan has failed, a causality facility

similar to Berliner's is used to analyze the difficulty and suggest a new

plan.

Both the Pitrat and the Wilkins programs have succeeded in solving

problems where the winning line of play goes to a depth of around 20

ply. Pitrat reports, for a set of 11 problems, that search-tree sizes

ranged from about 200 to 22,000 nodes; computation time varied from

under 3 seconds to about 7.5 minutes. Wilkins's PARADISE generates

smaller trees but uses more time; for 89 problems solved, the number of

nodes in the search tree ran from a minimum of 3 to a maximum of

215, and time to find the solution varied from 19 seconds to 33 min-

utes. Wilkins also reports a good success rate compared to previous

programs tested on the same set of problems, including Berliner's

program, Gillogly's TECH, and an earlier version of CHESS 4.5. The

programs other than PARADISE, however, were tested with a time limit

of only 5 minutes per problem.

A final example of the use of chess knowledge to solve a class of

problems is the work of Donald Michie and his colleagues on chess end-

games (e.g., Bratko, Kopec, and Michie, 1978; Michie and Bratko, 1978).

Here each combination of pieces with which the end game may be

played is treated as posing a separate problem. One problem, denoted

KNKR, is to defend with king and knight against king and rook,

108 Search II

starting from any of some 3 million legal positions involving only those

pieces. The objective is to provide the program with enough knowledge

about this specific class of chess problems to achieve theoretically correct

play, even in situations where chess masters sometimes err, and to ac-

complish this with only a moderate amount of search.

The program's knowledge is encoded in a data structure called an

Advice Table, within which patterns occurring on the board may be

described. Each pattern has an associated list of goals, or "pieces of

advice," in the order in which they should be attempted. The object

then becomes to find a solution—in the sense of a solution subtree of

an AND/OR tree (Article n.C2)—to the problem of satisfying one of the

goals. Unlike a standard AND/OR tree search, however, the "advice"

includes not only a definition of when tip nodes should be considered

terminal but also constraints that every intermediate node in the solu-

tion tree must satisfy.

The amount of search required to find a solution using an Advice

Table depends on how much knowledge the table contains. If the only

goal provided were avoidance of checkmate, a search to the impossible

depth of 85 ply would be needed to find the best defense from some

positions. With the additional advice not to lose the knight and to keep

king and knight together, search to about 10 ply is sufficient. With the

further refinements included in the actual Advice Table, the program is

reported to play the KNKR end game at master level with only a four-

ply search.

References

See Adelson-Velskiy, Arlazarov, and Donskoy (1975), Berliner (1973,

1974, 1977a, 1977b, 1977c, 1978a, 1978b), Bernstein et al. (1959), Bratko,

Kopec, and Michie (1978), Charness (1977), Frey (1977), Gillogly (1972),

Greenblatt, Eastlake, and Crocker (1967), Griffith (1974), Harris (1974,

1975, 1977a), Hearst (1977), Kister et al. (1957), Kotok (1962), Levy

(1979), Michie (1977), Michie and Bratko (1978), Mittman (1977),

Newborn (1975, 1978), Newell, Shaw, and Simon (1963a), Newell and

Simon (1972), Nilsson (1969, 1971), Pitrat (1977), Samuel (1963, 1967),

Shannon (1950), Slagle and Dixon (1969, 1970), Slate and Atkin (1977),

Thorp and Walden (1970), Turing (1953), and Wilkins (1979).

D. SAMPLE SEARCH PROGRAMS

Dl. Logic Theorist

The Logic Theorist (LT) was a program written by Allen Newell,

J. C. Shaw, and H. A. Simon in 1956, as a joint project of the RAND
Corporation and the Carnegie Institute of Technology. It was one of

the earliest programs to investigate the use of heuristics in problem

solving. The term heuristics, as used by Newell, Shaw, and Simon

(1963b, p. 109), referred to "the complex processes . . . that are effec-

tive in problem-solving." They stated,

We are not interested in methods that guarantee solutions, but

which require vast amounts of computation. Rather, we wish to

understand how a mathematician, for example, is able to prove a

theorem even though he does not know when he starts how, or if,

he is going to succeed, (p. 109)

Heuristics were thus identified with processes "that may solve a given

problem, but offer no guarantee of doing so" (p. 114; see also Article

n.A).

In descriptions of the Logic Theorist program, the heuristics dis-

cussed by Newell, Shaw, and Simon relate principally to limiting the

search space by means of an apt problem formulation. Within the

defined space, the search was blind except for some minor selectivity in

the choice of operators (see Article n.C3a).

The problem domain of the Logic Theorist is the proof of theorems

in the propositional calculus (see Article m.Ci). The basis is Whitehead

and Russell's Principia Mathematica, from which both axioms and the-

orems to be proved were taken. There are five axioms, as follows:

1- (p V p) D P

2. p D {qW p)

3. (PV?)D((?V p)

4. [p V (q V r)] D [q V (p V r)]

5. (p D q) D [(f V p) D (r V q)}

Some typical theorems that LT was given to prove include:

110 Search II

2.01. (p D ->p) D --P

2.45. -i(p V (?) D ip

2.31. [p V (g V r)] D [(p V q) V r]

The numbering of the theorems is taken from Whitehead and Russell.

In some cases, the data given the program included not only the axioms

but also previously proved theorems from that work. When all earlier

theorems were included with the axioms, the program succeeded in

proving 38 of the first 52 theorems in Chapter 2 of Principia Mathe-

matical, in the sequence given there.

The program operates by reasoning backward from the theorem to

be established to the axioms and given theorems. Three operators were

provided for reducing the theorem to be proved, let us say X, to an

axiom or theorem. These operators were:

Detachment: To show X, find an axiom or theorem of the form

A D X and transform the problem to the problem of show-

ing A.

Forward chaining: To show X where X has the form A D C, find

an axiom or theorem of the form A D B and transform the

problem to the problem of showing B Z) C.

Backward chaining: To show X where X has the form A Z) C, find

an axiom or theorem of the form B D C and transform the

problem to the problem of showing A D B.

Since the axioms and given theorems contain variables, consideration

must be given to the means for deciding whether a problem has in fact

been reduced to something known. The question is whether a current

problem expression X is an instance of an axiom or known theorem.

The test, called the Substitution Test, uses two rules of inference

distinct from those reflected in the operators:

Substitution: A variable in a theorem may be replaced, in all its

occurrences throughout the theorem, by an expression. For

example, substituting the expression p V Q for the variable p

transforms

V D (q V p)

into

(P V Q) D [q V (p V q)} .

Dl Logic Theorist 111

Replacement: The connective "D" is interchangeable with its defi-

nition. That is, if p and q are expressions, then

V D Q

can be replaced by

-\p V q

and vice versa.

As well as being used to determine whether a proof is complete, the

Substitution Test is also essential for determining what applications of

the three operators are possible with respect to a given problem ex-

pression.

The general algorithm used by the Logic Theorist is a blind,

breadth-first, state-space search using backward reasoning. The initial

state corresponds to the original theorem to be proved. To test

whether an expression has been proved, the program applies the Substi-

tution Test, pairing the problem expression with each axiom and as-

sumed theorem, in turn. If substitution fails, the expression is placed

on a list of open problems; problems are selected from this list to

become the current problem in first-in, first-out order.

To a problem selected from the list, each of the three operators is

applied, in fixed order and in all possible ways, to generate new open

problems. The search terminates with success as soon as a single prob-

lem is generated that passes the substitution test, since this means that

a path has been completed between an axiom and the original problem.

The search fails if it exceeds time or space limits or if it runs out of

open problems.

An example of a case in which the latter occurs is the attempted

proof of the theorem

p or —i—i—
i

/? .

To succeed with this proof, LT would have needed more powerful op-

erators; this particular problem required the ability, which LT lacked, to

transform a problem to a set of subproblems, or conjunctive subgoals,

that all had to be solved in order to solve the original problem.

There are some qualifications to the preceding general description of

LT. One concerns the statement that each operator is applied to the

current problem in every possible way, that is, that the current problem

expression is matched against every axiom and assumed theorem to

determine the applicability of any of the operators to that expression-

112 Search II

axiom pair. In fact, the program attempted a match for the purpose of

discovering an appropriate substitution only if the pair had passed a

test indicating equality of certain gross features, such as the number of

distinct variables in each. This test for similarity occasionally rejected a

pair for which a substitution in fact would have been possible, thus

excluding a proof the program would otherwise have found. Overall,

the utility of this similarity test was considered rather marginal.

Some other additions, apparently made in a later version of the pro-

gram (see Newell and Simon, 1972, pp. 125-128), included (a) ordering

the open problems, taking up those involving simpler expressions first

instead of proceeding in a strictly breadth-first order, and (b) rejecting

some subproblems entirely as too complicated or apparently unprovable.

In the implementation of these features, the latter appeared to be the

more effective measure in reducing search effort. There was also experi-

mentation, as mentioned previously, with the number of theorems that

could be assumed as given in addition to the basic axioms. The

conclusion on this point was that "a problem solver may be encumbered

by too much information, just as he may be handicapped by too little"

(p. 127).

References

See Newell, Shaw, and Simon (1963b), Newell and Simon (1972), and

Whitehead and Russell (1925).

D2. General Problem Solver

The General Problem Solver (GPS) was developed by Newell, Shaw,

and Simon beginning in 1957. The research had a dual intention: It

was aimed at getting machines to solve problems requiring intelligence

and at developing a theory of how human beings solve such problems.

GPS was the successor of the authors' earlier Logic Theorist program

(Article n.Di), whose methods had only a slight resemblance to those

used by humans working on similar problems. Development of GPS
continued through at least 10 years and numerous versions of the

program. The final version, described in detail in Ernst and Newell

(1969), was concerned with extending the generality of the program, not

with the psychological theory.

The name "General Problem Solver" came from the fact that GPS

was the first problem-solving program to separate its general problem-

solving methods from knowledge specific to the type of task at hand.

That is, the problem-solving part of the system gave no information

about the kind of task being worked on; task-dependent knowledge was

collected in data structures forming a task environment Among the data

structures were objects and operators for transforming the objects. A
task was normally given to GPS as an initial object and a desired ob-

ject, into which the initial object was to be transformed. GPS objects

and operators were similar to the states and operators of a state-space

problem representation (Article n.Bi).

The general problem-solving technique introduced by GPS, however,

does not fit neatly into either the state-space or the problem-reduction

representation formalisms. It differs from a standard state-space search

(e.g., Article n.Ci) in the way it decides what path to try next. This

technique, called means-ends analysis, is a major theoretical contribution

of the program. It assumes that the differences between a current

object and a desired object can be defined and classified into types and

that the operators can be classified according to the kinds of differences

they might reduce. At each stage, GPS selects a single relevant oper-

ator to try to apply to the current object. The search for a successful

operator sequence proceeds depth first as long as the chosen operators

are applicable and the path shows promise. Backup is possible if the

current path becomes unpromising—for example, if eliminating one dif-

ference has introduced a new one that is harder to get rid of.

114 Search E

An important feature of means-ends analysis is that the operator

selected as relevant to reducing a difference may actually be inapplicable

to the current object. Rather than rejecting the operator for this rea-

son, GPS attempts to change the current object into an object appropri-

ate as input to the chosen operator. The result of this strategy is a

recursive, goal-directed program that records the search history in an

AND/OR graph (Article n.B2) with partial development of nodes (Article

H.C3a).

Goals and Methods

The most important data structure used by GPS is the goal. The

goal is an encoding of the current situation (an object or list of ob-

jects), the desired situation, and a history of the attempts so far to

change the current situation into the desired one. Three main types of

goals are provided:

1. Transform object A into object B.

2. Reduce a difference between object A and object B by modifying

object A.

3. Apply operator Q to object A.

Associated with the goal types are methods, or procedures, for achieving

them. These methods, shown in a simplified version in Figure D2-1, can

be understood as problem-reduction operators that give rise either to

AND nodes, in the case of transform or apply, or to OR nodes, in the

case of a reduce goal.

The initial task presented to GPS is represented as a transform goal,

in which A is the initial object and B the desired object. The recursion

stops if the goal is primitive—that is, for a transform goal, if there is

no difference between A and B, and for an apply goal, if the operator Q
is immediately applicable. For a reduce goal, the recursion may stop,

with failure, when all relevant operators have been tried and have

failed.

D2 General Problem Solver 115

TRANSFORM

A TO B

REDUCE DIFFERENCE

BETWEEN A AND B,

GIVING OUTPUT A
;

TRANSFORM

A' TO B

REDUCE DIFFERENCE

BETWEEN A AND B

SELECT A RELEVANT OPERATOR Q

AND APPLY IT TO A,

GIVING OUTPUT A

APPLY OPERATOR Q TO A

REDUCE DIFFERENCE

BETWEEN A AND THE

PRECONDITIONS FOR Q,

GIVING OUTPUT A
//

APPLY q TO A"

,

GIVING OUTPUT A

Figure D2-1. The three GPS methods for problem reduction.

Selection of Operators

In trying to transform object A into object B, the transform method

uses a matching process to discover the differences between the two ob-

jects. The possible types of differences are predefined and ordered by

estimated difficulty, for each kind of task. The most difficult difference

found is the one chosen for reduction. A domain-dependent data struc-

ture called the Table of Connections lists the operators relevant to

reducing each difference type.

Depth Bounds

Several heuristics are provided to prevent GPS from following a false

path indefinitely. Some of the bases for determining whether a current

goal should be abandoned, at least temporarily, are the following:

1. Each goal should be easier than its parent goal.

2. Of a pair of AND nodes representing subgoals generated by

transform or apply, the second subgoal attempted should be

easier than the first.

116 Search II

3. A newly generated object should not be much larger than the

objects occurring in the topmost goal.

4. Once a goal has been generated, the identical goal should not

be generated again.

An Example

The first task environment to which GPS was applied was the do-

main of the Logic Theorist: proving theorems in the propositional cal-

culus. The initial and desired objects were expressions, one to be

transformed into the other by means of operators representing rules of

inference. There were 12 operators altogether, including the following

rules. (An arrow means that the expression may be rewritten in the

direction of the arrow head.)

Rule 1. Ay B -^ By A
A A B -> BAA

Rule 5. Ay B ^ -.(-nA A ->£)

Rule 6. A D B <-> -A V B

Six possible difference types were recognized:

1. occurrence of a variable in one expression but not the other,

2. occurrence of a variable a different number of times in the two

expressions,

3. difference in sign,

4. difference in binary connective,

5. difference in grouping, and

6. difference in position of components.

The list just given is in decreasing order of assumed difficulty. Every

difference between main expressions, however, was considered more dif-

ficult than any difference between subexpressions.

With this background, a trace (slightly simplified) of GPS's perfor-

mance on a simple example can be given. The problem is to transform

the initial expression

R A ipP D Q) ,

denoted L 1? into the desired expression

(Q y P) A R
,

denoted L . The trace is shown below.

D2 General Problem Solver 117

Goal 1: Transform Lj into L .

Goal 2: Reduce positional difference between Lj and L -

Goal 3: Apply Rule 1 to L±.

Return L2 : (->P D Q) A R

Goal 4: Transform L2 into L .

Goal 5: Reduce difference in connective between

left subexpressions of L2 and L .

Goal 6: Apply Rule 5 to left part of L2 .

Goal 7: Reduce difference in connective

between left part of L2 and

precondition for Rule 5.

Reject goal 7 as no easier than goal 5.

Goal 8: Apply Rule 6 to left part of L2 .

Return L3 : (P V Q) A R

Goal 9: Transform L3 into L .

Goal 10: Reduce positional difference

between left parts of L3 and L .

Goal 11: Apply Rule 1 to left part of L3 .

Return L4 : (Q V P) A #

Goal 12: Transform L4 to L .

No difference exists, so problem is solved.

The Problem of Generality

GPS was intended to model generality in problem solving through

use of the broadly applicable techniques of heuristic search, and the

strategy of means-ends analysis in particular. The implementation of

these techniques was dependent on the internal representation of objects

and operators. These representations, in early versions of GPS, were

nicely suited to logic tasks like the example above. But they were

inadequate for many other kinds of heuristic search problems. Before

Ernst's extensions to the program (Ernst and Newell, 1969), GPS had in

fact solved only two problems outside the logic domain.

The object of Ernst's work was to extend the number of kinds of

problems that GPS could handle while holding its power at a constant

118 Search II

level. One of his generalizations was in the representation of objects.

Earlier, a desired object had had to be specified by giving its exact

form. Forms containing variables and lists of forms could be used if

necessary. But these, too, were inadequate for representing symbolic

integration problems, in which the desired object is any form whatever

that does not contain an integral sign. Hence, the description of a de-

sired object by a list of constraints was introduced.

Another change was in the representation of operators, originally

specified by giving the form of the input object and the form of the re-

sulting output object. For some kinds of problems, it was desirable to

have other tests of applicability besides the form of the input object

and to be able to describe the output object as a function of the input.

A third change allowed GPS to deal with unordered sets of symbols,

eliminating the need for special operators to permute their elements.

The generalized program succeeded in solving problems of 11 dif-

ferent kinds, including symbolic integration, resolution theorem proving,

and a variety of puzzles. Each generalization, however, entailed changes

in the ways the problem representations could be processed, and these

led in turn to deterioriation with respect to the kinds of differences that

could be detected. The only representable differences became "local"

ones. An example of a global difference, which GPS could no longer

recognize, was the total number of times a variable occurred in a logic

formula. Consequently, theorem proving in the propositional calculus

was not among the 11 tasks that the final version of GPS could do.

In the task domains in which GPS did succeed, it could solve onlv

simple problems; and those, less efficiently than special-purpose problem

solvers. If a long search was required, it ran out of memory space, and

even easy problems, if they needed objects as complex as a chess

position, quickly exhausted memory on a machine with 65K words. But

GPS was not expected to be a performance program. What it yielded,

in its authors' view, was "a series of lessons that give a more perfect

view of the nature of problem solving and what is required to construct

processes that accomplish it" (Ernst and Newell, 1969, p. 2). Although

additional generalizations, such as game playing, were considered feasible,

the authors concluded that GPS needed no further programming ac-

cretions and recommended that it be laid to rest.

References

See Ernst and Newell (1969), Newell and Ernst (1965), Newell,

Shaw, and Simon (1960), and Newell and Simon (1963, 1972).

D3. Gelernter's Geometry Theorem-proving Machine

Herbert Gelernter's geometry theorem-proving machine was a pro-

gram written in 1959 at the IBM Research Center in New York. The

program was written in an extended FORTRAN, the FORTRAN List

Processing Language, and implemented on an IBM 704 computer. The

purpose of the program was to solve problems taken from high-school

textbooks and final examinations in plane geometry. As with Newell,

Shaw, and Simon's Logic Theorist, which proved theorems in the prop-

ositional calculus, the fact that there were algorithms for solving prob-

lems in these domains was considered irrelevant, since the object was to

explore the use of heuristic methods in problem solving.

The formal system within which the geometry program worked con-

tained axioms on parallel lines, congruence, and equality of segments

and angles. This set of axioms, which was not meant to be either com-

plete or nonredundant, was along the lines of an elementary textbook.

The axioms played the role of problem-reduction operators. Some ex-

amples are:

1. In order to show that two line segments are equal, show that

they are corresponding elements of congruent triangles;

2. In order to show that two angles are equal, show that they are

both right angles;

3. In order to show that two triangles are congruent, show the

equality of a side and two angles in corresponding positions or

of an angle and two sides.

The operators for establishing congruence split the problem into three

subproblems, each to be solved separately by showing equality for one

pair of elements. Newell and Simon (1972, p. 138) indicate that the

geometry machine was the first program that was able to handle con-

junctive subgoals. The program works backward from the theorem to be

proved, recording its progress in what amounted to an AND/OR tree

(Article n.B2).

Some examples of problems solved by the program were the fol-

lowing:

1. Given that angle ABD equals angle DBC, that segment AD is

perpendicular to segment AB, and that segment DC is perpendicular to

segment BC, show that AD equals CD. (See Fig. D3-1.)

120 Search II

Figure D3-1. Diagram for problem 1.

2. Given that ABCD is a quadrilateral, with segment EC parallel to

segment AD and with BC equal to AD, show that segment AB equals

segment CD. (See Fig. D3-2.)

Figure D3-2. Diagram for problem 2.

A problem was given to the program in the form of a statement

describing the premises and the goal. A proof was a sequence of state-

ments giving the reduction of the goal to trivial goals—ordinarily, goals

to establish an already established formula. One feature used to reduce

the search effort needed to find a proof was the recognition of syntactic

symmetry. Some examples of symmetric pairs of goals are the following:

1. If d(x, y) is the distance from point x to point y, then

d{A,B) = d(C,D) is symmetric with d{D, C) = d(A,B).

2. If ABCD is a parallelogram and point E is the intersection of its

diagonals AC and BD, then d (A, E) = d (E, C) is symmetric

with d(B,E) = d{E,D).

The recognition of symmetry was used in two ways. First, if a given

goal was ever reduced to a subgoal symmetric with it, the subgoal could

be rejected as representing circular reasoning. Second, if parallel goals

A and B were syntactically symmetric and goal A had been established,

then goal B could be established by symmetry—in effect by saying, for

the second half of the proof, "Similarly, B.
n

D3 Gelernter's Geometry Theorem-proving Machine 121

The most notable feature of the program, however, was an addi-

tional part of the problem statement used to avoid attempting proofs by

blind syntactic manipulation alone. This input was a diagram, similar

to Figures D3-1 and D3-2 (although specified by lists of coordinates), of

the points and line segments mentioned in the theorem. The particular

input figure was chosen to avoid spurious coincidences and reflect the

greatest possible generality. Whenever a subgoal was generated, it was

checked for consistency with the diagram. If false in the diagram, the

subgoal could not possibly be a theorem and therefore could be pruned

from the search tree. A slight qualification is that finite precision arith-

metic, applied to the diagram, occasionally caused a provable subgoal to

be pruned erroneously; but it was reported that the program had found

other paths to the solution in such cases. It was estimated that the use

of a diagram, together with the discard of subgoals representing circular

reasoning, eliminated about 995 out of every 1,000 subgoals.

The diagram also served a second purpose: It provided an addi-

tional criterion by which a problem could be considered primitive. For

example, a rigorous proof of the theorem in problem 1 would require

showing that DB is a line segment and that BCD and BAD are triangles.

The axioms needed would have been (a) if X and Y are distinct points,

then XY is a line segment, and (b) if X, Y, and Z are three distinct

noncollinear points, then XYZ is a triangle. For a limited class of such

properties, the program did not require formal proof but rather

considered them established if they were true in the diagram. It

recorded explicitly the assumptions that had been made based on the

diagram.

The central loop of the program repeatedly selected the next goal to

try. Two heuristics were included for goal selection. One gave highest

priority to classes of goals, such as identities, that could usually be

established in one step. The second assigned a "distance" between the

goal statement and the set of premise statements; after the one-step

goals had been developed, the remaining goals were selected in order of

increasing distance from the premise set.

Once a goal was chosen for development, the action taken depended

on its status. Ordinarily, it would be reduced to subgoals, and the

subgoals, if consistent with the diagram but not sufficient to establish

the current goal immediately, would be added to the list of goals to try.

If no new acceptable subgoals were generated, the program checked

whether a construction was possible—a construction being the addition

to the premises of the problem of a line segment between two existing

122 Search II

but previously unconnected points. The new segment would be ex-

tended to its intersections with other segments in the figure. New
points could be added to the premises only if generated by such inter-

sections.

A goal for which a construction was found possible was saved—to

be tried again later if all goals not requiring construction should be ex-

hausted. If the goal was later selected for a second try, a construction

would be made and the problem started over with an expanded premise

set. An example of the use of this technique occurs in problem 2,

where in considering the goal AB = CD, the program generated a

subgoal of showing that triangles ABD and CDB were congruent. The

subgoal makes sense only if a line segment BD exists, so the segment is

constructed, and the proof eventually succeeds.

References

See Elcock (1977), Gelernter (1959, 1963), Gelernter, Hansen, and

Gerberich (1960), Gelernter, Hansen, and Loveland (1963), Gelernter and

Rochester (1958), and Gilmore (1970).

D4. Symbolic Integration Programs

Slagle's SAINT

James Slagle's SAINT program (Symbolic Automatic INTegrator) was

written as a 1961 doctoral dissertation at M.I.T. The program solves

elementary symbolic integration problems—mainly indefinite integration

—

at about the level of a good college freshman. SAINT was written in

LISP and run interpretively on the IBM 7090 computer.

The kinds of questions Slagle intended his thesis to address were

some of the earliest questions for AI. They included, for example, "Can

a computer recognize the kinds of patterns that occur in symbolic ex-

pressions? Just how important is pattern recognition? . . . Can intelli-

gent problem solving behavior really be manifested by a machine?"

(Slagle, 1961, p. 9). The domain of symbolic integration was chosen as

a source of well-defined, familiar, but nontrivial problems requiring the

manipulation of symbolic rather than numerical expressions.

The integration problems that SAINT could handle could have only

elementary functions as integrands. These functions were defined recur-

sively to comprise the following:

1. Constant functions;

2. The identity function;

3. Sum, product, and power of elementary functions;

4. Trigonometric, logarithmic, and inverse trigonometric functions

of elementary functions.

Three kinds of operations on an integrand were available:

1. Recognize the integrand as an instance of a standard form, thus

obtaining the result immediately by substitution. Twenty-six

such standard forms were used. A typical one indicated that if

the integrand has the form c
v dv, the form of the solution is

(cv)/(ln c).

2. Apply an "algorithm-like transformation" to the integral—that is,

a transformation that is almost guaranteed to be helpful when-

ever it can be applied. Eight such transformations were pro-

vided, including (a) factoring out a constant and (b) decompos-

ing the integral of a sum into a sum of integrals.

3. Apply a "heuristic transformation"—that is, a transformation

carrying significant risk such that, although applicable, it might

not be the best next step. The 10 heuristic transformations

124 Search II

included certain substitutions and the technique of integration

by parts. One technique that was not implemented was the

method of partial fractions.

The program starts with the original problem as a goal, specified as

an integrand and a variable of integration. For any particular goal, the

strategy is first to try for an immediate solution by substitution into a

standard form; failing that, to transform it by any applicable algorithm-

like transformation; and, finally, to apply each applicable heuristic trans-

formation in turn. Both the algorithm-like and the heuristic transfor-

mations, however, generate new goals, to which the same strategy may
be applied. The result is an AND/OR graph of goals (Article n.B2).

The order in which goals are pursued by SAINT depends heavily on

what operations can be applied to them. At the level of heuristic trans-

formations, the algorithm is an ordered search: A list, called the Heu-

ristic Goal List, keeps track of goals on which progress can be made

only by applying heuristic transformations—that is, integrands that are

not of standard form nor amenable to any algorithm-like transformation.

To each goal on this list is attached an estimate of the difficulty of

achieving it. The measure of difficulty used is the maximum level of

function composition in the integrand. Other characteristics of the goal,

such as whether it is a rational function, an algebraic function, a

rational function of sines and cosines, and the like, are also stored as an

aid to determining which heuristic transformations will in fact apply.

The outer loop of the program repeatedly selects the goal that looks the

easiest from the Heuristic Goal List, expands it by applying all

applicable heuristic transformations, and possibly, as a result of the

expansion, adds new elements to the Heuristic Goal List. The program

terminates with failure if it runs out of heuristic goals to work on or if

it exceeds a preset amount of working space.

An important qualification to this process concerns the use of stan-

dard forms and algorithm-like transformations. As soon as any new goal

is generated (or the original goal read in), an immediate solution of it is

attempted. The attempt consists of, first, checking whether the integrand

is a standard form; if it is not, checking whether an algorithm-like

transformation applies; and if one does, applying it and calling the

immediate solution procedure recursively on each goal resulting from

that transformation. When the recursion terminates, either the generated

goal has been achieved or there is a set of goals—the generated goal

itself or some of its subgoals—to be added to the Heuristic Goal List.

During expansion of a node (one iteration of the outer loop), new

heuristic goals are accumulated in a temporary goal list; only after

D4 Symbolic Integration Programs 125

expansion is complete are their characteristics computed and the addi-

tions made to the Heuristic Goal List.

Whenever a goal is achieved, the implications of its achievement are

immediately checked. If it is the original goal, the program terminates

successfully. Otherwise, if it was achieved by substitution into a stan-

dard form, it may cause the achievement of one or more parent goals as

well. If it was achieved by solution of a sufficient number of its sub-

problems, it not only may cause its parent or parents to be achieved in

turn, but also may make others of its subproblems, which have not yet

been solved, superfluous. These checks are implemented in a recursive

process, referred to as "pruning the goal tree," that is initiated as soon

as any goal is achieved. Thus a heuristic goal can be achieved without

having been fully expanded.

Moses's SIN

A second important symbolic integration program, SIN (Symbolic

INtegrator), was written by Joel Moses in 1967, also as a doctoral

dissertation at M.I.T. Its motivation and its strategy as an AI effort

were quite different from those of SAINT. Whereas Slagle had compared

the behavior of SAINT to that of freshman calculus students, Moses

aimed at behavior comparable to expert human performance. He viewed

SAINT as emphasizing generality in that it examined mechanisms, like

heuristic search, that are useful in many diverse problem domains. SIN,

in contrast, was to emphasize expertise in a particular, complex domain.

To do this, it concentrated on problem analysis, using more knowledge

about integration than SAINT had employed, to minimize the need for

search. In fact, Moses did not view SIN as a heuristic search program.

Hence, the program will be described only briefly here, and a sec-

ond part of Moses's dissertation—a differential equation solver called

SOLDIER—will not be described.

SIN worked in three stages, each stage capable of solving harder

problems than the stage before. Stage 1 corresponded roughly to Slagle 's

immediate solution procedure but was more powerful. It used a table of

standard forms, two of Slagle's algorithm-like transformations, and, most

importantly, a method similar to one of Slagle's heuristic transforma-

tions, referred to as the derivative-divides method. The idea behind this

grouping of methods was that they alone would be sufficient to solve

the most commonly occurring problems, without invoking the compu-

tationally more expensive machinery of the later stages.

A problem that stage 1 could not solve was passed on to stage 2.

This stage consisted of a central routine, called FORM, and 11 highly

126 Search II

specific methods of integration. (One of these methods was a program

for integrating rational functions that had been written by Manove,

Bloom, and Engelman, of the MITRE Corporation, in 1964.) In general,

the task of FORM was to form a hypothesis, usually based on local

clues in the integrand, about which method, if any, was applicable to

the problem. Only rarely did more than one method apply. The

routine chosen first tried to verify its applicability; if it could not, it

returned to let FORM try again. If the routine did verify the hypoth-

esis, however, SIN then became committed to solving the problem by

that method or not at all. The method chosen either solved the prob-

lem using mechanisms internal to it or transformed the problem and

called SIN recursively to solve the transformed problem.

Stage 3 of SIN was invoked, as a last resort, only if no stage 2

method was applicable. Two general methods were programmed here.

One method was integration by parts, which used blind search, subject

to certain constraints, to find the appropriate way to factor the

integrand. The other was a nontraditional method based on the

Liouviile theory of integration and called the EDGE (EDucated GuEss)

heuristic. This method involved guessing the form of the integral. The

EDGE heuristic was characterized as using a technique similar to means-

ends analysis, if its guess did not lead directly to a solution.

Performance of SAINT and SIN

SAINT was tested on a total of 86 problems, 54 of them chosen

from M.I.T. final examinations in freshman calculus. It succeeded in

solving all but two. The most difficult problem it solved, in terms of

both time and the number of heuristic transformations occurring in the

solution tree (four), was the integral of

sec
2

£

l + (sec2 £) — 3(tani)
dt

Slagle proposed additional transformations that would have handled the

two failures, which were the integrals of

x(l + x) 1 /2 dx and cos (x1 /2) dx .

SIN, in contrast, was intended to model the behavior of an expert

human integrator. The results of running SIN on all of Slagle's test

problems were that more than half were solved in stage 1, and all but

two of the rest (both of which used integration by parts) were solved in

stage 2. After adjusting for the facts that SAINT and SIN ran on

different machines and that one was interpreted and the other compiled,

D4 Symbolic Integration Programs 127

and for other factors making the programs difficult to compare, Moses

estimated that SIN would run on the average about three times faster

than SAINT. Taking into account a test on more difficult problems as

well, he expressed the opinion that SIN was "capable of solving inte-

gration problems as difficult as ones found in the largest tables" (p. 140)

and that it was fast and powerful enough for use in "a practical on-line

algebraic manipulation system" (p. 6). For later developments in this

direction, see Article vn.Di, in Volume n.

References

See Manove, Bloom, and Engelman (1968), Moses (1967), and Slagle

(1961, 1963).

D5. STRIPS

STRIPS is a problem-solving program written by Richard Fikes and

Nils Nilsson (1971) at SRI International. Each problem for STRIPS is a

goal to be achieved by a robot operating in a simple world of rooms,

doors, and boxes. The solution is a sequence of operators, called a plan,

for achieving the goal. (For a review of the various senses of the word

plan, see Chap, xvi, in Vol. EL) The robot's actual execution of the

plan is carried out by a separate program, distinct from STRIPS. A
later (1972) addition to the basic STRIPS system permits plans to be

generalized and used again, giving the system some capacity for

learning.

The Basic STRIPS System

The world model. The world in which the STRIPS robot works

consists of several rooms connected by doors, along with some boxes and

other objects that the robot can manipulate. STRIPS represents this

world by a set of well-formed formulas in the first-order predicate cal-

culus (see Article m.Ci). Some formulas in the world model are static

facts, such as which objects are pushable and which rooms are con-

nected. Other facts, such as the current location of objects, must be

changed to reflect the actions of the robot.

Operators. The actions available to the robot for affecting the

world are described, for the purpose of finding a plan of action, by

operators. Typical operators describe actions of going somewhere and

pushing an object somewhere, the locations being given as parameters.

Each operator has preconditions to its applicability; to push a box, for

example, the robot must first be next to the box. The application of

an operator is realized by making changes in the world model. The

appropriate changes are given by a delete list and an add list, specifying

the formulas to be removed from and added to the world model as a

result of the operation. Thus, each operator explicitly describes what it

changes in the world model.

A typical operator is GOTOB, which denotes the robot's going up to

an object in the same room:

GOTOB (bx) "go to object bx"

Preconditions: TYPE (bx, OBJECT) and

THERE EXISTS (rx) such that

[INROON (bx, rx) and IMROON (ROBOT, rx)]

Delete list: AT (ROBOT, *, *) , MEXTTO (ROBOT, *)

Add list: NEXTTO (ROBOT, bx)

D5 STRIPS 129

The precondition statement requires that bx be an object and that both

bx and the robot be in the same room, rx. The asterisks in the delete

list represent arguments with any values whatever.

Method of operation. STRIPS operates by searching a space of

world models to find one in which the given goal is achieved. It uses a

state-space representation in which each state is a pair (world model,

list of goals to be achieved). The initial state is (M
,
(G)), where M

is the initial world model and G the given goal. A terminal state

gives a world model in which no unsatisfied goals remain.

Given a goal G (stated as a formula in the predicate calculus),

STRIPS first tries to prove that G is satisfied by the current world

model. To do this, the program uses a modified version of the

resolution-based theorem prover QA3 (Garvey and Kling, 1969). Typ-

ically the proof fails, within a prespecified resource limit, because no

more resolvents can be formed (see Article xn.B, in Vol. m). At this

point, STRIPS needs to find a different world model that the robot can

achieve and that satisfies the goal. Because this task is complicated for

a simple theorem prover, the system switches to a means- ends analysis

similar to that of GPS (Article n.D2).

To do the means-ends analysis, the program extracts a difference

between the goal and the current model and selects a relevant operator

to reduce the difference. The difference consists of any formulas from

the goal that remain outstanding when the proof attempt is abandoned

(pruned, if this set is large). A relevant operator is one whose add list

contains formulas that would remove some part of the difference, there-

by allowing the proof to continue.

If the operator is applicable, the program applies it and tries to

achieve the goal in the resulting model; otherwise, the operator's pre-

condition becomes a new subgoal to be achieved. Since there may be

several relevant operators at each step, this procedure generates a tree

of models and subgoals. STRIPS uses a number of heuristics to control

the search through this tree.

An Example of the Basic System's Performance

As a simple example, suppose the robot is in ROOM1 and the goal

is for it to be next to BOX1, which is in adjacent ROOM2. The initial

world model M contains such clauses as

130 Search II

INR00N (ROBOT, ROONl)

,

INROON (BOXl, R00N2),

TYPE (B0X1, OBJECT),

CONNECTS (D00R12, ROONl , R00N2)

STATUS (D00R12, OPEN), . . .

and the goal Gq is

GO = NEXTTO (ROBOT, BOXl)

Gq is not satisfied, and the difference between it and the initial model is

-i NEXTTO (ROBOT, BOXl). STRIPS determines that GOTOB (6x), defined

above, is a relevant operator, with bx instantiated as BOXl. The oper-

ator instance GOTOB (BOXl), denoted OPlf is not immediately appli-

cable (because the robot is in the wrong room), so its precondition G1?

Gl = TYPE (BOXl, OBJECT) and

THERE EXISTS (rx) [INROON (BOXl, rx) and INROON (ROBOT, rx)]

becomes a new subgoal. Relevant operators for reducing the differ-

ence between G
1
and the initial model M are: OP2

= GOTHRUDOOR
(dx, ROOM2) and OP3

= PUSHTHRUDOOR (BOXl, dx, ROOMl) (i.e., move

the robot to the room with the box, or move the box to the room with

the robot). If the former course (the better one, obviously) is selected,

the precondition

G2 = STATUS (dx, OPEN) and NEXTTO (ROBOT, dx) and

THERE EXISTS (rx) [INROON (ROBOT, rx) and CONNECTS (dx, rx, R00N2)]

is the new subgoal. The difference -> NEXTTO (ROBOT, DOOR12) can

be reduced by the operator OP4 = GOTODOOR (DOOR12), which is

applicable immediately. Applying 0P4 adds the clause NEXTTO
(ROBOT, DOOR12) to the model, creating a new world model Mv G2 is

now satisfied with dx = DOOR12, so OP2 can be instantiated as

GOTHRUDOOR (DOOR12, ROOM2) and applied. This deletes the clause

INROOM (ROBOT, ROOMl) and adds INROOM (ROBOT, ROOM2). G
x

is

now satisfied, so OP
x

is applied, deleting NEXTTO (ROBOT, DOOR12)
and adding NEXTTO (ROBOT, BOXl), the desired goal. The final plan

is thus:

0P4

0P2

0P1

GOTODOOR (D00R12)

GOTHRUDOOR (D00R12, R00N2)

GOTOB (BOXl)

D5 STRIPS 131

The corresponding solution path through the state space tree is as

follows:

(NO, (GO))

(MO, (Gl, GO))

(NO, (G2, Gl, GO))

0P4

(Ml, (Gl, GO))

0P2

(MB, 0)

Generalization of Plans

In the basic STRIPS system, each new problem was solved from

scratch. Even if the system had produced a plan for solving a similar

problem previously, it was not able to make any use of this fact. A
later version of STRIPS provided for generalizing plans and saving them,

to assist both in the solution of subsequent problems and also in the

intelligent monitoring of the robot's execution of the particular plan.

Triangle tables. A specific plan to be generalized, say, {0PV 0P2 ,

. . ., 0Pn), is first stored in a data structure called a triangle table.

This is a lower triangular array representing the preconditions for and

effects of each operator in the plan. Some of its properties are the

following:

1. Cell (i, 0) contains clauses from the original model that are still

true when operator i is to be applied and that are precondi-

tions for operator i, OPy

2. Marked (starred) clauses elsewhere in row i are preconditions

for operator i added to the model by previous operators.

3. The effects of applying operator i are shown in row • + 1.

The operator's add list appears in cell (t -+- 1, i). For each

132 Search n

previous operator, say, operator j, clauses added by operator ;

and not yet deleted are copied into cell (i + 1> j)-

4. The add list for a sequence of operators 1 through i, taken as a

whole, is given by the clauses in row i-f 1 (excluding col-

umn 0).

5. The preconditions for a sequence of operators i through n, taken

as a whole, are given by the marked clauses in the rectangular

subarray containing row i and cell (n + 1, 0). This rectangle

is called the i-th kernel of the plan.

The triangle table for the previous example is shown in Figure D5-1.

Operators have been renumbered in the order of their use.

INR00N(R0B0T,
ROONl)

CONNECTS (D12,

ROONl , R00N2)

OPl

G0T0D00R(D12)

INR00N(R0B0T,

ROONl)

CONNECTS (D12,

ROONl , R00N2)

STATUS (D12,

OPEN)

NEXTTO
(ROBOT, D12)

0P2

G0THRUD00R

(D12,R00N2)

INR00N(B0X1,
R00N2)

TYPE(B0X1,
OBJECT)

NEXTTO

(ROBOT, D12)

INR00N
(ROBOT, R00N2)

0P3

GOTOB(BOXl)

INR00N

(ROBOT
;
R00N2)

NEXTTO

(ROBOT ,B0X1)

Figure D5-1. A triangle table.

Method of generalization. The plan is generalized by replacing all

constants in each of the clauses in column by distinct parameters and

the rest of the table with clauses that assume that no argument to an

operator has been instantiated. The result may be too general, so the

proof of the preconditions for each operator is run again, noting any

substitutions for parameters that constrain the generality of the plan.

Some further corrections are made for remaining overgeneralization,

D5 STRIPS 133

which might make the plan either inconsistent or inefficient in use.

Finally, the generalized plan, termed a MACROP, is stored away for

future use.

In the example above, the generalized plan would be

G0T0D00R (dx)

G0THRUD00R (dx, rxl)

GOTOB (bx)

with preconditions:

and add list:

INROON (ROBOT, rx2)

CONNECTS (dx, rx2, rxl)

STATUS (dx, OPEN)

INROON (bx, rxl)

TYPE (bx, OBJECT)

NEXTTO (ROBOT, bx)

INROON (ROBOT, rxl)

That is, the generalized plan sends the robot from any room through a

connecting door to an object in the adjacent room.

Using the MACROP to guide execution. When STRIPS produces a

detailed plan to achieve a goal, it does not necessarily follow that the

robot should execute the plan exactly as given. One possibility is that

some action fails to achieve its expected effect, so that the corre-

sponding step of the plan needs to be repeated. Another is that the

plan found is less than optimal and would be improved by omitting

some steps entirely. The necessary flexibility during execution is pro-

vided by using the MACROP rather than the detailed plan in monitor-

ing the robot's actions.

At the beginning of execution, the parameters of the MACROP are

partially instantiated to the case at hand. The robot then attempts, at

each stage, to execute the highest numbered step of the plan whose

preconditions are satisfied. This procedure omits unnecessary steps and

allows repeated execution, possibly with changed parameters, of a step

that has failed. If there is no step whose preconditions are satisfied,

replanning occurs. Determining which step can be done next is accom-

plished by a scan that exploits the design of the triangle table.

Using MACROPs in planning. When STRIPS is given a new prob-

lem, the time it takes to produce an answer can be reduced very

considerably if there is a MACROP that can be incorporated into its

solution. The MACROP given above, for example, could be used as the

first part of a plan to fetch a box from an adjacent room. The part of

134 Search n

the MACROP consisting of its first two suboperators, if used alone,

would also give a ready-made solution to the problem "Go to an

adjacent room," or it could be used repeatedly in solving "Go to a

distant room."

The triangle table provides the means of determining whether a

relevant macro operator exists. To determine whether the sequence of

operators 1 through i of the MACROP is relevant, STRIPS checks the

add list of this sequence as given by the (i + l)st row of the table.

Once a MACROP is selected, irrelevant operators are edited out by a

straightforward algorithm, leaving an economical, possibly parameterized

operator for achieving the desired add list. The operator's preconditions

are taken from the appropriate cells of column 0. Thus, almost any

sub-sequence of operators from a MACROP can become a macro oper-

ator in a new plan. To keep new MACROPs from producing an over-

whelming number of different operators that must be considered during

planning, the system contains provisions for preventing consideration of

redundant parts of overlapping MACROPs and for deleting MACROPs
that have been completely subsumed by new ones.

In a sequence of problems given to STRIPS, the use of MACROPs in

some cases reduced planning time by as much as two-thirds. The

longest plan so formed, consisting of 11 primitive operations, took the

robot from one room to a second room, opened a door leading to a

third room, took the robot through the third room to a fourth room,

and then pushed two pairs of boxes together. One drawback noted by

the authors was that, however long the solution sequence, STRIPS at

each stage of its search dealt with every operation in complete detail.

A later program, Sacerdoti's ABSTRIPS (Article n.D6), provides the

mechanism for deferring the details of the solution until after its main

outline has been completed.

References

See Fikes, Hart, and Nilsson (1972), Fikes and Nilsson (1971), and

Garvey and Kling (1969).

D6. ABSTRIPS

A combinatorial explosion faces all problem solvers that attempt to

use heuristic search in a sufficiently complex problem domain. A tech-

nique called hierarchical search or hierarchical planning, implemented in

Earl Sacerdoti's ABSTRIPS (1974), is an attempt to reduce the combina-

torial problem. The idea is to use an approach to problem solving that

can recognize the most significant features of a problem, develop an

outline of a solution in terms of those features, and deal with the less

important details of the problem only after the outline has proved

adequate.

The implementation of this approach involves using distinct levels of

problem representation. A simplified version of the problem, from which

details have been omitted, occurs in a higher level problem space or

abstraction space; the detailed version, in a ground space. By a slight

extension, providing for several levels of detail instead of just two, a

hierarchy of problem spaces is obtained. In general, each space in the

hierarchy serves both as an abstraction space for the more detailed

space just below it and as a ground space with respect to the less

detailed space just above.

Background— The STRIPS System

ABSTRIPS is a modification of the STRIPS system, described in

Article n.D5. The problem domain for both programs is a world of robot

planning. In both, the program is given an initial state of the world, or

world model, consisting of a set of formulas that describe the floor plan

of a group of rooms and other facts such as the location of the robot

and other objects within these rooms. The goal state to be achieved is

also given. The elements of a solution sequence are operators represent-

ing robot actions; examples are operators for going up to an object,

pushing an object, and going through a door. The definition of each

operator contains three kinds of formulas: (a) its preconditions,

representing statements that must be true of a world model in order for

the operator to be applicable; (b) its add list, a list of formulas that

will become true and should be added to the world model when the

operator is applied; and (c) its delete list, a corresponding list of

formulas to be deleted from the model upon application of the operator.

The search for a sequence of operators producing the desired world

model is guided by a means- ends analysis similar to that of GPS

(Article n.D2).

136 Search II

Abstraction Spaces

Given the world models and operator descriptions of the basic

STRIPS system, the first question is how to define the "details" that are

to be ignored in the first pass at a solution. Sacerdoti's answer was to

treat as details certain parts of the operator preconditions. At all levels

of abstraction, the world models and the add and delete lists of

operators remain exactly the same. Such a definition of "details" was

found to be strong enough to produce real improvements in problem-

solving efficiency, while keeping a desirable simplicity in the relationship

between each abstraction space and its adjacent ground space.

The preconditions for an operator are stated as a list of predica-

tions, or literals, concerning the world model to which the operator is to

be applied. The relative importance of literals is indicated by attaching

to each a number called its criticality value. The hierarchy of problem

spaces is then defined in terms of levels of criticality: In the space of

criticality n, all operator preconditions with criticality less than n are

ignored.

The assignment of criticality values is done just once for a given

definition of the problem domain. The general ideas to be reflected in

the assignment are the following:

1. If the truth value of a literal cannot be changed by any oper-

ator in the problem domain, it should have the highest criti-

cality.

2. If the preconditions for an operator include a literal L that can

be readily achieved once other preconditions for the same oper-

ator are satisfied, then L should be less critical than those other

preconditions.

3. If the possibility of satisfying literal L depends on additional

preconditions besides those referred to in (2), then L should

have high but less than maximum criticality.

The actual assignment of criticalities is done by a combination of

manual and automatic means. First, the programmer supplies a partial

ordering of all predicates that can appear in operator preconditions.

The partial ordering serves two purposes: It supplies a tentative criti-

cality value for all instances of each predicate, and it governs the order

in which the program will consider literals for possible increases (but not

decreases) in criticality.

As an example, consider an operator TURN-ON-LAMP (x), with pre-

conditions

TYPE (x, LAMP) and THERE EXISTS (r) [INROOM (ROBOT, r) and

INROON (x, r) and PLUGGED-IN (x) and MEXTTO (ROBOT, x)] .

D6 ABSTRIPS 137

The partial ordering of predicates, reflecting an intuitive view of their

relative importance, might be as follows (Fig. D6-1):

Predicate Rank

TYPE 4

INROOM 3

PLUGGED-IN 2

NEXTTO 1

Figure D6-1. Initial ranking of predicates.

The assignment algorithm, whose output is summarized in Figure

D6-2, would first find that the truth of TYPE (x, LAMP) is beyond the

power of any operator to change and therefore would set its criticality

to the maximum; in this case, 6. Then it would find that TYPE
(x, LAMP) is an insufficient basis for achieving INROOM (ROBOT, r) or

INROOM (x, r); so these two literals would have their criticality raised to

the next highest value, 5. Next, PLUGGED-IN (x) is considered, and a

plan to achieve PLUGGED-IN (x) is found using only the literals already

processed as a starting point. Hence, the PLUGGED-IN literal retains its

tentative criticality of 2, and, similarly, NEXTTO (ROBOT, x) is given

criticality 1. The result, after similar processing of the preconditions of

the other operators in the domain, is a hierarchy of at least four, and

possibly six, distinct problem spaces.

Literal Criticality Value

TYPE (x, LAMP) 6

INROOM (ROBOT, r) 5

INROOM (x, r) 5

PLUGGED-IN (x) 2

NEXTTO (ROBOT, x) 1

Figure D6-2. Final criticality of literals.

Control Structure

A problem statement for ABSTRIPS, as for STRIPS, consists of a

description of the state of the world to be achieved. A solution is a

plan, or sequence of operators, for achieving it. ABSTRIPS proceeds by

forming a crude plan at the highest level of abstraction and successively

refining it. The executive is a recursive program taking two parameters:

the current level of criticality, defining the abstraction space in which

138 Search II

planning is to take place, and a list of nodes representing the plan to

be refined. Before the initial call, criticality is set to the maximum,

and the skeleton plan is initialized to a single operator—a dummy

—

whose preconditions are precisely the goal to be achieved. ABSTRIPS
computes the difference between the preconditions and the current world

model, finds operators relevant to reducing the difference, and, if nec-

essary, pursues subgoals of satisfying the preconditions of the selected

operators. During this process, any preconditions of less than the cur-

rent criticality are ignored. A search tree is built from which, if the

process succeeds, a fuller operator sequence leading from the initial

world model to the goal can be reconstructed. This new skeleton plan,

together with the next lower criticality level, are passed recursively to

the executive for the next round of planning.

The search strategy used by ABSTRIPS can be called length-first, in

that the executive forms a complete plan for reaching the goal in each

abstraction space before considering plans in any lower level space.

This approach has the advantage that it permits early recognition of

dead ends, thus reducing the work wasted in extending the search tree

along fruitless paths involving detailed preconditions. If a subproblem in

any particular space cannot be solved, control is returned to its ab-

straction space, and the search tree is restored to its previous state in

that space. The node that caused the failure in the lower level space is

eliminated from consideration and the search is continued in the higher

level space. This mechanism, an example of backtracking, suffers from

the problem that no information is available at the higher level on what

caused the plan to fail.

Because backtracking can be inefficient and also because each oper-

ator in an abstraction space may be expanded to several operators in

the ground space, it is important for ABSTRIPS to produce good plans

at the highest level. Two modifications to STRIPS were made to try to

ensure that it would do so.

First, whereas a STRIPS search tended to be depth-first and there-

fore sometimes found nonoptimal solutions, ABSTRIPS makes the order

of expanding nodes in the search tree dependent on the level of abstrac-

tion. At the highest level it uses an evaluation function that may
increase the search effort but that ensures that the shortest possible

solution sequence will be found. (See Article n.C3b on A*.)

The second change relates to the instantiation of operator param-

eters, in cases where two or more choices seem equally good. While

STRIPS made a choice arbitrarily, ABSTRIPS defers the choice until a

greater level of detail indicates one to be preferable. Backtracking can

still take place should the choice be mistaken.

D6 ABSTRIPS 139

Performance

ABSTRIPS and STRIPS were compared on a sequence of problems.

One of the longest, needing 11 operators for its solution, required the

robot to open a door, go through the adjacent room to another room,

push two boxes together, and then go through two more doors to reach

the room where it was to stop. The basic STRIPS system required over

30 minutes of computer time to find the solution; ABSTRIPS used 5:28

minutes and generated only half the number of search-tree nodes. It

was noted that by the time ABSTRIPS reached the most detailed level,

it had in effect replaced the original large problem by a sequence of

seven easy subproblems.

References

See Sacerdoti (1974).

Chapter m

Representation of Knowledge

CHAPTER EI: REPRESENTATION OF KNOWLEDGE

A. Overview / US
B. Survey of Representation Techniques / 158

C. Representation Schemes / 160

1. Logic / 160

2. Procedural Representations / 172

S. Semantic Networks / 180

4- Production Systems / 190

5. Direct (Analogical) Representations / 200

6. Semantic Primitives / 207

7. Frames and Scripts / 216

A. OVERVIEW

Artificial Intelligence research involves building computer systems

capable of performing tasks like talking, planning, playing chess, and

analyzing molecular structure. When we talk about people who do

these things, we always talk about what they have to know in order to

do them. In other words, we describe someone's ability to behave with

intelligence in terms of his or her knowledge. Similarly, we say that a

computer program knows how to play cards, or understand spoken

English, or manipulate a robot. We ascribe knowledge to programs in

the same manner as we ascribe it to each other—based on observing

certain behavior; we say that a program knows about objects in its

domain, about events that have taken place, or about how to perform

specific tasks.

The nature of knowledge and intelligence has been pondered by

psychologists, philosophers, linguists, educators, and sociologists for

hundreds of years. Since AI research methodology involves the design of

programs that exhibit intelligent behavior, AI researchers have often

taken a rather pragmatic approach to the subject of knowledge, focusing

on improving the behavior of their programs. In AI, a representation

of knowledge is a combination of data structures and interpretive

procedures that, if used in the right way in a program, will lead to

"knowledgeable" behavior. Work on knowledge representation in AI has

involved the design of several classes of data structures for storing

information in computer programs, as well as the development of

procedures that allow "intelligent" manipulation of these data structures

to make inferences.

Keep in mind that a data structure is not knowledge, any more

than an encyclopedia is knowledge. We can say, metaphorically, that a

book is a source of knowledge, but without a reader, the book is just

ink on paper. Similarly, we often talk of the list-and-pointer data

structures in an AI database as knowledge per se, when we really mean

that they represent facts or rules when used by a certain program to

behave in a knowledgeable way. (This point is expanded in Article

m.C5.)

Techniques and theories about knowledge representation have under-

gone rapid change and development in the last five years. The articles

in this chapter try to give a general review of the different repre-

sentation schemes that researchers have thought up—what they can do

144 Knowledge Representation m

well and what they cannot do. Our understanding of these matters is

still incomplete; knowledge representation is the most active area of AI

research at the present time.

This introductory article should help guide the reader's under-

standing of the various formalisms described in the articles that follow.

After briefly discussing the kinds of knowledge that need to be rep-

resented in AI systems, we introduce some issues that will serve as a

vocabulary for talking about and comparing different representation

methods—terms like scope, understandability, and modularity. The sec-

ond article in the chapter is a brief survey of the most important

representation formalisms, intended to give an overview of the kinds of

systems we are talking about. The remaining articles describe, in more

detail, the mechanics of the various representation schemes, their

historical development, and some of the current research problems.

Knowledge

What kinds of knowledge are needed to behave knowledgeably?

What things do we know "about"? To approach these questions,

consider the following list of types of knowledge that might need to be

represented in AI systems:

Objects: Typically, we think of knowledge in terms of facts about

objects in the world around us. Birds have wings. Robins are

birds. Snow is white. So, of course, there should be some way
to represent objects, classes or categories of objects, and de-

scriptions of objects.

Events: We also know about actions and events in the world. Bob

kissed Mary behind the barn. The sky will fall tomorrow. In

addition to encoding the events themselves, a representation

formalism may need to indicate the time course of a sequence

of events and their cause-and-effect relations.

Performance: A behavior like riding a bicycle involves knowledge

beyond that of objects and events—knowledge about how to do

things, the performance of skills. Like bike riding, most cogni-

tive behaviors—for example, composing sentences and proving

theorems—involve performance knowledge, and it is often hard

to draw the line between performance knowledge and object

knowledge. (Beware: Pushing too hard on this point leads

right back to the fundamental philosophical issue of what

knowledge is!)

Meta-knowledge: We also use knowledge about what we know, called

meta-knowledge. For example, we often know about the extent

and origin of our knowledge of a particular subject, about the

A Overview 145

reliability of certain information, or about the relative impor-

tance of specific facts about the world. Meta-knowledge also

includes what we know about our own performance as cognitive

processors: our strengths, weaknesses, confusability, levels of

expertise in different domains, and feelings of progress during

problem solving. For example, Bobrow (1975) describes a robot

who is planning a trip; its knowledge that it can read the

street signs to find out where it is along the way illustrates

meta-knowledge.

The questions of whether these kinds of knowledge are distin-

guishable and whether there are also other varieties of knowledge are

interesting psychological issues. For now, however, we will ignore the

psychological aspects of the problem of knowledge. In this article we

discuss some of the features of the AI knowledge representation schemes

that make it possible, sometimes, for computer programs to exhibit

behaviors indicating these four different types of knowledge.

Using Knowledge

The most important consideration in examining and comparing

knowledge representation schemes is the eventual use of the knowledge.

The goals of AI systems can be described in terms of cognitive tasks

like recognizing objects, answering questions, and manipulating robotic

devices. But the actual use of the knowledge in these programs in-

volves three stages: (a) acquiring more knowledge, (b) retrieving facts

from the knowledge base relevant to the problem at hand, and (c)

reasoning about these facts in search of a solution.

Acquisition. We usually think of learning as the accumulation of

knowledge, but it involves more than the addition of new facts to our

brains. Indeed, knowledge acquisition involves relating something new to

what we already know in a psychologically complex way; see, for

example, Piaget's theory of human adaptation by assimilation and

accommodation (Flavell, 1977, pp. 6-11). AI systems often classify a

new data structure before it is added to the database, so that it can be

retrieved later when it is relevant. Also, in many kinds of systems, new

structures can interact with old, sometimes resulting in interference with

tasks that had previously been performed properly. Finally, some

representation schemes are concerned with acquiring knowledge in a form

that is natural to humans, who serve as the source of new knowledge

(see Article vn.B, in Vol. n). If these integrative processes did not take

place during acquisition, the system would accumulate new facts or data

structures without really improving its knowledgeable behavior.

146 Knowledge Representation HI

Retrieval. Determining what knowledge is relevant to a given

problem becomes crucial when the system "knows" many different

things. Humans are incredibly proficient at this task, and many
representation schemes that have been directly concerned with this issue

have been based on ideas about human memory (see Articles m.C3 and

m.C7, and Chap. XI, in Vol. m, on the use of AI methods in building

psychological models). The fundamental ideas about retrieval that have

been developed in AI systems might be termed linking and lumping: If

it is known that one data structure is going to entail another in an

expected reasoning task, an explicit link is put in between the two; if

several data structures are typically going to be used together, they are

grouped into a larger structure.

Reasoning. When the system is required to do something that it

has not been explicitly told how to do, it must reason—it must figure

out what it needs to know from what it already knows. For instance,

suppose an information retrieval program "knows" only that Robins are

birds and that All birds have wings. Keep in mind that for a system to

know these facts means only that it contains data structures and

procedures that would allow it to answer the questions:

Are Robins birds? Yes

Do a I I birds have wings? Yes

If we then ask it, Do robins have wings? the program must reason to

answer the query. In problems of any complexity, the ability to do this

becomes increasingly important. The system must be able to deduce

and verify a multitude of new facts beyond those it has been told ex-

plicitly.

For a given knowledge representation scheme, we must ask, "What

kind of reasoning is possible, easy, natural, and so on, in this formal-

ism?" There are many different kinds of reasoning one might imagine:

Formal reasoning involves the syntactic manipulation of data

structures to deduce new ones following prespecified rules of

inference. Mathematical logic is the archetypical formal repre-

sentation (see Article m\Cl).

Procedural reasoning uses simulation to answer questions and solve

problems. When we use a program to answer What is the sum

of S and 4? & uses, or "runs," a procedural model of arithmetic

(Article m.C2).

Reasoning by analogy seems to be a very natural mode of thought

for humans but, so far, difficult to accomplish in AI programs.

The idea is that when you ask the question Can robins fly? the

system might reason that "robins are like sparrows, and I know
that sparrows can fly, so robins probably can fly."

A Overview 147

Generalization and abstraction are also natural reasoning processes for

humans that are difficult to pin down well enough to imple-

ment in a program. If one knows that Robins have wings, that

Sparrows have wings, and that Blue jays have wings, eventually one

will believe that All birds have wings. This capability may be at

the core of most human learning, but it has not yet become a

useful technique in AI (however, see Chaps. XI and XV, in

Vol. m, for current research).

Meta-level reasoning is demonstrated by the way one answers the

question What is Paul Newman's telephone number? You might

reason that "if I knew Paul Newman's number, I would know
that I knew it, because it is a notable fact." This involves

using "knowledge about what you know," in particular, about

the extent of your knowledge and about the importance of

certain facts. Recent research in psychology and AI indicates

that meta-level reasoning may play a central role in human
cognitive processing (Gentner and Collins, in press; Flavell,

1979); some work on implementing this kind of inference

mechanism in AI systems has begun (Davis, in press; Bobrow

and Winograd, 1977b; Brachman, 1978).

Two things need to be said about the uses of knowledge described

here. First, they are interrelated: When acquiring new knowledge, the

system must be concerned with how that knowledge will be retrieved

and used later in reasoning. Second, for most AI research, efficacy is

the primary consideration in designing knowledge-based AI systems.

Although there is serious concern among AI researchers about the

psychological validity of the various representation schemes, it is not yet

possible to prove that one scheme captures some aspect of human
memory better than another. There is no theory of knowledge rep-

resentation. We don't yet know why some schemes are good for certain

tasks and others not. But each scheme has been successfully used in a

variety of programs that do exhibit intelligent behavior.

We will now discuss some of the characteristics of representation

schemes that have been used to describe and compare different for-

malisms.

Scope and Grain Size

What portion of the external world can be represented in a system?

In what detail are objects and events represented? And how much of

this detail is actually needed by the reasoning mechanisms? Questions

like these, concerning the scope and grain size of a representation

scheme, can help determine the suitability of a given formalism for the

solution of a particular problem, but they are not easy to answer.

148 Knowledge Representation HI

For one thing, of course, the answers depend totally on the partic-

ular application intended. A knowledge representation based on logic, for

instance, might be an extremely fine-grain representation in a mathe-

matical reasoning program but might result in a coarse simplification for

a vision program. Exactly how much detail is needed depends on the

performance desired (see McCarthy and Hayes, 1969). In general,

uniformity of detail across the objects and events seems desirable for a

given reasoning task (Bobrow, 1975).

If one asks, "Can everything that the system must know be

represented in the formalism?" the answer is almost always, "Yes, but

some things are more easily represented than others." Getting a feeling

for what it means to be "represented more easily"—which involves the

representation, the domain, and the reasoning strategies—is, at present,

part of the art of doing AI research; there is no formal metric for the

appropriateness of a representation scheme. Bobrow refers to the pro-

cess of mapping the objects and events in the world into some internal

encoding; then one can ask if the mapping in a given situation is easy,

natural, psychologically valid, and the like.

Indeterminacy and Semantic Primitives

In any representation formalism—logic, semantic nets, procedures,

and so forth—the choice of the primitive attributes of the domain that

are used to build up facts in the database strongly affects the expressive

power of the knowledge representation scheme. One particular problem

affected by the choice of semantic primitives is the multiplicity of ways

in which a particular fact or event might be encoded. For instance, the

fact that robins have wings could be represented in either of the sample

semantic nets below (see Article m.C3):

BIRD WIMGS

subset

has—part partr-of

WINGS

ROBINS ROBINS

The first is interpreted as All robins are birds, and all birds have wings,

while the second states directly that Wings are a part of all robins.

Although this inherent indeterminacy might be used to great advantage,

allowing redundant storage of information with an eye to future rele-

vance, for example, it generally gives rise to confusion and expense,

A Overview 149

since the system doesn't know exactly what structures to look for when

it comes time to retrieve a given fact.

One particular task in which the problem of nonspecificity of

representation was critical was the paraphrase task popular in natural

language understanding research (see Chap. rv). Problems encountered

in trying to build programs that could rephrase an input sentence, check

whether two sentences have the same meaning, or translate a sentence

from one language into another led researchers like Norman and

Rumelhart (1975), Schank and Abelson (1977), and Wilks (1977b) to try

using canonical internal representations based on semantic primitives.

Thus, in Schank's MARGIE system and Wilks's machine translation sys-

tem, all representation structures are built from a set of primitives in

such a way that two structures that mean the same thing reduce to the

same network of primitive nodes (see Articles IV.F2 and IV.F5). The

selection of primitive elements for the expression of knowledge in a

given domain is a basic problem in all representation schemes, whether

the primitives are represented as nodes in a semantic net, predicates in

logic formulas, or slots in a frame. (The status of semantic primitives

in knowledge representation research is discussed in Article m.C6.)

Modularity and Understandability

If one thinks of the data structures in a program as pieces of

knowledge, then adding new data structures is like adding knowledge to

the system. One characteristic that is often used to compare represen-

tation schemes is modularity, which refers to the ability to add, modify,

or delete individual data structures more or less independently of the

remainder of the database, that is, with clearly circumscribed effects on

what the system "knows."

In general, humans find modular or decomposable systems easier to

understand and work with (Simon, 1969). To illustrate the difficulty

encountered in nonmodular systems, consider the complicated inter-

dependence of procedures in a large computer program such as an

operating system. The following situation will be familiar to readers

who have helped write and maintain large programs: A large system is

composed of many procedures that call each other in a complex way

that becomes increasingly hard to follow as the system grows. Often

modification of procedure X, so that it will work properly when called

by procedure A, interferes with the proper functioning of X when it is

called by procedure B. In other words, in order to modify a large

system successfully, the programmer must understand the interactions of

all of its pieces, which can become an impossibly difficult task.

150 Knowledge Representation EI

In general terms, the problem with nonmodular systems is that the

meaning of data structures in the knowledge base depends on the con-

text in which the knowledge is being used. (Computer programs them-

selves illustrate a notoriously nonmodular representation scheme called

procedural representation—see Article m.C2.) Context dependence, in

turn, dramatically affects the modifiability of the knowledge base; modi-

fication is much easier if the meaning of a fact can be specified when

the fact is entered or removed, independent of the rest of the system.

On the other hand, some human knowledge seems inherently non-

modular and is very difficult for people to express as independent rules

or facts. Winograd (1974) made the generalization that in modular

systems the facts are easy to recognize but the reasoning process may
be quite opaque, and the opposite is often true in procedural repre-

sentations. The degree to which the system is understandable by humans

is important in several phases of its development and performance:

design and implementation, acquisition of knowledge from human ex-

perts, performance of the task, and interaction with and explanations for

the eventual user.

In some representation schemes the data structures (e.g., production

rules, logic formulas) seem less inherently intertwined, but the control of

the interaction of the various database entries is a very important char-

acteristic of all representation schemes. Winograd (1975) suggests that

no system is completely modular—in all systems there is some degree of

interaction between the data structures that form the knowledge base

—

but some formalisms are more inherently modular than others.

Explicit Knowledge and Flexibility

Another issue to keep in mind when examining various repre-

sentation schemes is what part of the system's knowledge is explicit. By

this we mean, to what knowledge do the programmer and the system

have direct, manipulatory access, and what knowledge is built-in? For

example, an operating system has an explicit representation of its

priority queues, but its full knowledge about scheduling jobs (deciding

which of several users to serve first) is typically hidden deep in

voluminous code. The knowledge is there, of course, since the system

behaves in a knowledgeable way, but it is implicit in the system's

program (Winograd, 1980b, p. 228).

One particular advantage of explicit representation schemes is that,

because the facts are in a form that allows a global interpretation, the

same fact can be used for multiple purposes. In some large systems

this feature has been a significant advantage. For example, in MYCIN

A Overview 151

(see Article vm.Bi, in Vol. n), the production rules that form the

system's knowledge about how to diagnose the possible causes of

infectious diseases are used not only by the diagnosis module itself, but

also by the routines that explain the diagnosis module's reasoning to the

consulting physician and that acquire new rules from expert physicians

(Davis and Buchanan, 1977).

Declarative versus Procedural Representations

On a closely related subject, the dispute about the relative merits of

declarative versus procedural knowledge representations is a historically

important battle from which much of current representation theory was

painfully developed (Winograd, 1975). Many of the issues discussed in

this article were identified during the declarative-procedural debate. The

declarative systems were typified by resolution-based theorem provers

(see Article m.Ci on logic and Chap, xn, in Vol. m) and the procedural

systems by Winograd's PLANNER-based SHRDLU (Article IV.F4). The

Declarativists talked about the flexibility and economy of their repre-

sentation schemes, about their completeness and the certainty of the de-

ductions, and about the modifiability of the systems. The Proceduralists

stressed the directness of the line of inference (using domain-specific

heuristics to avoid irrelevant or unnatural lines of reasoning) and the

ease of coding and understandability of the reasoning process itself.

Although in retrospect these positions seem somewhat arbitrarily

chosen over the space of possible features of representation schemes, the

declarative-procedural battle was an important one in AI. It dissolved,

rather than being resolved, and the result was a much greater respect

for the importance of knowledge representation in current AI work.

Final Remarks

This article has not been about representation formalisms per se, but

rather about the pragmatics of epistemology, the study of the nature of

knowledge. The intention has been to lay the groundwork for an appre-

ciation of the problems inherent in representing knowledge in AI

programs. The discussion may also guide a critical comparison of the

representation methods described in the articles to follow.

There are many open questions, indeed serious problems, in knowl-

edge representation research. For example, quantification, the ability to

specify properties of arbitrarily defined sets, is an area of active

theoretical research. Other current problems include how to represent

people's beliefs (which may or may not be true), degrees of certainty,

mass nouns, time and tense information, and processes that consist of

sequenced actions taking place over time.

152 Knowledge Representation EI

The following article is a quick summary of the knowledge

representation schemes used in AI. The articles in Section m.C go into

substantial detail about individual representation schemes, discussing

their development, their technical features, their use in AI systems, and

their shortcomings.

References

The best recent review of knowledge representation research in AI is

Winograd (in press). Earlier excellent discussions include the papers in

Bobrow and Collins (1975), especially Bobrow (1975) and Winograd

(1975). Other recent general discussions of knowledge representation are

found in Boden (1977) and Findler (1979). Brachman and Smith (1980)

report on a survey of knowledge representation researchers, showing the

wide diversity of goals and approaches among workers in the field.

B. SURVEY OF REPRESENTATION TECHNIQUES

As stated in the preceding article, AI research deals in experimental

epistemology; to create programs that exhibit intelligent behavior,

researchers in AI develop schemes for incorporating knowledge about the

world into their programs. These knowledge representation techniques

involve routines for manipulating specialized data structures to make

intelligent inferences. Although some aspects of each knowledge rep-

resentation technique are incidental and will seem unmotivated, in its

way each scheme touches on concerns central to the study of cognition

and intelligence.

This survey article presents sketches of the representation schemes

that have been used in AI programs that play chess, converse in

English, operate robots, and so forth. Seeing simple examples of the

major techniques will perhaps help the reader get a clearer idea of what

a knowledge representation is. Most of this research assumes that what

needs to be represented is known, a priori; the AI researcher's job is

just figuring out how to encode the information in the system's data

structures and procedures.

State-space Search

Perhaps the earliest representation formalism used extensively in AI

programs was the state-space representation, developed for problem-

solving and game-playing programs. The search space is not a rep-

resentation of knowledge, per se: What it represents is the structure of

a problem in terms of the alternatives available at each possible state of

the problem, for example, the alternative moves available on each turn

of a game. The basic idea is that from a given state in a problem, all

possible next states can be determined with a small set of rules, called

transition operators (or legal-move generators in game-playing programs).

For example, in a chess game, the original state is the board position at

the beginning of the game. The legal-move generators correspond to the

rules for moving each piece. So all of the next states of the game (i.e.,

the board configurations after each of White's possible first moves) can

be generated by applying the move generators to the original positions

of the pieces. Similarly, all of the possible states after Black's first

response can be generated.

One rather straightforward way to find the winning move is to try

all of the alternative moves, then try all of the opponent's responses to

154 Knowledge Representation Et

these moves, and then try all of the possible responses to those, until

all of the possible continuations of the game have been exhausted and it

is clear which was optimal. The problem with this solution is that, for

interesting problems like chess, there are far too many possible

combinations of moves to try in a reasonable amount of time on a

machine of conceivable computational power. This problem, called the

combinatorial explosion, is an important general difficulty for AI systems

in all applications (see Chap. n).

The solution adopted in AI research is to limit the number of

alternatives searched at each stage of the look-ahead process to the best

possibilities. And in order to determine which alternatives are best,

programs must reason from large amounts knowledge about the world,

encoded within the program in some knowledge representation. What-

ever domain the systems deal with, chess or organic chemistry or pizza

parlor scenarios, the goal of research in knowledge representation is to

allow AI programs to behave as if they knew something about the

problems they solve.

Logic

The classical approach to representing the knowledge about the

world contained in sentences like

All birds have wings.

is formal logic, developed by philosophers and mathematicians as a

calculus of the process of making inferences from facts. The example

about birds' wings would be translated into the mathematical formula

V x. Bird (x) — HasWings (x)
,

which reads, For any object x in the world, if x is a bird, then x has

wings. The advantage of formal representation is that there is a set of

rules, called the rules of inference in logic, by which facts that are

known to be true can be used to derive other facts that must also be

true. Furthermore, the truth of any new statement can be checked, in

a well-specified manner, against the facts that are already known to be

true.

For example, suppose we add another fact to our database,

V x. Robin (x) — Bird (x)
,

which reads, For any object x in the world, if x is a Robin, then x is a

Bird. Then from these two facts, we can conclude, using the rules of

inference, that the following fact must be true:

V x. Robin (x) — HasWings (x)
;

B Survey of Representation Techniques 155

that is, that All robins have wings. Note that there is a specific rule of

inference that allows this deduction based on the superficial structure, or

syntax, of the first two formulas, independent of whether they dealt

with birds or battleships, and that new facts derived through application

of the rules of inference are always true so long as the original facts

were true.

The most important feature of logic and related formal systems is

that deductions are guaranteed correct to an extent that other rep-

resentation schemes have not yet reached. The semantic entailment of a

set of logic statements (i.e., the set of inferences or conclusions that can

be drawn from those statements) is completely specified by the rules of

inference. Theoretically, the database can be kept logically consistent

and all conclusions can be guaranteed correct. Other representation

schemes are still striving for such a definition and guarantee of logical

consistency.

One reason that logic-based representations have been so popular in

AI research is that the derivation of new facts from old can be mech-

anized. Using automated versions of theorem proving techniques,

programs have been written to determine automatically the validity of a

new statement in a logic database by attempting to prove it from the

existing statements (see Chap, xn, in Vol. m). Although mechanistic

theorem provers of this sort have been used with some success in

programs with relatively small databases (Green, 1969), when the

number of facts becomes large, there is a combinatorial explosion in the

possibilities of which rules to apply to which facts at each step of the

proof. More knowledge about what facts are relevant to what situations

is needed, and, again, incorporating additional knowledge is the goal of

continuing work in representation theory.

Procedural Representation

The idea of procedural representation of knowledge first appeared

as an attempt to encode some explicit control of the theorem-proving

process within a logic-based system. (This refers to research on the

PLANNER programming language; see Article VI.C2, in Vol. n.) In a

procedural representation, knowledge about the world is contained in

procedures—small programs that know how to do specific things, how to

proceed in well-specified situations. For instance, in a parser for a

natural language understanding system, the knowledge that a noun

phrase may contain articles, adjectives, and nouns is represented in the

program by calls (within the NP procedure) to routines that know how

to process articles, nouns, and adjectives.

156 Knowledge Representation m

The underlying knowledge, the permissible grammar for a noun

phrase in our example, is not stated explicitly and thus is not typically

extractable in a form that humans can easily understand. The conse-

quent difficulty that humans have in verifying and changing procedural

representations is the major flaw of these systems. Nevertheless, all AI

systems use a procedural representation at some level of their opera-

tion, and general consensus gives a legitimate role for procedural

representation in AI programs (Winograd, 1975). The advantages and

disadvantages of procedural knowledge representation are discussed fully

in Article m.C2. Recent work has emphasized procedural attachment in

frame-based systems (Article m.C7).

Semantic Nets

The semantic net, developed by Quillian (1968) and others, was

invented as an explicitly psychological model of human associative mem-
ory. A net consists of nodes, representing objects, concepts, and events,

and links between the nodes, representing their interrelations. Consider,

for example, the simple net:

BIRD

has—part

WINGS

where BIRD and WINGS are nodes representing sets or concepts and

HAS-PART is the name of the link specifying their relationship. Among
the many possible interpretations of this net fragment is the statement

All birds have wings.

As illustrated earlier, statements of this sort also have a natural

representation in logic-based representation systems. One key feature of

the semantic net representation is that important associations can be

made explicitly and succinctly: Relevant facts about an object or con-

cept can be inferred from the nodes to which they are directly linked,

without a search through a large database.

The ability to point directly to relevant facts is particularly salient

with respect to ISA and SUBSET links, which establish a property in-

heritance hierarchy in the net. For example, the net segment

B Survey of Representation Techniques 157

BIRD

has—part

WINGS

subset

ROBIN!

might be interpreted to mean that since robins are birds, and birds

have wings, then robins have wings. The interpretation (semantics) of

net structures, however, depends solely on the program that manipulates

them; there are no conventions about their meaning. Therefore, in-

ferences drawn by manipulation of the net are not assuredly valid, in

the sense that they are assured to be valid in a logic-based represen-

tation scheme.

Production Systems

Production systems, developed by Newell and Simon (1972) for their

models of human cognition (see Chap. XI, in Vol. m), are a modular

knowledge representation scheme that is finding increasing popularity in

large AI programs. The basic idea of these systems is that the data-

base consists of rules, called productions, in the form of condition-action

pairs: "If this condition occurs, then do this action." For example,

IF stoplight is red AND you have stopped THEN right turn OK.

The utility of the formalism comes from the fact that the conditions in

which each rule is applicable are made explicit and, in theory at least,

the interactions between rules are minimized (one rule doesn't "call"

another).

Production systems have been found useful as a mechanism for

controlling the interaction between statements of declarative and pro-

cedural knowledge. Because they facilitate human understanding and

modification of systems with large amounts of knowledge, productions

have been used in several recent large applications systems like

DENDRAL, MYCIN, PROSPECTOR, and AM (see Chap, vn, in Vol. n).

Current work on production systems has emphasized the control aspects

of the formalism and the ability to develop self-modifying (learning)

systems.

158 Knowledge Representation m

Special-purpose Representation Techniques

Some of the domains that AI researchers work in seem to suggest

natural representations for the knowledge required to solve problems.

For example, a visual scene from a robot's camera is often encoded as

an array representing a grid over the scene: The values of the elements

of the array represent the average brightness over the corresponding

area of the scene (see Chap, xm, in Vol. m). This direct representation

is useful for some tasks, like finding the boundaries of the objects in the

scene, but is clumsy for other tasks, like counting the number of ob-

jects. In the latter case, a list—each element of which represents one

object indicating its location, orientation, and size—might be a more

useful representation. (See the discussion in Bobrow, 1975.)

This example illustrates a very important principle to realize when

comparing representation techniques. In some sense, these two (and all

other) knowledge representation methods are interchangeable: If we know

one representation in enough detail, we could for the most part

construct the other one. It is the intended use of the knowledge about

the scene that recommends one representation scheme over another. In

a big AI system, like the speech understanding programs, multiple rep-

resentations of the same information may be used simultaneously for

different purposes.

Other special-purpose representation schemes of particular interest

are those used in the early natural language understanding programs,

like SAD-SAM and SIR (see Article IV.Fi), and the discrimination net

used in the EPAM program (Article XI.D, in Vol. m).

Frames

The most recently developed AI knowledge-representation scheme is

the frame, still in its early development stage. Researchers have dif-

ferent ideas about exactly what a frame is, but basically, a frame is a

data structure that includes declarative and procedural information in

predefined internal relations. Thus, a generic frame for a dog might

have knowledge hooks, or slots, for facts that are typically known about

dogs, like the BREED, OWNER, NAME, and an "attached procedure" for

finding out who the owner is if that is not known. In the frame-like

language KRL (Bobrow and Winograd, 1977b), a dog-frame might look

like this:

B Survey of Representation Techniques 159

Generi c DOG Fiame

Se 1 f

:

an AMIMAL

Breed

Owner a PERSON

a PET

(If-Needed : find a PERSON with pet=myself)

Name: a PROPER NAME (DEFAULT=Rover)

DOG-NEXT-DOOR Frame

Self: a DOG

Breed: mutt

Owner: Jimmy

Name: Fido

The semantics of this example, as well as the ideas being developed in

frame-based formalisms, is discussed in Article m.C7.

An interesting, much discussed feature of frame-based processing is

the ability of a frame to determine whether it is applicable in a given

situation. The idea is that a likely frame is selected to aid in the pro-

cess of understanding the current situation (dialogue, scene, problem)

and this frame in turn tries to match itself to the data it discovers. If

it finds that it is not applicable, it could transfer control to a more

appropriate frame (Minsky, 1975). Although many issues about the

possible implementations of frame-based systems are unresolved, and

others may not have surfaced yet, the basic idea of frame-like struc-

turing of knowledge appears promising.

Conclusion

This brief summary of knowledge representation indicates the variety

of techniques being used in AI projects. The remaining articles in this

chapter go into most of these schemes in greater detail. Many re-

searchers feel that the representation of knowledge is the key issue at

this point in the development of AI. Knowledge representation is also

one area in which AI and cognitive psychology share fundamental

concerns, for the brain's operation is sometimes best described by one

representation formalism, sometimes by another, and sometimes not very

well by any we have thought up. The interested reader should peruse

Chapter XI, in Volume m.

References

The best current survey of knowledge representation in AI is in

Winograd (in press). References on each of the schemes are given after

the corresponding article in the following.

C. REPRESENTATION SCHEMES

CI. Logic

Philosophers have been grappling with the nature of reasoning and

knowledge since the time of the ancient Greeks. This tradition, for-

malized in the last half of the 19th century with the work of Boole,

Frege, and Russell and expanded and amplified in the current century

by philosophers like Quine, Carnap, and Tarski, is an important part of

Western intellectual history and has developed into the philosophical and

mathematical study of logic.

This article is about logic—about how the formal treatment of

knowledge and thought, as developed in philosophy, has been applied to

the development of computer programs that can reason. The first two

sections of the article, dealing with the propositional and predicate

calculi, are an introduction to formal logic. This particular introduction

has been written with the AI applications of logic in mind. It is fol-

lowed by an illustration of the way that a simple problem, the famous

Tower of Hanoi puzzle, might be formalized in the predicate calculus.

Then, after a survey of some of the important AI systems that have

used logic for a representation, we discuss the advantages and problems

of this representational formalism in AI.

The Propositional Calculus

Logic, which was one of the first representation schemes used in AI,

has two important and interlocking branches. The first is consideration

of what can be said—what relations and implications one can formalize,

the axioms of a system. The second is the deductive structure—the

rules of inference that determine what can be inferred if certain axioms

are taken to be true. Logic is quite literally a formal endeavor: It is

concerned with the form, or syntax, of statements and with the deter-

mination of truth by syntactic manipulation of formulas. The expressive

power of a logic-based representational system results from building. One

starts with a simple notion (like that of truth and falsehood) and, by

inclusion of additional notions (like conjunction and predication),

develops a more expressive logic—one in which more subtle ideas can be

represented.

CI Logic 161

The most fundamental notion in logic is that of truth. A properly

formed statement, or proposition, has one of two different possible truth

values, TRUE or FALSE. Typical propositions are Bob's car is blue,

Seven plus six equals twelve, and John is Mary's uncle. Note that each

of the sentences is a proposition, not to be broken down into its

constituent parts. Thus, we could assign the truth value TRUE to the

proposition John is Mary's uncle, with no regard for the meaning of

John is Mary's uncle, that is, that John is the brother of one of Mary's

parents. Propositions are those things that we can call true or false.

Terms such as Mary's uncle and seven plus four would not be propo-

sitions, as we cannot assign a truth value to them.

Pure, disjoint propositions aren't very interesting. Many more of the

things we say and think about can be represented in propositions that

use sentential connectives to combine simple propositions. There are five

commonly employed connectives:

&

D

The use of the sentential connectives in the syntax of propositions

brings us to the simplest logic, the propositional calculus, in which we

can express statements like The book is on the table or it is on the

chair and If Socrates is a man, then he is mortal. In fact, the meanings

of the sentential connectives are intended to keep their natural inter-

pretations, so that if X and Y are any two propositions,

X A Y is TRUE if X is TRUE and Y is TRUE; otherwise X A Y
is FALSE.

X V Y is TRUE if either X is TRUE or Y is TRUE or both.

-iX is TRUE if X is FALSE, and FALSE if X is TRUE.

X — Y is meant to be the propositional calculus rendition of the

notion If we assume that X is true, then Y must be so; that

is, the truth of X implies that Y is true. We use this

concept in everyday speech with statements like If Jenny

is nine months old, then she can't do calculus. The truth

value of X — Y is defined to be TRUE if Y is TRUE or

X is FALSE.

X = Y is TRUE if both X and Y are TRUE, or both X and Y
are FALSE; X = Y is FALSE if X and Y have different

truth values.

And A or

Or V
Mot —

i

Impl i es -> or

Equ i va 1 en t =

162 Knowledge Representation HI

The following table, a compressed truth table, summarizes these defini-

tions.

X Y XAY XVY X—>Y -iX X=Y

T T T T T F T

T F F T F F F

F T F T T T F

F F F F T T T

From syntactic combinations of variables and connectives, we can

build sentences of propositional logic, just like the expressions of mathe-

matics. Parentheses are used here just as in ordinary algebra. Typical

sentences are:

(1) (X - (Y A Z)) = ((X - Y) A (X - Z))

(2) -.(XV Y) = -1(1y A -JT)

(3) (XAY) V (i'yA Z)

Sentence 1 is a tautology; it states, "Saying X implies Y and Z is the

same as saying that X implies Y and X implies Z." This is a tautology

because it is true no matter what propositions are substituted for the

sentential constants X, Y, and Z. Sentence 2 is a fallacy or contra-

diction. No matter what assignment of values is used, the sentence is

always false. (It states, "Saying X or Y is false is the same as saying

that 'X is false and Y is false' is false.") Sentence 3 is neither a

tautology nor a fallacy. Its truth value depends on what propositions

are substituted for X, Y, and Z.

In the propositional calculus, we also encounter the first rules of

inference. An inference rule allows the deduction of a new sentence

from previously given sentences. The power of logic lies in the fact

that the new sentence is assured to be true if the original sentences

were true. The best known inference rule is modus ponens. It states

that if we know that two sentences of the form X and X — Y are

true, then we can infer that the sentence Y is true. For example, if we

know that the sentence John is an uncle is true and we also know that

If John is an uncle, then John is male is true, then we can conclude

that John is male is true. More formally, the modus ponens rule would

be expressed as:

(x a (x - y)) - y

.

CI Logic 163

Note that if we think of X and X — Y as two entries in a database,

the modus ponens rule allows us to replace them with the single

statement, Y, thus eliminating one occurrence of the connective "—." In

what are called natural deduction systems of logic, there are typically

two rules of inference for each connective, one that introduces it into

expressions and one that eliminates it. Modus ponens is therefore called

the "—"- elimination rule.

The Predicate Calculus

For the purposes of AI, propositional logic is not very useful. In

order to capture adequately in a formalism our knowledge of the world,

we need not only to be able to express true or false propositions, but

also to be able to speak of objects, to postulate relationships between

these objects, and to generalize these relationships over classes of ob-

jects. We turn to the predicate calculus to accomplish these objectives.

The predicate calculus is an extension of the notions of the prop-

ositional calculus. The meanings of the connectives (A, V, —, ~>, and

=) are retained, but the focus of the logic is changed. Instead of

looking at sentences that are of interest merely for their truth value,

predicate calculus is used to represent statements about specific objects,

or individuals. Examples of individuals are you, this sheet of paper, the

number 1, the queen of hearts, Socrates, and that coke can.

Predicates. Statements about individuals, both by themselves and in

relation to other individuals, are called predicates. A predicate is applied

to a specific number of arguments and has a value of either TRUE or

FALSE when individuals are used as the arguments. An example of a

predicate of one argument is the predicate is-red. Of the individuals

mentioned in the previous paragraph, the predicate is-red has the value

TRUE when applied to the individuals the queen of hearts and that coke

can and FALSE when the individual this paper is used as the argument.

Other examples of predicates are less-than-zero, Greek, mortal, and

made- of-paper.

Predicates can have more than one argument. An example of a

two-place predicate from mathematics is is-greater-than, for example, is-

greater-than (7, 4). Physical objects could be compared by the two-place

predicate is-lighter-than. A three-place predicate from geometry might

be Pythagorean, which takes three line-segments as arguments and is

TRUE whenever two are the sides of a right triangle with the third as

its hypotenuse. One very important two-place predicate is equals.

Each one-place predicate defines what is called a set or sort. That

is, for any one-place predicate P, all individuals X can be sorted into

164 Knowledge Representation Et

two disjoint groups, with those objects that satisfy P (for which P(X)

is TRUE) forming one group and those that don't satisfy P in the

other. Some sorts include other sorts; for example, all men are animals,

and all knaves are playing-cards.

Quantifiers. We shall often have occasion to refer to facts that we
know to be true of all or some of the members of a sort. For this, we

introduce two new notions, those of variable and quantifier. A variable

is a place holder, one that is to be filled in by some constant, as X has

been used in this article. There are two quantifiers, V, meaning for

all . . ., and 3, meaning there exists . . . The English-language sen-

tence All men are mortal is thus expressed in predicate calculus, using

the variable X
;
as

VX Man (X) -> Mortal (X)
,

which is loosely rendered, "For all individuals X, if X is a man (i.e.,

Man (X) is true), then X is mortal." The English sentence There is a

playing card that is red and is a knave becomes the predicate calculus

statement

3 X Playing-card (X) A Knave (X) A Is-red (X) .

More complicated expressions, or well-formed formulas (WFFs), are cre-

ated with syntactically allowed combinations of the connectives, predi-

cates, constants, variables, and quantifiers.

Inference rules for quantifiers. In a typical natural deduction sys-

tem, use of the quantifiers implies the introduction of four more infer-

ence rules, one for the introduction and elimination of each of the two

quantifiers. For example, the V-elimination, or universal specialization,

rule states that, for any well-formed expression # that mentions a vari-

able X, if we have

V X <£(X)
,

we can conclude

for any individual A. In other words, if we know, for example,

V X Man (X) -> Mortal (X)
,

we can apply this to the individual Socrates, using the V-elimination

rule, to get:

CI Logic 165

Man (Socrates) — Mortal (Socrates).

The rules of the propositional calculus, extended by predicates, quanti-

fication, and the inference rules for quantifiers, result in the predicate

calculus.

First-order logic. Predicate calculus, as we've described it, is very

general, and often quite clumsy. Two other additions to the logic will

make some things easier to say, without really extending the range of

what can be expressed. The first of these is the the notion of oper-

ators, or functions. Functions, like predicates, have a fixed number of

arguments; but functions are different from predicates in that they do

not just have the values TRUE or FALSE, but they "return" objects

related to their arguments. For example, the function uncle- of when

applied to the individual Mary would return the value John. Other

examples of functions are absolute-value, plus, and left-arm-of Each of

the arguments of a function can be a variable, a constant, or a function

(with its arguments). Functions can, of course, be combined; we can

speak of the father-of (father-of (John)), who would, of course, be John's

paternal grandfather.

The second important addition is that of the predicate equals. Two
individuals X and Y are equal if and only if they are indistinguishable

under all predicates and functions. More formally, X = Y if and only

if, for all predicates P, P(X) = P{Y), and also for all functions F,

F(X) = F(Y). What we arrive at with these additions is no longer

pure predicate calculus; it is a variety of first-order logic. (A logic is of

first order if it permits quantification over individuals but not over pred-

icates and functions. For example, a statement like All predicates have

only one argument cannot be expressed in a first-order theory.) First-

order logic is both sound (it is impossible to prove a false statement)

and complete (any true statement has a proof). The utility of these

properties in AI systems will be discussed after we present the

axiomatization of a sample problem, that is, its formal expression in

sentences of first-order logic.

A Sample Axiomatic System

So far, we have sketched the language of logic, its parts of speech,

and its grammar. We have not talked about how to express a problem

to be solved in this language. Deciding how to express the notions he

or she needs is up to the user of logic, just as a programmer must

construct programs from the elements presented in the programming

language manual. However, a good programming manual ought to pre-

sent sample programs; we present a sample axiomatization of the famous

166 Knowledge Representation m

Tower of Hanoi problem (see Article n.B2). One common version of this

puzzle involves three pegs— 1, 2, and 3—and three disks of graduated

sizes

—

A, B, and C. Initially the disks are stacked on peg 1, with A,

the smallest, on top and C, the largest, at the bottom. The problem is

to transfer the stack to peg 3, as in Figure Cl-1, given that (a) only

one disk can be moved at a time, and it must be free, that is, have no

other disks on top of it, and (b) no disk may ever be placed on top of

a smaller disk.

Initial State Goa I State

A -
B —
C

peg 1 peg 2 peg 3

- A

- B

C

peg 1 peg 2 peg 3

Figure Cl-1. The Tower of Hanoi puzzle.

The expression and solution of problems in logic have several parts.

We must first specify the vocabulary of our domain—what the variables,

constants, predicates, and functions are. Second, we define axioms—
expressions that we assert state the necessary relationships between the

objects needed to model our domain.

Obvious objects (constants) for this axiomatization are the disks, A,

B, and C, and the pegs, 1, 2, and 3; obvious predicates are the sorts,

DISK and PEG. DISK (A) is TRUE, since A is a disk; PEG(C) is

FALSE.

We need also to be able to compare disk size; for that, we have a

binary predicate, SMALLER. We define SMALLER (A, B) to be TRUE if

and only if disk A is smaller than disk B. If we have variables X, Y,

and Z denoting disks, we can have our first axiom express the tran-

sitivity of SMALLER:

VI7Z. (SMALLER (X, Y) A SMALLER
(
Y, Z))

-> SMALLER (X, Z)

.

In other words, // disk X is smaller than Y, and Y is smaller than Z,

then X is smaller than Z. The given size relationships between the

disks are stated by the premise

SMALLER {A,B) A SMALLER (B, C) .

Note that by using the preceding two expressions, we can establish, or

prove, SMALLER (A, C).

We need to be able to talk about the status of our problem solving

CI Logic 167

as we work through a solution and to be able to compare the status

after a series of moves. A common strategy to deal with this difficulty

is that of introducing a situational constant. A situation is a "snap-

shot" of where things are at any given point. Thus, in the Tower of

Hanoi problem, we might have disk C under disk A at some point

called, say, situation SIT12.

The vertical relationships of the disks and the pegs are, after all,

the primary predicate of this problem. Hence, we need a three-place

predicate ON (X, Y, S), which asserts that disk X is on disk (or peg) Y
in situation S. The axiomatization of the fact that a disk is free (i.e.,

has no other disk on it) in a situation S becomes:

V X S. FREE (X, S) = -3 Y. (ON (Y, X, S))
,

which is read, "For all disks X and situations S, X is free in situa-

tion S if and only if there does not exist a disk Y such that Y is ON
X in situation S." Notice how specific and concise the formal statement

of these relations can be.

To describe the idea that moving a disk, X, onto Y is "legal" in a

given situation only if both X and Y are free and Y is bigger, we cre-

ate the predicate LEGAL:

V X Y S. LEGAL (X, Y, S)
= (FREE (X,S) A FREE (Y, S) A DISK (X) A SMALLER (X

;
Y)) .

Now all we lack is a way of generating new situations. The function

MOVE, defined on two objects and a situation, produces a new situation

in which the first object is on top of the second. And what does this

new situation, S', look like? Well, X is on Y, and nothing else has

changed:

V S S' X Y
S' = MOVE (X, Y, S) -* (ON (X, Y,S')

A V Z Zv ((-.Z = IA^1= Y)

- (ON (Z,ZV S) = ON(Z,Zv S')))

A V Z (ON(X, Z, S) -> FREE(Z, S')) .

S' will be a SITUATION if that MOVE is LEGAL:

V X Y S. LEGAL (X
;
Y, S) = SITUATION (MOVE (X, Y, S)) .

This example gives an idea of how to express in first-order logic the

notions involved in the Tower of Hanoi problem. The solution of the

problem involves proving that the goal state can be reached from the

original state. More precisely, one proves a theorem that states that,

given the problem's premises expressed like the ones above, such a goal

168 Knowledge Representation IE

state exists. There are very general methods for automated theorem

proving in first-order logic, involving programs that manipulate internally

stored logical expressions using rules of inference supplied as procedures.

The details of this process are discussed in Chapter xn, in Volume m.

The AI systems described in the next section all use some kind of the-

orem prover to make deductions based on facts expressed as logic for-

mulas.

Applications of Logic to Artificial Intelligence

In this section we shall survey various AI systems that use logic to

represent knowledge. We shall also mention the different processes they

use to make deductions, since this is an equally important aspect of the

system, but we will not describe the various alternatives in detail.

QA3 (Green, 1969) was a general-purpose, question-answering system

that solved simple problems in a number of domains. Deductions were

performed by the resolution method of inference, with simple general

heuristics for control. The system could solve problems in chemistry,

robot movement, puzzles (like the Tower of Hanoi), and automatic pro-

gramming. For example, given the following chemical facts (among

others) about ferrous sulfide (FeS)

FeS is a sulfide, it is a dark-gray compound, and it is brittle.

represented as the first-order logic formula

sulfide (FeS) A compound (FeS) A darkgray (FeS) A brittle (FeS)
,

QA3 could then answer questions like "Is it true that no dark-gray thing

is a sulfide?"—that is,

-i 3 X. darkgray (X) A sulfide (X) ?

Despite its generality and its success on simple problems, QA3 could

not handle really difficult problems. The fault lay in the method of

deduction, resolution theorem proving, which became impossibly slow as

the number of facts it knew about a particular domain increased beyond

just a few. In AI terminology, as the number of facts in the database

increases, there is a combinatorial explosion in the number of ways to

combine facts to make inferences (see Article n.A), and the resolution

method of proving theorems was too indiscriminate in which com-

binations it tried. Although unrestricted resolution is complete, in the

sense that it will always return an answer if one exists, it is too

indirect for nontrivial problems. Even the use of heuristic rules to

suggest which alternatives might be most profitably followed at various

points of the proof did not constrain the search sufficiently to make

CI Logic 169

QA3's approach feasible for large databases (see, however, Chap, xn, in

Vol. in, for current research on more sophisticated theorem provers).

STRIPS, the Stanford Research Institute Problem Solver, was

designed to solve the planning problems faced by a robot in rearranging

objects and navigating in a cluttered environment (Fikes, Hart, and

Nilsson, 1972). Since the representation of the world must include a

large number of facts dealing with the position of the robot, objects,

open spaces, and the like, simpler methods often used for puzzles or

games would not suffice. The representation scheme chosen for STRIPS

was again the first-order predicate calculus.

A simple problem was:

Given a robot at point A and boxes at points B, C, and D, gather

the boxes together.

The current situation is described as

ATR (A)

AT (BOX1, B)
AT (BOX2, C)
AT (BOX3, D)

and the goal as

31. AT(BOXl,X) A AT(BOX2, X) A AT (BOX3, X)
,

that is, Get all the boxes together at some place, X. Problem solving in

a robot domain such as this involves two types of processes: (a)

deduction in a particular world model, to find out whether a certain

fact is true, and (b) searching through a space of world models, to find

one in which the given condition is satisfied (e.g., How can we get the

three blocks together?).

The former process is usually called question answering; the latter,

planning. STRIPS applied different methods to solve these two kinds of

problems. Question answering was done with resolution theorem prov-

ing, as in Green's QA3 system; planning was performed with means-ends

analysis, as in the GPS system of Newell and Simon (1972). This dual

approach allowed world models that were more complex and general

than in GPS and provided more powerful search heuristics than those

found in theorem-proving programs. GPS, STRIPS, and its successor

ABSTRIPS are described in detail in Chapter n.

FOL (Filman and Weyhrauch, 1976) is, among other things, a very

flexible proof checker for proofs stated in first-order logic. Deduction is

done with the natural deduction system of Prawitz (1965), which in-

cludes the introduction and elimination rules of inference discussed

170 Knowledge Representation IE

above. FOL can more properly be viewed as a sophisticated, interactive

environment for using logic to study epistemological questions (see

Weyhrauch, 1978).

Logic and Representation

First-order logic, as we have described it, demands a clean syntax,

clear semantics, and, above all, the notions of truth and inference.

Clarity about what is being expressed and about the consequences of, or

possible inferences from, a set of facts is perhaps the most important

quality of this formalism.

In a classic paper, McCarthy and Hayes (1969) differentiate two

parts of the AI problem. The epistemological part was defined as

determining "what kinds of facts about the world are available to an

observer with given opportunities to observe, how these facts can be

represented in the memory of a computer, and what rules permit

legitimate conclusions to be drawn from these facts" (McCarthy, 1977).

The issue of processing, of using the knowledge once it is represented

(what McCarthy and Hayes called the heuristic part of the AI problem),

was separated from the representation issue. Given this distinction,

there are several reasons that logic can be a useful means for exploring

the epistemological problems.

1. Logic often seems a natural way to express certain notions. As

McCarthy (1977) and Filman (1979) pointed out, the expression

of a problem in logic often corresponds to our intuitive under-

standing of the domain. Green (1969) also indicated that a

logical representation was easier to reformulate; thus, experi-

mentation is made easier.

2. Logic is precise. There are standard methods of determining the

meaning of an expression in a logical formalism. Hayes (1977a)

presents a complete discussion on this issue and argues for the

advantages of logic over other representation systems on these

grounds.

3. Logic is flexible. Since logic makes no commitment to the kinds

of processes that will actually make deductions, a particular fact

can be represented in a single way, without having to consider

its possible use.

4. Logic is modular. Logical assertions can be entered in a data-

base independently of each other; knowledge can grow incremen-

tally, as new facts are discovered and added. In other repre-

sentational systems, the addition of a new fact might sometimes

adversely affect the kinds of deductions that can be made.

CI Logic 171

The major disadvantage of logic stems also from the separation of

representation and processing. The difficulty with most current AI

systems lies in the heuristic part of the system, that is, in determining

how to use the facts stored in the system's data structures, not in

deciding how to store them (e.g., QA3's failure with large databases).

Thus, separating the two aspects and concentrating on epistemological

questions merely postpone addressing the problem. Work on procedural

representation schemes, such as PLANNER (Article m.C2), and on frame-

based schemes (Article m.C7) are attempts to incorporate the heuristic

aspect into the epistemological; systems like GOLUX (Hayes, 1977b) and

FOL (Weyhrauch, 1978) are attempts to formalize control of processing

while retaining the logical precision.

References

Nilsson (1971) gives a brief, elementary introduction to the use of

logic in AI in Chapters 6 and 7, including an introduction to automated

theorem proving techniques. More thorough discussions can be found in

any of the introductory logic texts, like Manna (1973) and Suppes

(1957).

C2. Procedural Representations

The distinction between declarative and procedural representations of

knowledge has had a key role in the historical development of AI ideas.

Declarative representations stress the static aspects of knowledge—facts

about objects, events, and their relations and about states of the world.

The proponents of procedural representations pointed out that AI

systems had to know how to use their knowledge—how to find relevant

facts, make inferences, and so on—and that this aspect of knowledgeable

behavior was best captured in procedures. (Hayes, 1977a, discusses the

different kinds of knowledge amenable to different kinds of represen-

tation schemes.)

As a simple example of what it means to represent knowledge pro-

cedurally, consider what a typical alphabetization program could be said

to know about its task. The knowledge that "A comes before B in the

alphabet" is represented implicitly in the body of the alphabetization

procedure, which really does an integer comparison of the computer

codes for A and B. All computer programs incorporate procedural

knowledge of this sort. What the proceduralists pointed out was that,

while the knowledge about alphabetical order was implicit in such

a system, the knowledge about how to alphabetize was represented

explicitly in the alphabetization procedure. On the other hand, in a

declarative system, where knowledge about alphabetical order might be

explicitly represented as facts like A comes before B, B comes before C,

and so on, the knowledge about how to alphabetize is implicit in the

programs that manipulate those facts (theorem prover, production system

interpreter, etc.).

Before the advent of proceduralism, workers in AI focused on

determining what kinds of knowledge could be represented adequately in

formalisms like logic and semantic nets. Questions about how the data

structures involved could be manipulated effectively as the databases

grew larger were considered a secondary concern. The proceduralists

took exception to this view. They argued that the useful knowledge of

a domain is intrinsically bound up with the specialized knowledge about

how it is to be used (Hewitt, 1975). Through an evolving series of new

systems and AI programming languages, the proponents of procedural

knowledge representation brought concerns about the relevance and

utility of knowledge into the center of knowledge-representation research.

C2 Procedural Representations 173

Early Procedural Systems

The first AI systems that might be called procedural were not ex-

treme in their stance: Their factual knowledge was stored in a database

similar to those used by the then-popular theorem-proving programs, but

their reasoning was structured in a new way. (See Winograd, 1972, for

a discussion of the development of proceduralist ideas.)

Such an approach was used in Raphael's (1968) early question

answering system, SIR (see Article iV.Fi). SIR could answer questions

about simple logical relationships, such as Is a finger part of a person?

Its knowledge was stored in two forms: Facts about the parts of things

were represented as properties linked to the nodes representing the

objects, and the inference-making mechanism was represented as special-

ized procedures. Thus, to answer the question about a finger, SIR

would use two stored facts, that a finger is part of a hand and that a

hand is part of a person, and one procedure, a specialized induction

procedure that traced PART-OF links between nodes. The inference

routines were specialized in that they had to be custom-built for each

new type of inference and link in the database.

However, the most characteristically procedural quality of the SIR

system was that the meaning of an input sentence or question, the final

result of SIR's parsing stage, was a procedure. When executed, this

routine performed the desired action—either adding to the database or

printing information found therein. In other words, when the sentence

A finger is part of a hand was entered into the system, SIR produced

and immediately executed a procedure that added a PART-OF link to

the database between the FINGER node and the HAND node.

Woods (1968) implemented the most sophisticated of the early

procedural systems. His program handled questions about airline flight

schedules- The questions were translated into functions that, when run

over the system's database, produced the correct response. For example,

the question What American Airlines flights go from Boston to Chicago?

would be translated into the query language as:

(FOR-EVERY Xl/FLIGHT;

EQUAL (OWNER(Xl), ANERICAN-AIRLINES)

AND CONNECT (XI, BOSTON, CHICAGO);

LIST(Xl))

This expression of the question is a function (in the LISP pro-

gramming language) built from other specialized-knowledge procedures

like FOR-EVERY and CONNECT. When evaluated, this function would

174 Knowledge Representation IH

retrieve a list of all of the flights in the database, then find out which

of those were owned by American Airlines and went from Boston to

Chicago, and finally print the resulting list.

Representing How to Use Knowledge

The great advantage of the early procedural systems was that they

were directed in their problem-solving activity in the sense that they did

not use irrelevant knowledge or follow unnatural lines of reasoning.

These inefficient behaviors, characteristic of the early declarative systems

that blindly tried to apply anything they knew to the problem at hand

until something worked, were eliminated by the specialized inference

procedures. But this solution created problems of its own. In general,

as procedural systems become very complex, they become very hard for

people to understand and modify.

Thus, in the late 1960s there was an attempt to merge the two

types of representation, seeking the ease of modification of the de-

clarative systems (especially logic) and the directedness of the earlier

procedural systems. The essence of this approach was to represent

declarative knowledge of the kind typically encoded in logic expressions

along with instructions for its use. The thrust of the later work in

procedural representations was to try to find better ways of expressing

this control information.

Information about how to use a piece of knowledge might concern

various aspects of processing. One form of control is to indicate the

direction in which an implication can be used. For example, to encode

the idea that to prove that something flies you might want to show

that it is a bird, from which the desired conclusion follows, one might

write something like this:

(IF-MEEDED FLIES (X)

TRY-SHOWING BIRD (X))

Thus, if we are trying to prove that Clyde can fly, this heuristic

tells us to try first to prove that he is a bird. Note that the

knowledge that All birds can fly, as represented here, is not usable in

the other direction—if we learn that Fred is a bird, we will not be able

immediately to conclude anything about Fred being able to fly.

Another use of procedural knowledge is in trying to specify what

knowledge will be relevant to achieving a specific goal. For example, if

we expect that we might want to prove that something is a bird, and

that two facts called, say, THEOREM1 and THEOREM2 might be useful

in proving birdhood, we could write:

(GOAL BIRD (TRY-USING THEOREMl THE0REN2)) .

C2 Procedural Representations 175

In essence, what has been done here is to embellish the straight-

forward deduction provided by resolution or natural deduction theorem

proving in a logic-based representation. The inferences here are con-

trolled; we have told the system how and when it can use the knowl-

edge that it has. Three major methods of specifying control information

have been tried:

1. Specify control by the way in which one states the facts; this is

the approach of the examples above and of PLANNER, dis-

cussed below.

2. Encode the representation language at a lower level, so that the

user has access to the set of mechanisms for specifying the

reasoning process. This is the approach taken in the CON-
NIVER programming language (see Sussman and McDermott,

1972, and Article VI.C2, in Vol. n).

3. Define an additional language, for expressing control information,

that works together with the representation language. This idea

was the foundation for the GOLUX project (Hayes, 1973) and

for Kowalski's (1974) predicate calculus programming.

Of the three approaches, the work on PLANNER was the most widely

used and was seminal for later work on procedural representations.

PLANNER: Guided Inference and Extended Logic

PLANNER (Hewitt, 1972) was an AI programming language designed

to implement both representational and control information. The fea-

tures of the language are described in Article VI.C2 (in Vol. n), and we

discuss here only those aspects relevant to knowledge representation.

The specific concern of the PLANNER research was not to facilitate the

class of inferences that were logically possible, as would be the focus in

theorem proving work, but to expedite the inferences that were expected

to be actually needed. This approach created its own problems; there

are some quite straightforward deductions that PLANNER is unable to

make, as will be discussed later.

The relevant features of the PLANNER language include being able

to specify whether theorems should be used in a forward or backward

direction and to recommend the use of specific theorems in given

situations, as described in the preceding section. In fact, the ability to

recommend pieces of knowledge was somewhat more general than in-

dicated previously. Besides recommending possibly useful theorems by

name, general classes of theorems could be suggested by the use of

filters. For example, the following PLANNER expression states that

176 Knowledge Representation m

using theorems about zoology might be a useful way to prove that

something is a bird:

(GOAL BIRD (FILTER ABOUT-ZOOLOGY)) .

The implementation of these inference guiding control features did

not change the nature of the possible inferences themselves. However,

other procedural knowledge implemented in PLANNER did allow infer-

ences beyond those found in classical logical systems, particularly the

various forms of default reasoning (Reiter, 1978). One form of default,

as implemented in PLANNER, is the THNOT primitive. For example,

the expression

(THNOT OSTRICH (X) ASSUME FLIES (X))

refers to all birds, X, and means that unless it can be shown that X is

an ostrich, assume that it can fly.

The primitive THNOT can function correctly only if certain aspects

of our knowledge are complete. In the above example, we assume that,

if X were an ostrich, we would either know that fact or have some way

to deduce it. If the knowledge base is not complete in this sense, the

system might make incorrect inferences. This is not necessarily a seri-

ous problem; there might be times that we want the system to "jump

to conclusions." This will be discussed later.

THNOT and similar functions take us beyond the realm of ordinary

logic, since they violate the property of monotonicity. Monotonicity

states that if a conclusion is derivable from a certain collection of facts,

the same conclusion remains derivable if more facts are added. Thus,

procedural and declarative systems implement different logics (Reiter,

1978). As Hewitt (1972) points out, the logic of PLANNER is a com-

bination of classical logic, intuitionistic logic, and recursive function

theory. Winograd (1980a) outlines a taxonomy of extended inference

modes that are outside the provision of ordinary logic.

PLANNER thus serves as a programming language in which

knowledge about both the problem to be solved and the methods of

solution can be stated in a modular, flexible style reminiscent of logic.

The intent is that the user be able to state as much or as little

domain-specific knowledge as required. The most extensive use of

PLANNER was in Winograd's (1972) SHRDLU system (see Article IV.F4).

A number of AI programming language projects followed PLANNER,
including CONNIVER (Sussman and McDermott, 1972), QA4 (Rulifson,

Derkson, and Waldinger, 1972), POPLER (Davies, 1972), and QLISP

(Reboh et al., 1976). For further discussion of many of these languages,

see Chapter VI, in Volume n.

C2 Procedural Representations 177

Advantages and Disadvantages of Procedural Representations

Chief among the advantages of using procedures to represent knowl-

edge is their facility for representing heuristic knowledge, especially

domain- specific information that might permit more directed deduction

processes. This includes information about whether a theorem should be

used in a backward or a forward direction, about what knowledge

should be applied in a given situation, and about which subgoals should

be tried first. The most important result of this ability to encode

heuristic knowledge is the directedness realized by such systems, which,

of course, is crucial in large systems that would get bogged down if the

problem solving were not efficient. Efficiency in this sense was the

motivation behind most of the work on procedural representations.

A related advantage is the ability to perform extended-logical in-

ferences, like the default reasoning described in the preceding section.

There are attempts to achieve this kind of informal or plausible

reasoning in more formal logical systems (McCarthy, 1977). Winograd

(1980a) discusses this issue further, arguing that these types of inferences

are necessary in a system that attempts to model human reasoning.

Procedural representation may also be at an advantage with regard

to what is called modeling, particularly in relation to the frame problem

as identified by McCarthy and Hayes (1969). This difficulty, common to

all representation formalisms, is their inability to model side effects of

actions taken in the world by making corresponding modifications in the

database representing the state of the world. (Note that the frame

problem has nothing to do with the frame as a representation formalism,

discussed in Article m.C7.) For example, suppose we are reasoning

about a robot, with a key, moving from ROOM-1 to ROOM-2 to find

and unlock a safe. The initial situation, S , might be represented in

the database with assertions like:

1. IN (ROOM-1, ROBOT, SO)

2. IN (R00M-1, KEY, SO)

3. IN (ROOM-2, SAFE, SO)

After the robot has moved from ROOM-1 to ROOM-2, the system

must somehow know that assertions 1 and 2 are now false, while

assertion 3 is still true.

In a large system with many facts, keeping track of these changes

—

especially the side effects of actions, like the moving of the key to the

safe—can be very tricky. The propagation of those facts that have not

changed is sometimes much easier in a procedural system: The

procedure that performs the actions can update the database

immediately. (See also the discussion of a similar way of dealing with

the the frame problem in a direct representation, Article m.C5.)

178 Knowledge Representation EI

Two problems of the procedural approach in relation to more formal

representational schemes concern completeness and consistency. Many-

procedural systems are not complete, meaning that there are cases in

which a system like PLANNER could know all the facts required to

reach a certain conclusion but not be powerful enough to make the

required deductions (Moore, 1975). Of course, completeness is not nec-

essarily always desirable. There are cases when we might want the

system to work quickly and not spend a long time finding a particular

answer or concluding that it cannot find the answer.

A deductive system is consistent if all its deductions are correct

—

that is, if the conclusion necessarily follows from the premises. Again,

most theorem-proving systems have this property, but procedural sys-

tems often do not. For example, the use of default reasoning can

introduce inconsistency in the presence of incomplete knowledge. Thus,

if we use the fact that Fred is a bird to conclude that he can fly and

later discover that he is an ostrich, we will have inconsistency. Hewitt

(1975) refers to this as the "Garbage In—Garbage Out" principle.

Like completeness, consistency is not necessarily always desirable.

McDermott and Doyle (in press) argue that much of our reasoning is

done by revising our beliefs in the presence of new information.

Similarly, Hewitt points out that most of our knowledge is not absolute;

we regularly accept caveats and exceptions. If we control the reasoning

sufficiently tightly in the presence of inconsistency, the Garbage In

—

Garbage Out effect can be avoided.

Another drawback of procedural representations in their current form

is that the control information sometimes gets in the way. For ex-

ample, if we want to prove that both statements A and B are true,

PLANNER allows us to express this as a goal: (THAND A B). But

this expression really means, "Prove A and then prove B"—there is no

way to state the goal without including some control information.

Another feature that is sacrificed in the procedural approach is the

modularity of knowledge in the database that was so advantageous in

logic and other declarative schemes. In a procedural representation, the

interaction between various facts is unavoidable because of the heuristic

information itself. Therefore, a change in or addition to the knowledge

base might have more far-reaching effects than a similar change in a

base of logic assertions. In essence, this is the price that is paid for the

greater degree of control permitted using procedures.

Two specific criticisms have been directed at PLANNER'S method of

specifying control. First, it is too local: PLANNER is unable to

consider the overall shape of the problem's solution and therefore can

make only local problem-solving decisions. Second, PLANNER cannot

C2 Procedural Representations 179

reason about its control information; ideally, it should be able to make

decisions on the basis of facts about control, as it can now make de-

cisions on the basis of facts about the world.

Conclusions

The consensus among AI researchers is that there should be ways to

embed control in a deductive system, but that the methods tried thus

far have many flaws in them (see, e.g., Moore, 1975, Chap. 5). Current

research, especially on frame systems (Article m.C7), emphasizes a

somewhat different approach to the problem of organizing knowledge

with special regard to its expected use, called procedural attachment.

References

The most readable discussion of the issues involved in procedural

knowledge representation is Winograd (1975). Hayes (1977a) presents

these issues from the perspective of a declarativist. The original state-

ment of what procedural representation was all about is Hewitt (1972)

and, more readably, Winograd (1972). Winograd (in press) offers a

recent study of knowledge representation in which procedural ideas are

fully discussed.

C3. Semantic Networks

Many of the recent systems developed in AI research use a class of

knowledge representation formalisms that are called semantic networks.

These representation formalisms are grouped together because they share

a common notation, consisting of nodes (drawn as dots, circles, or boxes

in illustrations) and arcs (or links; drawn as arrows) connecting the

nodes. Both the nodes and the arcs can have labels. Nodes usually

represent objects, concepts, or situations in the domain, and the arcs

represent the relations between them.

The superficial similarity of this notation is all that some semantic

network systems have in common. For example, researchers in

psychology, such as Quillian (1968), Norman and Rumelhart (1975), and

Anderson and Bower (1973), have developed semantic network systems

primarily as psychological models of human memory. Researchers in

computer science have been more concerned with developing functional

representations for the variety of types of knowledge needed in their

systems. Because of these diverse goals, there is no simple set of

unifying principles to apply across all semantic network systems. This

article, however, will attempt to characterize some of the most common
network schemes. We will present a description of how simple concepts

are represented in semantic networks and then review some AI systems

that use semantic networks. Finally, some more difficult problems in

semantic net representation will be mentioned and some of the proposed

solutions reviewed.

A Basic Description of the Representation Scheme

Suppose we wish to represent a simple fact like All robins are birds

in a semantic network. We might do this by creating two nodes to

designate robins and birds with a link connecting them, as follows:

1

' sa
i

ROBIN BIRD

C3 Semantic Networks 181

If Clyde were a particular individual who we wished to assert is a

robin, we could add a node for Clyde to the network as follows:

CLYDE

i sa

ROBIN

i sa

BIRD

Notice that in this example we have not only represented the two

facts we initially intended to represent, but we have also made it very

easy to deduce a third fact, namely, that Clyde is a bird, simply by

following the ISA links: Clyde is a robin. Robins are birds. So, Clyde

is a bird. The ease with which it is possible to make deductions about

inheritance hierarchies such as this is one reason for the popularity of

semantic networks as a knowledge representation. In a domain where

much of the reasoning is based on a very complicated taxonomy, a

semantic network is a natural representation scheme (see, e.g., the

PROSPECTOR system, Article F2).

Besides their taxonomic classification, one usually needs to represent

knowledge about the properties of objects. For example, one might

wish to express the fact Birds have wings in the network. We could do

this as follows:

sa sa

CLYDE ROBIN BIRD

has—part

WINGS

182 Knowledge Representation m

As in the previous example, our choice of representation has made it

very easy to write a procedure to make the deductions that robins have

wings and that Clyde has wings. All that is necessary is to trace up

the ISA-hierarchy, assuming any facts asserted about higher nodes on

the hierarchy can be considered assertions about the lower ones also,

without having to represent these assertions explicitly in the net. In AI

terminology, this kind of reasoning is called property inheritance, and

the ISA link is often referred to as a property inheritance link.

Suppose we wish to represent the fact Clyde owns a nest. Our first

impulse may be to encode this fact using an ownership link to a node

representing Clyde's nest:

CLYDE

i sa

ROBIN

isa

BIRD

owns

JEST—

1

i sa

I EST

In the above example, NEST-1 is the nest that Clyde owns. It is an

instance of NEST; that is, the NEST node represents a general class of

objects of which the NEST-1 node represents an example. The above

representation may be adequate for some purposes, but it has short-

comings. Suppose one wanted to encode the additional information that

Clyde owned NEST-1 from spring until fall. This is impossible to do in

the current network because the ownership relation is encoded as a link,

and links, by their nature, can encode only binary relations. What is

needed is the semantic-net equivalent of a four-place predicate in logic,

which would note the start-time and end-time of the ownership relation,

as well as the owner and the object owned.

A solution to this problem was proposed by Simmons and Slocum

(1972) and later adopted in many semantic net systems: to allow nodes

to represent situations and actions, as well as objects and sets of

objects. Each situation node can have a set of outgoing arcs, called a

case frame, which specifies the various arguments to the situation

predicate. For example, using a situation node with case arcs, the

network representation of the fact Clyde owned a nest from spring until

fall becomes

C3 Semantic Networks 183

CLYDE

i sa

ROBIN

i sa

BIRD

owner

OWM-1

ownee

NEST-1

i sa

NEST

sa

sta rt—t i me i sa

Spri ng TINE

end—ti me

Fa

sa

OWNERSHIP

sa

SITUATION

The node NEST-1 is created to represent Clyde's nest, which, of course,

ISA nest, as shown. The OWN-1 node represents a particular instance

of OWNERSHIP, namely, Clyde owning his nest. And like all nodes

that are instances of OWNERSHIP, OWN-1 inherits case arcs to

OWNER, OWNEE, START-TIME, and END-TIME nodes. Many semantic

network systems use sets of case arcs motivated by linguistic con-

siderations, for example, general case structures for agent and object (see

Article IV. C4). One important use of the case-frame structure for nodes

is the possibility of allowing instance nodes, like OWN-1, to inherit

expectations about, and even default values for, certain of their attri-

butes (see Article m.C7 for a discussion of inheritance in frame systems).

One more thing to note about the representation scheme described

above is that it lends itself to the expression of states and actions in

terms of a small number of primitive concepts. For example, FLYING
might be considered a type of MOTION and could be represented by a

FLYING node having an ISA arc to the MOTION node and case arcs

that describe how flying is a specialization of moving. The use of a

small number of semantic primitives as the basis of a system's knowl-

edge representation has both advantages and disadvantages, and it is

discussed fully in Article m.C6.

184 Knowledge Representation m

There are still some serious problems with our semantic net

representation as it has been developed so far. Suppose one wished to

make the assertion The robin is an endangered species. The simplest

thing to do would be to create the following representation for this fact

in our net structure:

BIRD

1 1 a o—ua i kj

WINGS

stud i ed—by

I ^a

i sa

CLYDE ROBIN

'

i sa

f

»

ENDANGERED
cpcrjpc; NATURALISTS

This structure indicates that ROBINS are an ENDANGERED SPECIES,

and that ENDANGERED SPECIES are studied by NATURALISTS. The

problem that is illustrated in this simple example involves inheritance.

Since the reasoning procedures, as they have been defined, treat the ISA

link as a property inheritance link, the instance node CLYDE inherits all

the properties of ENDANGERED SPECIES, just as it inherits the

property of having wings from the BIRD node. In this way, one might

conclude from the fact that Naturalists study endangered species that

Naturalists study Clyde, which may or may not be true.

The source of the problem is that that there is as yet no distinction

in our network formalism between an individual and a class of

individuals. Furthermore, some things said about a class are meant to

be true of all members of a class, like Robins are birds, while some

refer to the class itself, for example, Robins are an endangered species.

Recent semantic net research has explored various ways of making the

semantics of network structures more precise and of specifying different

property inheritance strategies (Woods, 1975b; Hendrix, 1976; Brachman,

1979; Stefik, 1980).

C3 Semantic Networks 185

A Brief History of Semantic-network-based Systems

The node-and-link formalism of semantic networks has found use in

many AI systems in different application domains. It is impossible to

mention every one of these systems here, but we will try to note the

highlights and point out where in the AI literature these and related

systems are described more fully.

Ross Quillian (1968) designed two early semantic-network-based sys-

tems that were intended primarily as psychological models of associative

memory. Quillian was the first to make use of the node-and-link

formalism, but his networks were simpler than those in the bird's nest

example above: They consisted of a number of groups of nodes, called

planes. Each plane encoded knowledge about a particular concept

through interconnections of nodes representing other concepts in the

system. These interconnecting links allowed a few simple ways of

combining concepts: conjunction, disjunction, and the modification of

one concept by another.

Quillian wrote procedures that manipulated the network to make

inferences about a pair of concepts by finding connections between the

nodes that represented them. The method, called spreading activation,

started from the two nodes and "activated" all the nodes connected to

each of them. Then all of the nodes connected to each of those were

in turn activated, forming an expanding sphere of activation around

each of the original concepts. When some concept was activated simul-

taneously from two directions, a connection had been found. The

program then tried to describe the connecting route through the net in

a stylized version of English (see Article IV.E for an example).

Quillian' s second system, called the Teachable Language Com-

prehender (1969), attempted to solve some of the problems with the

original system, like the lack of directedness in the net search, and was

a bit more complex. Other semantic-network-based computer programs

that were designed as psychological models of memory, including the

HAM program (Anderson and Bower, 1973) and the Active Structural

Network system (Norman and Rumelhart, 1975), are described fully in

Chapter XI, in Volume m.

Bertram Raphael's (1968) early AI system, SIR, mentioned earlier in

Article m.C2, was one of the first programs to use semantic network

techniques. SIR could answer questions requiring a variety of simple

reasoning tasks, such as A finger is part of a hand; a hand is part of an

arm; therefore a finger is part of an arm. Although he did not claim

to use a node-and-link formalism, Raphael's use of binary predicates,

such as PART-OF (FINGER, HAND), and reasoning procedures was much

186 Knowledge Representation IE

like the early semantic net systems and faced many of the same

problems that these systems faced. (SIR is described in Article IV.Fi on

early natural language understanding systems.)

In the early 1970s, Robert Simmons designed a semantic network

representation for use in his research on natural language understanding.

As mentioned in the previous section, Simmons 's system used a lin-

guistically motivated case frame approach for choosing arc types. The

system could parse sentences (with an ATN grammar), translate their

meaning into network structures, and finally generate answers to ques-

tions using the semantic network (Simmons and Slocum, 1972; Simmons,

1973).

Around the same time, Jaime Carbonell used a semantic network as

the basis of his tutoring program, SCHOLAR, which answered questions

about the geographical information stored in the net. In a mixed ini-

tiative dialogue on the subject of South American geography, SCHOLAR
answered questions posed by the student and also generated appropriate

questions on its own initiative, giving timely hints when necessary

(Carbonell, 1970; Carbonell and Collins, 1974; SCHOLAR is described

fully in Article DC.Ci, in Vol. n).

Two of the AI speech understanding systems, the systems developed

at Bolt, Beranek and Newman (Woods et al., 1976) and SRI Inter-

national (Walker, 1976), used semantic networks to represent knowledge

about their subject domains (see Chap. v). In connection with the SRI

speech understanding research, Hendrix (1976) developed the idea of

network partitioning, which provides a mechanism for dealing with a

variety of difficult representation problems including representing logical

connectives, quantification, and hypothetical worlds.

Recent network research involves structuring of the nodes and links

in the network and is related to the work on frame systems described

in Article m.C7. For example, Myopolous and his associates (1975)

designed a system for grouping related parts of a semantic network into

units called scenarios. The network was used by the TORUS system, a

program to provide natural-language access to a database management

system. Hayes (1977b) also designed a system that incorporates higher

level structures similar to scenarios, which he calls depictions.

Reasoning with Semantic Networks

In semantic network representations, there is no formal semantics,

no agreed-upon notion of what a given representational structure means,

as there is in logic, for instance. Meaning is assigned to a network

structure only by the nature of the procedures that manipulate the

C3 Semantic Networks 187

network. A wide variety of network-based systems have been designed

that use totally different procedures for making inferences.

One example of a network reasoning procedure was Quillian's

spreading activation model of human memory, described above. However,

the reasoning mechanism used by most semantic network systems is

based on matching network structures: A network fragment is con-

structed, representing a sought-for object or a query, and then matched

against the network database to see if such an object exists. Variable

nodes in the fragment are bound in the matching process to the values

they must have to make the match perfect. For example, suppose we

use the following network as a database

CLYDE

sa

ROBIM

sa

owner

0WM1

ownee

NEST1

isa

BIRD

NEST

sa

OWNERSHIP

isa

SITUATION

and suppose we wish to answer the question What does Clyde own? We
might construct the fragment

CLYDE

owner

OWN-?

ownee

sa

OWNERSHIP

188 Knowledge Representation m

which represents an instance of OWNERSHIP in which Clyde is the

owner. This fragment is then matched against the network database

looking for an OWN node that has an OWNER link to CLYDE. When
it is found, the node that the OWNEE link points to is bound in the

partial match and is the answer to the question. Had no match been

found, the answer would have been, of course, Clyde doesn't own any-

thing.

The matcher can make inferences during the matching process to

create network structure that is not explicitly present in the network.

For example, suppose we wish to answer the question Is there a bird

who owns a nest? We could translate that question into the following

network fragment:

BIRD-?

owner

0WM-?

sa

OWNERSHIP

sa

ownee

BIRD

NEST-?

sa

JEST

Here, the BIRD-?, NEST-?, and OWN-? nodes represent the yet to be

determined bird-owning-nest relation. Notice that the query network

fragment does not match the knowledge database exactly. The de-

duction procedure would have to construct an ISA link from CLYDE to

BIRD to make the match possible. The matcher would bind BIRD-? to

the node CLYDE, OWN-? to OWN-1, and NEST-? to NEST-1, and the

answer to the question would be Yes, Clyde, since the CLYDE node was

bound to BIRD-? in order to match the query fragment to the database.

A good example of a network deduction system constructed around

this matching paradigm is the SNIFFER system (Fikes and Hendrix,

1977). SNIFFER has the general power of a theorem prover for making

deductions from the network database. It is also capable of taking

advantage of heuristic knowledge embedded in procedures called selector

functions, which provide advice about which network elements should be

matched first and about how to match the selected element. These

heuristics allow the system to proceed in a direct and sensible way when

C3 Semantic Networks 189

the amount of information in the database becomes very large and blind

retrieval strategies, like spreading activation or systematic matching, are

useless because they take too long to retrieve an answer.

Status of Network Representations

Semantic networks are a very popular representation scheme in AI.

Node-and-link structure captures something essential about symbols and

pointers in symbolic computation and about association in the psy-

chology of memory. Most current work on the representation of

knowledge involves elaboration of the semantic net idea, in particular,

work on aggregate network structures called frames. But like most of

the efforts to deal with knowledge in AI, the simple idea of having

nodes that stand for things in the world and links that represent the

relations between things can't be pushed too far. Besides computational

problems that arise when network databases become large enough to

represent nontrivial amounts of knowledge, there are many, more subtle

problems involving the semantics of the network structures. What does

a node really mean? Is there a unique way to represent an idea? How
is the passage of time to be represented? How does one represent

things that are not facts about the world but rather ideas or beliefs?

What are the rules about inheritance of properties in networks? Cur-

rent research on network-representation schemes attempts to deal with

these and similar concerns.

References

Introductory discussions of semantic networks can be found in

Simmons (1973), Anderson and Bower (1973), Norman and Rumelhart

(1975), and Winograd (in press). Current semantic network research is

surveyed in the articles in Findler (1979).

C4. Production Systems

Production systems were first proposed by Post (1943) but have

since undergone such theoretical and application-oriented development in

AI that the current systems have little in common with Post's for-

mulation. In fact, just as the term semantic net refers to several

different knowledge-representation schemes based on the node-and-link

formalism, so the term production system is used to describe several

different systems based on one very general, underlying idea—the notion

of condition-action pairs, called production rules, or just productions. In

this article we illustrate the basics of a production system (PS) with an

elementary example and discuss some of the design decisions that give

rise to the variety of production system architectures. We also describe

some of the important AI systems that have been built with PS

architectures and discuss current issues in PS design.

A Sample Production System

A production system consists of three parts: (a) a rule base com-

posed of a set of production rules; (b) a special, buffer-like data struc-

ture, which we shall call the context; and (c) an interpreter, which

controls the system's activity. After briefly describing each of these

components, we'll go step by step through an example to show how a

production system works.

A production rule is a statement cast in the form "If this condition

holds, then this action is appropriate." For example, the rule

Always punt on fourth down with long yardage required

might be encoded as the production rule

IF it is fourth down AND long yardage is required THEN punt.

The IF part of the productions, called the condition part or left-hand

side, states the conditions that must be present for the production to be

applicable, and the THEN part, called the action part or right-hand side,

is the appropriate action to take. During the execution of the pro-

duction system, a production whose condition part is satisfied can fire,

that is, can have its action part executed by the interpreter. Although

there are only a few productions in the rule base of our example below,

typical AI systems nowadays contain hundreds of productions in their

rule bases.

The context, which is sometimes called the data or short-term

C4 Production Systems 191

memory buffer, is the focus of attention of the production rules. The

left-hand side of each production in the rule base represents a condition

that must be present in the context data structure before the production

can fire. For example, the sample production above requires that the

facts it's fourth down and long yardage required be in the context. The

actions of the production rules can change the context, so that other

rules will have their condition parts satisfied. The context data struc-

ture may be a simple list, a very large array, or, more typically, a

medium-sized buffer with some internal structure of its own.

Finally there is the interpreter, which, like the interpreters in all

computer systems, is a program whose job is to decide what to do next.

In a production system, the interpreter has the special task of deciding

which production to fire next.

Consider a production system that might be used to identify food

items, given a few hints, by a process similar to that used in the game

of Twenty Questions. The context data structure for this system is a

simple list of symbols, called a context list (CL). "On-CL X" means

that the symbol X is currently in the context. The system has the

following rule base and interpreter.

PRODUCTIONS:

PI. IF On-CL green THEN Put-On-CL produce

P2. IF On-CL packed in small container THEN Put-On-CL delicacy

P3. IF On-CL refrigerated OR On-CL produce THEN Put-On-CL

perishable

P4. IF On-CL weighs 15 lbs AND On-CL inexpensive AND NOT On-

CL perishable THEN Put-On-CL staple

P5. IF On-CL perishable AND On-CL weighs 15 lbs THEN Put-On-

CL turkey

P6. IF On-CL weighs 15 lbs AND On-CL produce THEN Put-On-CL

watermelon

INTERPRETER:

1. Find all productions whose condition parts are TRUE and make
them applicable.

2. If more than one production is applicable, then deactivate any

production whose action adds a duplicate symbol to the CL.

3. Execute the action of the lowest numbered (or only) applicable

production. If no productions are applicable, then quit.

4. Reset the applicability of all productions and return to SI.

192 Knowledge Representation HI

The condition part of each of the productions corresponds to a

question one might ask in the Twenty Questions game: Is the item

green? does it come in a small container? and so on. The action parts

of the productions represent additions to our knowledge about the un-

known item.

Production systems operate in cycles. In each cycle, the productions

are examined in a manner specified by the interpreter to see which are

appropriate and could fire. Then, if more than one is found appro-

priate, a single production is selected from among them. Finally, the

production is fired. These three phases of each cycle are called match-

ing, conflict resolution, and action.

Suppose the original knowledge about the mystery food item is that

it is green and weighs 15 pounds; in other words, the value of the con-

text list before the beginning of the first cycle is:

CL = (green, weighs 15 lbs) .

The cycle starts with step 1 of the interpreter algorithm: finding all

the applicable productions by testing their condition parts. Since only

PI is applicable, step 2 is not necessary, and step 3 causes the action

part of PI to be executed. This adds the symbol produce to the con-

text list, representing a new fact about the unknown food item:

CL = (produce, green, weighs 15 lbs) .

Step 4 ends the first cycle and brings us back to step 1—finding all

the applicable productions. In the second cycle, productions PI, P3, and

P6 are all applicable. So in step 2 we must check if any of these three

adds a duplicate symbol to the context list. PI adds produce, which is

a duplication, so it is eliminated. Then in step 3 we select P3 to be

executed (because it has a lower number than P6), resulting in:

CL = (perishable, produce, green, weighs 15 lbs) .

In the third cycle, we find that productions PI, P3, P5, and P6 are

applicable. Checking, in step 2, for redundant entries, we eliminate PI

and P3 from consideration. In step 3, we decide to execute P5, once

again because it comes before P6. This results in the context list

CL = (turkey, perishable, produce, green, weighs 15 lbs) .

Clearly this last step was a mistake—we wouldn't want to ascribe to

something that we know is green produce the attribute turkey.

In its next two cycles of execution, our sample production system

will finish. In cycle 4, the symbol watermelon is added to the context

list, and in the last cycle, finding no nonredundant productions to fire,

the interpreter finally quits, leaving the context list

C4 Production Systems 193

CL = (watermelon, turkey, perishable, produce, green, weighs 15 lbs) .

If we define the system's answer to be the first symbol on the context

list, we can ignore the suspicious attribute turkey. The reader can

probably think of more satisfying ways to "fix up" the rule base, or the

interpreter, such as changing the productions (particularly adding con-

ditions to the condition part of P5), switching the order of the produc-

tions in the rule base around, adding new productions, and so on. This

feeling of manageability of the rule base is perhaps one of the strongest

attractions of production systems as a knowledge-representation scheme.

Advantages and Disadvantages of Production Systems

Production systems have most often been used in AI programs to

represent a body of knowledge about how people do a specific, real-

world task, like speech understanding, medical diagnosis, or mineral ex-

ploration. In psychology, production systems have also been a popular

tool for modeling human behavior, perhaps because of the stimulus-

response character of production rules (Anderson and Bower, 1973;

Newell, 1973b). These psychological models are described in Chapter xi,

in Volume m. The AI systems based on productions have been quite

diverse in most respects, but there are some features of the production-

system formalism, both good and bad, that can be generalized.

Modularity. One obvious quality of production systems is that the

individual productions in the rule base can be added, deleted, or

changed independently. They behave much like independent pieces of

knowledge. Changing one rule, although it may change the performance

of the system, can be accomplished without having to worry about

direct effects on the other rules, since rules communicate only by means

of the context data structure (looking to see if their conditions are

satisfied in the context and then modifying the context); they don't call

each other directly. This relative modularity of the rules is important in

building the large rule bases of current AI systems—knowing what a

proposed rule will mean, in whatever situation it is used, makes the

creation of the database much easier. There are indications, however,

that modularity is harder to maintain as one moves to larger systems

(Rychener, 1976), and, even if modularity can be preserved, strongly

constraining interaction between rules leads to inefficiencies that might

become important problems in large systems (see below).

Uniformity. Another general attribute of production systems is the

uniform structure imposed on the knowledge in the rule base. Since all

194 Knowledge Representation HI

information must be encoded within the rigid structure of production

rules, it can often be more easily understood, by another person, or by

another part of the system itself, than would be possible in the rel-

atively free form of semantic net or procedural representation schemes,

for example. Production systems that examine and automatically mod-

ify their own rules are exemplified by those of Waterman, Davis, and

Anderson (see below).

Naturalness. A further advantage of the production-system for-

malism is the ease with which one can express certain important kinds

of knowledge. In particular, statements about what to do in prede-

termined situations are naturally encoded into production rules. Fur-

thermore, it is these kinds of statements that are most frequently used

by human experts to explain how they do their jobs.

Inefficiency. There are, however, significant disadvantages inherent

in the production-system formalism. One of these is inefficiency of pro-

gram execution. The strong modularity and uniformity of the produc-

tions result in high overhead in their use in problem solving. For

example, since production systems perform every action by means of the

match-action cycle and convey all information by means of the context

data structure, it is difficult to make them efficiently responsive to

predetermined sequences of situations or to take larger steps in their

reasoning when the situation demands it (see Barstow, 1979). Lenat

and McDermott (1977) propose solutions to this type of problem, sac-

rificing some of the advantages of production systems.

Opacity. A second disadvantage of the production-system formalism

is that it is hard to follow the flow of control in problem solving

—

algorithms are less apparent than they would be if they were expressed

in a programming language. In other words, although situation-action

knowledge can be expressed naturally in production systems, algorithmic

knowledge is not expressed naturally. Two factors that contribute to

this problem are the isolation of productions (they don't call each other)

and the uniform size of productions (there is nothing like a subroutine

hierarchy in which one production can be composed of several sub-

productions). Function calls and subroutines, common features of all

programming languages, would help to make the flow of control easier to

follow.

Appropriate Domains for Production Systems

The features of production systems described in the previous section

can be seen as having both good and bad consequences. A more fruit-

ful way to evaluate the utility of production systems is to characterize

C4 Production Systems 195

the domains for which production rules might be a useful knowledge-

representation scheme. Davis and King (1977) proposed as appropriate

—

1. domains in which the knowledge is diffuse, consisting of many
facts (e.g., clinical medicine), as opposed to domains in which

there is a concise, unified theory (physics);

2. domains in which processes can be represented as a set of

independent actions (a medical patient-monitoring system), as

opposed to domains with dependent subprocesses (a payroll pro-

gram);

3. domains in which knowledge can be easily separated from the

manner in which it is to be used (a classificatory taxonomy,

like those used in biology), as opposed to cases in which rep-

resentation and control are merged (a recipe).

Rychener (1976) rephrased this characterization of appropriate domains

in AI terms: If we can view the task at hand as a sequence of tran-

sitions from one state to another in a problem space (see Article n.A),

we can model this behavior with production systems, since each tran-

sition can be effectively represented by one or more production firings.

The following examples of important AI production systems may help

demonstrate their utility.

Waterman (1970) implemented an adaptive production system to play

the game of draw poker (see Article XV.D3, in Vol. m). The program

was adaptive in that it automatically changed the productions in its rule

base—it started with a set of fairly simple heuristics for playing poker

(when to raise, when to bluff, etc.) and extended and improved these

rules as it gained experience in actually playing the game. The fact

that knowledge in production systems is represented in a constrained,

modular fashion facilitated the learning aspect of the system, since the

program needed to analyze and manipulate its own representation.

Other examples of production systems that model human learning are

those of Hedrick (1976), Vere (1977), and Anderson, Kline, and Beasley

(1979).

The MYCIN system (Shortliffe, 1976; Davis, Buchanan, and Shortliffe,

1977) acts as a medical consultant, aiding in the diagnosis and selection

of therapy for patients with bacteremia or meningitis infections (see

Article vm.Bi, in Vol. n). It carries on an interactive dialogue with a

physician and is capable of explaining its reasoning. It also includes a

knowledge acquisition subsystem, TEIRESIAS, which helps expert phy-

sicians expand or modify the rule base (Article vn.B, in Vol. n).

MYCIN'S rule base contains several hundred production rules representing

human-expert-level knowledge about the domain. The system is

196 Knowledge Representation in

distinguished by its use of a backward chaining control structure (see

below) and inexact reasoning, involving confidence factors that are

attached to the conclusion part of each production to help determine

the relative strengths of alternative diagnoses.

Lenat (in press) modeled the process of discovery in mathematics,

viewed as heuristic search, in his AM production system (see Article

VTI.D2, in Vol. n). AM started with a minimal knowledge of mathe-

matical concepts and used heuristics, represented as production rules, to

expand its knowledge about these concepts and learn new ones. In the

course of its operation, AM discovered a large number of important

mathematical concepts, such as prime numbers and the arithmetic

functions, and also two mathematical concepts that had not been

discovered before. AM is especially important because of its sophis-

ticated data structures and control mechanisms.

Rychener (1976) built several production systems to reimplement a

number of AI systems that had been developed previously with other

techniques, including Bobrow's STUDENT, Newell and Simon's GPS, Fei-

genbaum's EPAM, Winograd's SHRDLU, and Berliner's CAPS. Rychener's

intent was to show that the production-system formalism was a natural

one for programming. His primary problem was the difficulty of build-

ing very complex control structures (Rychener, 1977).

Current Issues in the Design of Production Systems

Complexity of left- and right-hand sides. The structure of the two

sides of the productions in the rule base has been progressively extended

as the size and complexity of systems have increased, so that in many
current systems the left-hand side (LHS) is a LISP function that can

evaluate an arbitrarily complex condition. In some systems, the testing

of the LHS can even have side effects, so that the rule can alter the

context or change the control sequence without ever being fired.

Similarly, the form of the right-hand side (RHS) has been extended to

include variables, whose values are bound during the test phase of the

cycle, and to allow arbitrary programs to be run rather than just

making changes in the context. These programs usually specify actions

in terms of a set of domain- specific conceptual primitives. In some

systems (Riesbeck, 1975; Rychener, 1976) these actions could include

activation or deactivation of sets of other productions. Again, this rep-

resents a radical extension of the original production-system formalism.

Structure of the rule base and context. Of the three phases of each

production-system cycle—matching, conflict resolution, and action—the

matching process uses by far the most computational resources. As

C4 Production Systems 197

production systems have become bigger and more complex, questions of

efficiency have necessitated making both the rule base and the context

into more complex data structures. For example, to allow rapid

determination of which productions are applicable in a given situation

without checking through all of the rule base, the productions are often

indexed or partitioned according to conditions that will make them fire

(see Davis, in press; Lenat and McDermott, 1977). The context data

structure has increased in internal complexity both to make it more

efficient and to allow it to represent more complicated situations.

MYCIN'S context tree (Shortliffe, 1976), HEARSAY'S blackboard (Erman

and Lesser, 1975), and PROSPECTOR'S semantic net (Duda et al., 1978)

are examples of complex context data structures. A good example of

the work in organizing the rule base and database is that of

McDermott, Newell, and Moore (1978).

Conflict resolution. In practice, it is often the case that more than

one rule could fire in each cycle of the operation of a typical large

production system; the system is required to choose one rule from

among this set (called the conflict set). This conflict resolution phase of

each cycle is where basic cognitive traits like action sequencing,

attention focusing, interruptibility, and control of instability are realized.

Several different approaches to conflict resolution have been tried,

including choosing

—

1. the first rule that matches the context, where "first" is defined

in terms of some explicit linear order of the rule base;

2. the highest priority rule, where "priority" is defined by the

programmer according to the demands and characteristics of the

task (as in DENDRAL);

3. the most specific rule, that is, the one with the most detailed

condition part that matches the current context;

4. the rule that refers to the element most recently added to the

context;

5. a new rule, that is, a rule-binding instantiation that has not

occurred previously;

6. a rule arbitrarily;

7. not to choose—exploring all the applicable rules in parallel (as

in MYCIN).

Different systems use different combinations of these simple conflict-

resolution methods, some of which become quite complicated scheduling

algorithms (see, e.g., AM and HEARSAY). Good discussions of conflict

resolution can be found in Davis and King (1977). Also, McDermott

198 Knowledge Representation m

and Forgy (1978) discuss the way conflict-resolution strategies affect two

important characteristics for production systems: sensitivity, the ability

to respond quickly to changes in the environment, and stability, the

ability to carry out relatively long sequences of actions. They conclude

that no simple conflict-resolution strategy can be completely satisfactory.

Direction of inference. Research on deductive inference has rec-

ognized two fundamentally different ways that people reason. Sometimes

we work in a data driven, event driven, or bottom-up direction, starting

from the available information as it comes in and trying to draw

conclusions that are appropriate to our goals. This is how our sample

production system worked, for example. In production-system research

this is called a forward chaining method of inference. We sometimes

work the other way, however, starting from a goal or expectation of

what is to happen and working backwards, looking for evidence that

supports or contradicts our hunch. This is called goal driven, expec-

tation driven, or top-down thinking, and in production systems it is

referred to as backward chaining, since it requires looking at the action

parts of rules to find ones that would conclude the current goal, then

looking at the left-hand sides of those rules to find out what conditions

would make them fire, then finding other rules whose action parts con-

clude these conditions, and so on. MYCIN'S use of backward chaining is

described fully in Article vm.Bi, in Volume n.

Primitive vocabulary. As the complexity of the condition and action

parts of the productions in the rule base increases, there has been

greater concern about the nature of the expressions allowed—the kinds

of conditions and actions that can be expressed. A significant aspect of

the representation language issue concerns the choice of vocabulary or

semantic primitives, that is, the functions or predicates in terms of

which the rules and context elements are expressed (see Article m.C6).

Different systems will define their vocabulary at higher or lower levels,

depending upon the task to be accomplished.

Conclusion

Perhaps the final word on production systems is that they capture

in a manageable representation scheme a certain type of problem-solving

knowledge—knowledge about what to do in a specific situation. Al-

though this kind of knowledge is basically procedural, the production-

system formalism has many of the advantages of declarative rep-

resentation schemes, most importantly, modularity of the rules.

Furthermore, the way that the productions themselves are structured is

very similar to the way that people talk about how they solve problems.

C4 Production Systems 199

For this reason, production systems have been used as the backbone of

expert AI systems like DENDRAL, MYCIN, and PROSPECTOR (see

Chaps, vn, vm, and DC, in Vol. n). Research on these knowledge-based

expert systems, called knowledge engineering (Feigenbaum, 1977; Bern-

stein, 1977) is concerned not only with expert-level performance but also

with the interactive transfer of expertise—acquisition of knowledge from

human experts and explanation of reasoning to human users (Davis,

in press).

References

Winston (1977) gives a basic introduction to production systems with

examples. An excellent review of production systems and the issues

involved in their design was prepared by Davis and King (1977).

Current research in production-system design and applications is reported

in the collection of papers edited by Waterman and Hayes-Roth (1978).

C5. Direct (Analogical) Representations

There is a class of representation schemes, called analogical or direct

representations—like maps, models, diagrams, and sheet music—that can

represent knowledge about certain aspects of the world in especially

natural ways. This type of knowledge representation is central to many
AI tasks but seems at first quite different from the usual propositional

representation schemes like logic and semantic nets. Understanding the

sense in which direct and propositional representations are the same may
help clarify the meaning of concepts like representation, data structure,

and interpretative procedure.

Direct representations have been defined as schemes in which "prop-

erties of and relations between parts of the representing configuration

represent properties and relations of parts in a complex represented con-

figuration, so that the structure of the representation gives information

about the structure of what is represented" (Sloman, 1971). The sig-

nificant point here is the requirement of correspondence between the

relations in the representational data structures and the relations in the

represented situation. For example, a street map is a direct repre-

sentation of a city in the sense that the distance between two points on

the map must correspond to the distance between the places they

represent in the city. Hayes (1974) calls this form of connection

between the representation and the situation one of homomorphism

(structural similarity) rather than just denotation.

Direct representations may be contrasted with the more prevalent

propositional or Fregean forms (so called after Gottlob Frege, who
invented the predicate calculus), which do not require this homomorphic

correspondence between relations in the representation and relations in

the situation. Proximity of assertions in the database of a logic system,

for instance, indicates nothing about the location of objects in the

world. Note that the propositional and direct representations may ac-

tually use the same data structures but differ in how they use them

—

which properties of the data structures are used in what way by the

routines that operate on the representation to make inferences.

Continuing with the map example, if a routine for examining a map
retrieved all distances from an internal table, rather than looking at the

map, it would be pointless to say that the map was direct with respect

to distance.

Thus, it is the combination of the data structures and the semantic

interpretation function (SIF) manipulating them that should be referred

C5 Direct (Analogical) Representations 201

to as direct, and only with respect to certain properties (Pylyshyn, 1975,

1978). For example, a map (with a reasonable semantic interpretation

function) is direct with respect to location and hence distance, but not,

usually, with respect to elevation. For some problems, direct represen-

tation has significant advantages. In particular, the problem of updating

the representation to reflect changes in the world is simpler. For

example, if we add a new city to a map, we need only put it in the

right place. It is not necessary to state explicitly its distance from all

the old cities, since the distance on the map accurately represents the

distance in the world. See the discussion in Article m.C2 of the frame

problem (McCarthy and Hayes, 1969).

The distinction between direct and propositional representations has

also been the subject of discussions in psychology concerning the char-

acter of human memory, which seems to have properties of both types

(Pylyshyn, 1973). The next section of this article presents some AI

systems that use direct representations. The final section returns to a

discussion of their advantages and disadvantages.

Systems Using Analogical Representations

The Geometry Theorem Prover (Gelernter, 1963) was one of the

earliest automated theorem provers and was distinguished by its reliance

on a diagram to guide the proof. The system proved simple, high-school-

level theorems in Euclidean geometry like the following:

Given: Angle ABD equals angle DBC.

Segment AD perpendicular segment AB.

Segment DC perpendicular segment BC.

Prove: Segment AD equals segment CD.

Using problem reduction techniques, the system worked backward from

the goal to be proved.

In Gelernter's system, which is described fully in Article n.D3, the

problem diagram was used in two ways. The more important of these

was the pruning heuristic: "Reject as false any hypothesis (goal) that is

not true in the diagram." In other words, those subgoals that were

obviously false in the diagram were not pursued through the formal

proof methods. This use of the diagram to guide the solution search

resulted in the pruning of about 995 out of every 1,000 subgoals at each

level of search.

202 Knowledge Representation m

The other use of the diagram was to establish obvious facts

concerning, for example, the order in which points fall on a given line

and the intersection properties of lines in a plane. Many of these are

self-evident from the diagram but would be tiresome to prove from

fundamental axioms. In certain such circumstances, the program would

assume the fact to be true if it were true in the diagram, while

explicitly noting that it had made such an assumption. The program

was also able to add lines to the diagram, when necessary, to facilitate

the proof.

Work on the General Space Planner (Eastman, 1970, 1973) ad-

dressed the task of arranging things in a space (e.g., furniture in a

room) subject to given constraints that must be satisfied (e.g., room for

walkways and no overlapping). A simple problem is the following:

Given the space and the objects

1 2

and the constraints

(3) must be adjacent to (4)

(2) must be adjacent to (3)

(l) must be visible from (3)

(l) must not be adjacent to any other objects,

one solution is:

2 1

3

4

The system used a direct representation, called a variable domain

array, which was a specialization of the sort of two-dimensional diagram

used by Gelernter. Since the structure of the representation reflected

the structure of the space, with respect to the properties of size, shape,

C5 Direct (Analogical) Representations 203

and position, the system could be described as analogical for those prop-

erties. Space was partitioned into a set of rectangles, and in addition

to the above properties, two others that are particularly important for

the space-planning task were easily detectable from the variable-domain

array representation: (a) filled versus empty space and (b) overlapping

objects.

The system solved the problems by means of a depth-first search

algorithm, finding locations for successive objects and backing up when it

couldn't proceed without violating some constraint. The search was

facilitated by a constraint graph that represented, by restrictions on the

amount of area left, the effects of constraints between pairs of objects.

Thus, by attacking the most restrictive constraint first, the search was

relatively efficient. This method has been called constraint structured

planning.

Note that Eastman's work is in one sense the reverse of Gelernter's.

Gelernter's system performed search in a propositional space (sets of

formal statements) using an analogical representation (the diagram) for

guidance. Eastman's system performed search in an analogical space

(the diagrammatic array) using a propositional form for heuristic guid-

ance (the constraint graph).

WHISPER (Funt, 1976, 1977) was a system designed to reason ex-

clusively by the analogical representation. WHISPER operated in a sim-

plified blocks-world environment, solving problems like the following:

Given four blocks that start

in this configuration, what will

happen when block B tumbles onto block D?

204 Knowledge Representation HI

The system had three components:

1. Diagram: An array that represented the two-dimensional scene

in the obvious way, as shown above;

2. Retina: A set of parallel receptors arranged in concentric circles,

with each receptor viewing a small part of the diagram;

3. High-level reasoner: The domain-dependent part of the system

that contained qualitative physical knowledge (in this case, it

employed information regarding the behavior of rigid bodies

when acted upon by gravity).

The significance of the diagram to WHISPER lay in the fact that there

were two types of analogues present—analogues between static states of

the diagram and the world and also between dynamic behavior of ob-

jects in the diagram and of objects in the world.

The correspondences between the diagram and the world were simple

and well defined; no complicated processes were required to map from

one to the other. A number of properties, such as position, orientation,

and size of blocks, were represented analogically. For these properties,

it was not necessary to perform complicated deductions, since the

desired information "fell out" of the diagrams. For example, as in

Eastman's space planner, to test whether or not a particular area of the

world was empty (i.e., not occupied by any block), the system had only

to look at the corresponding area of the diagram. With most propo-

sitional representations, it would be necessary to examine each block

individually, testing whether or not that block overlapped the space in

question (see, e.g., Fahlman, 1974). The retina also provided a number

of perceptual primitives, including center of area, contact finding, and

similarity testing. The high-level reasoner never looked at the diagram

directly. Note that certain properties (color and weight) were not

represented in the analogue. To reason about these, normal inference-

making processes would be necessary.

Baker (1973) had earlier suggested a similar representational formal-

ism. Like Funt, he envisioned a two-dimensional array to represent the

diagram; however, he also discussed the possibility of retaining spatial

smoothing information within each cell of the array, to remove some of

the error caused by the coarseness of the array. Both Funt and Baker

suggested that the parallelism of their systems, pursuing several goals

simultaneously, coupled well with the analogical representations. Indi-

vidual elements of their processors (in Funt's case, the retina) could

operate autonomously, with connections only to their (spatially)

neighboring cells. In this sort of network, arbitrary transformations,

through combinations of translation and rotation, could be represented.

C5 Direct (Analogical) Representations 205

Issues Concerning Direct Representations

The work done to date on direct representations raises a number of

questions. First, following Sloman (1975), we should clarify some com-

mon misconceptions about direct representations. Analogical represen-

tations need not be continuous, nor need they be two-dimensional; an

ordered list of numbers, for example, can be analogical with respect to

size. Also, like propositional representations, analogical ones may have a

grammar that defines what data structures are well formed, or "legal."

The difference between the two types of representation schemes lies in

the nature of the correspondence between aspects of the structure of the

representation and the structure of the represented situation.

One of the advantages of analogical representations over their prop-

ositional counterparts relates to the difference between observation and

deduction. In some situations, the former can be accomplished relatively

cheaply in terms of the computation involved, and direct representations

often facilitate observation since important properties are "directly ob-

servable" (Funt, 1976). For example, determining whether three points

are collinear might be much easier using a direct representation (a

diagram) than it would be to calculate analytically using their coor-

nates. As another example, Filman (1979) implemented a chess reason-

ing system that relied on both inference (searching several moves ahead)

and observation (looking at a semantic model of the current state of the

chess board).

Funt (1976) relates a more abstract justification for the use of ana-

logical representations. A propositional representation of a situation—for

example, a set of statements in the predicate calculus—will often admit

to several models. In other words, there might be many situations of

the world that would be represented by the same statements, since they

are distinguished in aspects that are not captured in the representation.

Direct representations, on the other hand, are usually more exhaustive

and specific, admitting fewer models and, in turn, making for more

efficient problem solving.

In addition, as illustrated by Gelernter's work, the use of analogical

representations can facilitate search. Constraints in the problem situ-

ation are represented by constraints on the types of transformations

applied to the representation, so that impossible strategies are rejected

immediately.

There are, however, some disadvantages to the use of these direct

representations. First, the tendency toward more specific inference

schemes mentioned earlier has its drawbacks—as Sloman (1975) points

out, there are times when generality is needed. For example, consider

206 Knowledge Representation HI

the problem "If I start in room A and then move back and forth

between room A and room B, which room will I be in after exactly 377

moves?" For this case, the best approach is not to simulate the action,

but to generalize the effects of odd and even numbers of moves.

Second, Funt notes that some features of the analogue may not hold

in the actual situation, and we might not know which ones these are.

This is related to the general problem of knowing the limits of the rep-

resentation.

Third, analogical representations become unwieldy for certain kinds

of incomplete information. That is, if a new city is added to a map,

its distance from other cities is obtained easily. But suppose that its

location is known only indirectly, for example, that it is equidistant

from cities Y and Z. Then the distance to other cities must be rep-

resented as equations, and the power of the analogue has been lost.

To conclude, direct representations are analogous with respect to

some properties to the situation being represented. Some properties

(especially physical ones) may be relatively easily represented analog-

ically, resulting in significant savings in computation for certain types of

inferences.

References

General discussions of the research on direct representations in AI

are Funt (1976) and Sloman (1971, 1975). Related psychological con-

cerns are discussed by Pylyshyn (1975, 1978).

C6. Semantic Primitives

The knowledge representation formalisms described in this chapter

—

logic, procedures, semantic nets, productions, direct representations, and

frames—are all ways of expressing the kinds of things we express in

English, that is, the kinds of things we know. Having chosen a rep-

resentation technique, another major question in the design of an AI

system concerns the vocabulary to be used within that formalism. In a

logic-based representation, for example, what predicates are to be used?

In a semantic net, what node and link types should be provided?

Research on semantic primitives is concerned with this problem of

establishing the representational vocabulary. This article, then, is not

about a knowledge representation technique per se, but rather about a

representational issue that concerns all of the techniques used in AI.

The term semantic primitive has no clear-cut definition. As a

starting point, one may think of a primitive as any symbol that is used

but not defined within the system. The term is so used by Wilks, for

example, who accordingly concludes that "primitives are to be found in

all natural language understanding systems—even those . . . that argue

vigorously against them" (Wilks, 1977c). A second and narrower usage

takes semantic primitives to be elements of meaning into which the

meanings of words and sentences can be broken down; examples of such

work come from linguistics (e.g., Jackendoff, 1975, 1976) and psychology

(Miller, 1975; Miller and Johnson-Laird, 1976; Norman and Rumelhart,

1975), as well as from AI.

Additional issues have arisen as to what primitives really are, how
they may be used in reasoning, and what alternatives there are to using

primitives. Winograd (1978) provides a general survey and analysis of

such questions. Some of these are illustrated in the following discussion

of the two major AI systems for natural language understanding that

are characterized by their authors as using semantic primitives.

Wilks 's System

Yorick Wilks, now of the University of Essex, has been developing a

natural language system for machine translation since 1968 (described

fully in Article IV.F2). The system accepts paragraphs of English text,

producing from them an internal representation that is a data structure

composed of nodes representing semantic primitives. From this struc-

ture, a French translation of the input is generated. The translation

serves as a test of whether the English has been understood, which is a

208 Knowledge Representation HI

more objective test than just inspection of the internal representation.

The translation task also has the advantage, Wilks suggests, that correct

translation of the input may often require a shallower understanding

than would the ability to answer arbitrary questions about it. Con-

sistent with these reasons for the choice of translation as a task, most

of the effort in Wilks 's system is spent in converting the English input

to the internal representation.

The first major problem that Wilks addressed was the resolution of

word-sense ambiguity, for this was the problem on which earlier at-

tempts at machine translation had foundered (see Article rv.B). For ex-

ample, in the sentence The old salt was damp, it is necessary to

determine from the surrounding context whether salt means a chemical

compound or a sailor. Wilks's system also addressed problems involving

other kinds of ambiguity and extended word senses, as for the word

drink in My car drinks gas.

The general idea of Wilks's approach, which he calls preference

semantics, is to use knowledge of possible word meanings to dis-

ambiguate other words. For example, part of the meaning of drink is

that it prefers a fluid object, and part of the meanings of wine and gas

is that they are fluids. If the best fit among possible word senses does

not satisfy all preferences (such as the preference of drink for an

animate subject), then an extended word sense can be accepted. The

formalism within which preferences are expressed, Wilks suggests, is

closer to a frame representation than to a semantic net.

As the description above should make clear, a central requirement in

Wilks's system is a dictionary distinguishing among the various senses of

words that can appear in the input text. Definitions in the dictionary

use a vocabulary of semantic primitives, grouped into five classes. Ex-

amples from each class are given below:

Ent i ti es

Actions

MAM a human

STUFF a substance

PART a part of an entity

CAUSE causing something to happen

BE being as equivalence or predication

FLOW moving as liquids do

C6 Semantic Primitives 209

Cases

TO direction toward something

IN containment

Qua I i f i ers

GOOD morally correct or approved

MUCH much, applied to a substance

Type indicators

HOW being a type of action—for adverbial constructions

KIND being a quality—for adjectival constructions

In addition to the primitive elements, of which there are currently over

80, WUks uses several elements, distinguished by names beginning with

an asterisk, that are defined as equivalent to a class of primitives. For

example, *ANI (animate) encompasses MAN, FOLK (a human group),

BEAST (a nonhuman animal), and certain others. A typical definition

using the primitives is the following definition for one sense of the word

break:

(BREAK: (*HUN SUBJ)

(*PHYS0B OBJE)

((((N0TWH0LE KIND) BE) CAUSE) GOAL)

(THING INST)

STRIK)

This says roughly that break means a STRIKing, done preferably by a

HUMan SUBJect and preferably with an INSTrument that is a THING,

with the GOAL of CAUSing a PHYSical OBject to BE NOT WHOLE.
Words other than verbs are also defined by such structured formulas.

A detailed description of the syntax of such word-sense definitions, or

semantic formulas, is given in Wilks (1977c).

The completed representation of a text is a structure made up of

such word-sense formulas. At a level corresponding to the clause or

simple sentence, formulas are arranged into triples, or templates, stand-

ing for an agent, an action, and an object; any of the three may itself

be qualified by other formulas. For example, Small men sometimes

father big sons would be structured as follows:

[man] < [father] < [sons]
A A A

[small] [sometimes] [big]

Here the bracketed English words should be imagined as being replaced

by the semantic formulas representing their appropriate sense. Rela-

tions among templates are indicated at a still higher level of structure.

210 Knowledge Representation IE

What is the status of the primitive vocabulary in Wilks's system?

First, he argues, primitives are not essentially different from natural-

language words. A semantic description in terms of primitives is just a

description in "a reduced micro-language, with all the normal weaknesses

and vagueness of a natural language" (Wilks, 1977c). The justification

for using a language of primitives, then, is that it provides "a useful

organizing hypothesis ... for an AI natural language system."

Second, Wilks claims that individual primitives have their meaning

in the same way that English words do: neither by direct reference to

things, nor by correspondence to nonlinguistic psychological entities, but

only by their function within the overall language.

Third, in light of the nature of primitives, there is no one correct

vocabulary for a primitive language, any more than there is a correct

vocabulary for English. The test of the adequacy of a particular set of

primitives is an operational one—the success or failure of the linguistic

computations that use it. As suggestive evidence that Wilks's own set

of primitives will indeed turn out to be adequate, he observes that it is

very similar to the 80 words that occur most frequently in definitions in

Webster's dictionary.

Finally, there are some general considerations in choosing a set of

primitives. Wilks (1977c) identifies the following properties as desirable:

1. Finitude. The number of primitives should be finite and should

be smaller than the number of words whose meanings the rep-

resentation scheme is to encode.

2. Comprehensiveness. The set should be adequate to express and

distinguish among the senses of the word set whose meanings it

is to encode.

3. Independence. No primitive should be definable in terms of other

primitives.

4. Noncircularity. No two primitives should be definable in terms

of each other.

5. Primitiveness. No subset of the primitives should be replacable

by a smaller set.

A qualification should be noted concerning the property of compre-

hensiveness: The definition in primitives of a word sense is not required

to be exhaustive of meaning. Wilks cites hammer, mallet, and axe as

terms among which a representation in primitives cannot be expected to

distinguish. In addition, the definition of a term is not expected to say

everything; Wilks distinguishes between the meanings of words, which

definitions express, and facts about things. The definition of water, for

example, might say that water is a liquid substance, but not that water

C6 Semantic Primitives 211

freezes into ice. Facts of the latter sort are expressed in Wilks's system

as commonsense inference rules, which are separate from the dictionary

and are used only as a last resort in disambiguation.

Schank's Conceptual Dependency Theory

The conceptual dependency theory of Roger Schank, now of Yale

University, has been under development since 1969. Its most distinctive

feature, the attempt to provide a representation of all actions using a

small number of primitives, was first introduced in 1972. (See Articles

IV.F5 and IV.F6 on Schank's natural language understanding systems.)

There are significant differences between the systems of Schank and

Wilks, both in the general outline of their systems and in their views of

primitives. Wilks's system, for example, is oriented toward the task

of machine translation, whereas conceptual dependency theory makes

broader claims. First, Schank emphasizes task independence. The theory

has been used, in fact, as the basis for programs that, among other

things, can paraphrase an input text, translate it to another language,

draw inferences from it, or answer questions about it. Second, the

theory is offered not only as a basis for computer programs that

understand language, but also as an intuitive theory of human language

processing.

Consistent with these claims, Schank holds that it is the business of

an adequate representation of natural-language utterances to capture

their underlying conceptual structure. A first requirement is that the

representation be unambiguous, even though the input may contain syn-

tactic ambiguity, as in / saw the Grand Canyon flying to New York, or

semantic ambiguity, as in The old man's glasses were filled with sherry.

The speaker of an ambiguous sentence usually intends an unambiguous

meaning, so the representation is expected to reflect only the most likely

version of what was intended.

A second requirement is that the representation be unique—that is,

that distinct sentences with the same conceptual content should have

the same representation. Some examples of groups of sentences that are

all represented the same way are

/ want a book.

I want to get a book.

I want to have a book.

and

Don't let John out of the room.

Prevent John from getting out of the room.

212 Knowledge Representation EI

The principle of uniqueness of representation has been characterized

as the basic axiom of the system. It has also been identified as

accounting for human abilities to paraphrase and translate text. The

problem of paraphrase
—"how sentences which were constructed differ-

ently lexically could be identical in meaning"—is a major theme

throughout Schank's work (Schank, 1975c).

To obtain unique, unambiguous representations of meaning, Schank's

system relies principally on a set of 11 primitive ACTs (Schank, 1975a;

Schank and Abelson, 1977):

Physical acts

PROPEL apply a force to a physical object

MOVE move a body part

INGEST take something to the inside of an animate object

EXPEL force something out from inside an animate object

GRASP grasp an object physically

Acts characterized by resulting state changes

PTRAMS change the location of a physical object

ATRAMS change an abstract relationship, such as

possession or ownership, with respect to an object

Acts used mainly as instruments for other acts

SPEAK produce a sound

ATTEND direct a sense organ toward a stimulus

Mental acts

MTRANS transfer information

MBUILD construct new information from old information

There are several other categories, or concept types, besides the primi-

tive ACTs in the representational system. They are:

Picture Producers (PPs), which are physical objects. Some special

cases among the PPs are natural forces like wind and three

postulated divisions of human memory: the Conceptual Pro-

cessor (where conscious thought takes place), the Intermediate

Memory, and the Long Term Memory.

Picture Aiders (PAs), which are attributes of objects.

Times.

Locations.

Action Aiders (AAs), which are attributes of ACTs.

Only a little work has been done on reducing these latter categories to

a primitive set; see Russell (1972) and Lehnert (1978) on the analysis of

C6 Semantic Primitives 213

picture producers and Schank (1975a) on the treatment of picture aiders

as attribute-value pairs.

Detailed rules are provided for the ways that elements of these

categories can be combined into representations of meaning. There are

two basic kinds of combinations, or conceptualizations. One involves an

actor (a picture producer—PP) doing a primitive ACT; the other in-

volves an object (again, a PP) and a description of its state (a picture

aider—PA). Conceptualizations can be tied together by relations of in-

strumentality or causation, among others.

The primitive elements that occur in conceptualizations are not

words, according to Schank, but concepts; they reflect a level of thought

underlying language rather than language itself. Consequently, repre-

sentations of text in conceptual dependency are said to be language-free.

The task of translation, then, becomes only one task among many; it is

accomplished by parsing from one language into conceptual dependency

and then generating text in the second language from the conceptual

dependency representation.

The notion of language-free primitive concepts requires explication.

For Schank, as for Wilks, the justification for using primitives is func-

tional. Schank differs from Wilks, however, in his choice of the sort of

function to be optimized, as well as in his view of primitives as

language-free and psychologically plausible. Schank particularly empha-

sizes the computational advantages, to both programs and people, of

storing propositions in a canonical form (Schank, 1975b). This requires,

in Schank's view, that information implicit in a sentence be made

explicit (Schank, 1975a; Schank and Abelson, 1977). Obtaining the

implicit information in turn requires inferring, and it is as an aid to

making inferences that the use of primitives receives its most important

justification:

Rather than stating that if you see something then you know it

and if you hear something then you know it and if you read

something then you know it and so on, we simply state that

whenever an MTRANS exists, a likely inference is that the

MTRANSed information is in the mental location LTM [Long Term
Memory] (our representation for "know"). This is a tremendous

savings of time and space. (Schank, 1975b, p. 40)

Each primitive ACT, then, entails its own set of inferences. As a fuller

example, the following are the main inferences from the fact that X
PTRANSed Y from W to Z:

1. Y is now located at Z.

2. Y is no longer at location W.

214 Knowledge Representation EI

3. If Z = X, or Z is human and requested the PTRANS, then Z
will probably do whatever one ordinarily does with Y. More-

over, Z probably will become pleased by doing this. (Schank,

1975a, p. 71)

Such inferences provide both the criterion for choosing a set of prim-

itives and the definition of what primitives are. The primitive ACTs,

Schank and Abelson (1977) state, are no more than the sets of infer-

ences to which they give rise. Moreover:

The theoretical decision for what constitutes a primitive ACT is

based on whether the proposed new ACT carries with it a set of

inferences not already accounted for by an ACT that is already in

use. Similarly, a primitive ACT is dropped when we find that its

inferences are already handled by another ACT. (Schank, 1975b,

p. 40)

In his earlier work, Schank (1973a) claimed that the primitive ACTs
of conceptual dependency, together with some set of possible states of

objects, were sufficient to represent the meaning of any English verb. It

soon became clear, however, that additional mechanisms would be

needed for a general-purpose language-understanding system. For exam-

ple, there are problems of quantification and of metaphor, which have

not yet been addressed (Schank and Abelson, 1977). There are prob-

lems raised by the fact that natural-language communications often

presuppose a great deal of background knowledge, some of which has to

do with the typical course of events in commonplace situations like

eating in a restaurant or taking a bus (see Article m.C7 on frame

systems). Finally, of particular importance with respect to the use of

primitives, there are problems arising from the fact that conceptual

dependency generally expresses the meaning of an action verb only in

terms of its physical realization. One example is the reduction of kiss

to MOVE lips to lips (Schank and Abelson, 1977). The inadequacy of

this representation becomes especially apparent in light of the claim that

no information is lost by the use of primitive ACTs to represent actions.

Recently Schank has added several new devices to his repre-

sentational system to reflect the purposive aspects of actions as well as

their physical descriptions. These include goals, which can be realized

by appropriate sequences of acts; scripts, which provide such sequences

in simple stereotyped situations; plans, which provide a more flexible

way of specifying the appropriate action sequences, including the treat-

ment of a whole set of alternative sub-sequences as a single subgoal;

and themes, which include people's occupations (e.g., lawyer), their

relationships with others (e.g., love), and their general aims (e.g., getting

C6 Semantic Primitives 215

rich) and which are offered as the source of their goals. The

representation of a piece of text is thus extended to try to take into

account not only what caused what, but also what was intended to

cause what and why the actor might have had such an intention in the

first place. In addition, Schank has recently supplemented the primitive

ACTs with several social ACTs—AUTHORIZE, ORDER, DISPUTE, and

PETITION—in order to represent yet another dimension of human
actions more readily. None of these devices, however, is characterized

as introducing a new set of primitives.

References

The best descriptions of the two systems using semantic primitives

in AI discussed here are Wilks (1975c) and Schank and Abelson (1977).

Norman and Rumelhart (1975) describe a computer model of human
memory, MEMOD, and discuss the psychological basis of the semantic

primitives used in their model (see also Article XI.E4, in Vol. m). See

Wilks (1977a, 1977c) and Winograd (1978) for further discussions of the

issue of semantic primitives.

C7. Frames and Scripts

There is abundant psychological evidence that people use a large,

well-coordinated body of knowledge from previous experiences to inter-

pret new situations in their everyday cognitive activity (Bartlett, 1932).

For example, when we visit a restaurant where we have never been

before, we have an extensive array of expectations based on experience

in other restaurants about what we will find: menus, tables, waiters,

and so forth. In addition to these expectations about the objects in a

typical restaurant, we have strong expectations about the sequences of

events that are likely to take place. Representing knowledge about the

objects and events typical to specific situations has been the focus of the

AI knowledge-representation ideas called frames and scripts. Frames

were originally proposed by Minsky (1975) as a basis for understanding

visual perception, natural-language dialogues, and other complex behav-

iors. Scripts—frame-like structures specifically designed for representing

sequences of events—have been developed by Schank and Abelson (1977)

and their colleagues. Both refer to methods of organizing the knowledge

representation in a way that directs attention and facilitates recall and

inference.

Organizing Knowledge and Expectations

Frames provide a structure, a framework, within which new data are

interpreted in terms of concepts acquired through previous experience.

Furthermore, the organization of this knowledge facilitates expectation-

driven processing, looking for things that are expected based on the

context one thinks one is in. The representational mechanism that

makes possible this kind of reasoning is the slot, the place where

knowledge fits within the larger context created by the frame. For

example, a simple frame for the generic concept of chair might have

slots for number of legs and style of back. A frame for a particular

chair has the same slots—they are inherited from the CHAIR frame—but

the contents of the slots are more fully specified:

CHAIR Frame

Special ization-of: FURNITURE

Number-of- I egs

:

an integer (DEFAULT=4)

Sty I e-of-back

:

straight, cushioned, . . .

l\lumber-of-arms

:

0, 1, or 2

C7 Frames and Scripts 217

JOHN'S-CHAIR Frame

Speci a I i zation-of

:

CHAIR

Number-of- I egs: 4

Sty I e-of-back

:

cushioned

Number-of-arms:

By supplying a place for knowledge, and thus creating the possibility of

missing or incompletely specified knowledge, the slot mechanism per-

mits reasoning based on seeking confirmation of expectations
—

"filling in

slots."

To illustrate some of the current ideas about slots and frames and

how they might be used by a frame-based reasoning system, consider

the following example of a Restaurant Frame. The terminology used

for this example is intended only to give a sense of the structure of

knowledge in a frame and does not follow any of the varied formalisms

developed by the different researchers in this area (e.g., Minsky, 1975;

Bobrow and Winograd, 1977b; Schank and Abelson, 1977; Szolovitz,

Hawkinson, and Martin, 1977; Goldstein and Roberts, 1977; Brachman,

1978; Aikins, 1979; Stefik, 1980).

Generic RESTAURANT Frame

Speci a I i zation-of : Busi ness-Establ ishment

Types:

range: (Cafeteria, Seat-Yoursel f , Wa i t-To-Be-Seated)

default: Wa i t-to-be-Seated

if-needed: IF plastic-orange-counter THEM Fast-Food,

IF stack-of-trays THEM Cafeteria,

IF wa it-for-wa i tress-sign or reservations-made

THEM Wait-To-Be-Seated,

OTHERWISE Seat-Yoursel f.

Location

:

range: an ADDRESS

if-needed: (Look at the MENU)

Name:

if-needed: (Look at the MENU)

Food-Sty I e

:

range: (Burgers, Chinese, American, Seafood, French)

default: American

if-added: (Update Alternatives of Restaurant)

218 Knowledge Representation IE

Times-of-Operation

:

range: a Time-of-Day

default: open evenings except Mondays

Payment-Form:

range: (Cash, CreditCard, Check, Washing-Dishes-Script)

Event-Sequence:

default: Eat-at-Restaurant Script

A I ternati ves

:

range: all restaurants with same FoodSty I

e

if-needed: (Find all Restaurants with the same FoodStyle)

There are several different kinds of knowledge represented in this ex-

ample. The Specialization-of slot is used to establish a property inher-

itance hierarchy among the frames, which in turn allows information

about the parent frame to be inherited by its children, much like the

ISA link in semantic net representations (see Article m.C3). Note that

the Location slot has subslots of its own—slots can have a complex,

frame-like structure in some systems. The contents of the Range slot in

this generic restaurant example is an expectation about what kinds of

things the Location of a restaurant might be. And the If-Needed slot

contains an attached procedure that can be used to determine the slot's

value if necessary (see discussion of procedural attachment below).

Another important slot type is Default, which suggests a value for the

slot unless there is contradictory evidence. Many other types of slots

are used in the various frame systems, and the descriptions here are

quite incomplete, but they will at least give an idea of the kinds of

knowledge represented in frames.

As indicated in the Event-Sequence slot, knowledge about what typ-

ically happens at a restaurant might be represented in a script, like the

one below:

EAT-AT-RESTAURANT Script

Props: (Restaurant, Money, Food, Menu, Tables, Chairs)

Roles: (Hungry-Persons, Wait-Persons, Chef-Persons)

Poi nt-of-Vi ew: Hungry-Persons

Ti me-of-Occurrence: (Times-of-Operation of Restaurant)

Place-of-Occurrence

:

(Location of Restaurant)

C7 Frames and Scripts 219

Event-Sequence

:

first: Enter-Restaurant Script

then: if (Wa i t-To-Be-Seated-Sign or Reservations)

then Get-Na i tre-d's-Attention Script

then: PI ease-Be-Seated Script

then: Order-Food-Script

then: Eat-Food-Scri pt unless (Long-Wait) when

Ex it-Restau rant- Angry Script

then: if (Food-Quality was better than Palatable)

then Compl i ments-To-The-Chef Script

then: Pay-For-It-Scri pt

finally: Leave-Restaurant Script

This is a rough rendition in English of the type of Restaurant script

described by Schank and Abelson (1977). The script specifies a normal

or default sequence of events as well as exceptions and possible error

situations. The script also requires the use of a few static descriptions

such as Props and Roles that refer to other frames. Scripts are de-

scribed more fully in Article IV.F6.

Procedural Knowledge in Frames and Scripts

Underlying the declarative structure of frames and scripts—the way

that they organize the representation of static facts—is an important

dynamic or procedural aspect of frame-based systems. In particular,

procedures can be attached to slots to drive the reasoning or problem-

solving behavior of the system. (See the general discussion of

procedural representation of knowledge in Article m.C2.) In some frame-

based systems, attached procedures are the principal mechanism for

directing the reasoning process, being activated to fill in slots, If-Needed,

or being triggered when a slot is filled (Bobrow et al., 1977).

Filling in slots. After a particular frame or script has been selected

to represent the current context or situation, the primary process in a

frame-based reasoning system is often just filling in the details called for

by its slots. For example, after selecting the Generic Restaurant Frame

above, one of the first things we might want the system to do is to

determine the value of the Type slot. This could be accomplished in

one of several ways. Sometimes the type is directly inherited, but in

this case there are several alternatives. For instance, the default res-

taurant type can be used if there are no contraindications, or the

attached If-Needed procedure can be used to decide.

Default and inherited values are relatively inexpensive methods of

filling in slots; they don't require powerful reasoning processes. These

220 Knowledge Representation EI

methods account for a large part of the power of frames—any new

frames interpreting the situation can make use of values determined by

prior experience, without having to recompute them. When the needed

information must be derived, attached procedures provide a means of

specifying appropriate methods that can take advantage of the current

context, namely, slot-specific heuristics. In other words, general problem-

solving methods can be augmented by domain-specific knowledge about

how to accomplish specific, slot-sized goals.

Besides directing the gathering of further information, filling in the

slots provides confirmation that the frame or script is appropriate for

understanding the scene or event. For example, Schank's script-based

story-understander, SAM, can be said to have understood a written story

when each slot in the appropriate script has been filled by an event in

the story, either explicit in the text or implied (see Article IV.F6).

Should the frame or script be found to be inappropriate, attached pro-

cedures can trigger transfer of control to other frames.

Triggers. Another frequently used form of procedural attachment

is routines that are activated when the value of a slot is found or

changed. These "trigger" procedures implement event- or data-driven

processing, since they take over control only when certain events or

data occur (see Article m.C4). For example, the If-Added procedure in

the Food-Style slot of the Generic Restaurant Frame is used to modify

the list of alternative restaurants once a particular cuisine is chosen.

In some systems, trigger procedures attached to special slots in the

frame are used to decide what to do in the event that the frame is

found not to match the current situation. For instance, if the Eat-at-

Restaurant script were to discover a food line and a stack of trays, it

might trigger the Eat-at-Cafeteria script as being more appropriate.

This triggering procedure has been used in various frame-driven systems

for medical diagnosis (Szolovitz, Hawkinson, and Martin, 1977; Aikins,

1979). Since a number of related diseases might share a core set of

signs and symptoms, the ability to make a differential diagnosis depends

strongly on the ability to detect those factors that rule out or confirm a

particular diagnosis. Typically, in medicine, when one diagnosis is ruled

out, a similar but more likely disease is indicated.

Current Research on Frames and Scripts

A number of experimental prototype systems have been implemented

to explore the idea of frame-based processing introduced by Minsky

(1975). The following descriptions are intended to give an indication of

the domains and problems that researchers in this area address.

C7 Frames and Scripts 221

Bobrow and his associates (1977) have experimented with frame-

based natural language understanding in their GUS system, and their

article includes clear examples of how frames might be used to control a

system's reasoning. Designed as a prototype of an automated airline

reservation assistant, the system attempted to demonstrate how various

aspects of dialogue understanding—such as handling mixed-initiative

dialogues, indirect answers, and anaphoric references—could be facilitated

by the ability to make expectations and defaults available with frames.

This system was also used to explore procedural attachment issues.

Concurrently with the design of GUS, a frame-based programming

and representation language called KRL (Knowledge Representation

Language) was developed to explore frame-based processing (Bobrow and

Winograd, 1977b). Many of the specific ideas about how frame-based

systems might work were first suggested by the KRL research group.

As part of their early design work, the KRL group implemented several

AI systems in the first version of the language (Bobrow and Winograd,

1977a). The report details a number of difficulties and shortcomings

they encountered, some of which are inherent in frame-based processing.

Other work with frame-based systems includes the NUDGE system,

developed by Goldstein and Roberts (1977), which was used to un-

derstand incomplete and possibly inconsistent management-scheduling

requests and to provide a complete specification for a conventional

scheduling algorithm. Implemented in their FRL-0 language, the sys-

tem also used a frame-based semantics to resolve anaphoric requests

(Bullwinkle, 1977).

A program that solves physics problems stated in English was de-

veloped by Novak (1977). It used a set of canonical object frames, such

as Point, Mass, and Pivot, to interpret the actual objects and their

relations in a number of statics problems. These canonical object

frames were used to construct a view of an actual object as an abstract

object, thereby simplifying the problem representation.

The UNITS package, developed by Stefik (1980), is a useful imple-

mentation of a variety of ideas about frame systems in a transportable

programming package. The UNITS package has been used to build

working AI systems for scientific applications.

Finally, work on KLONE (Brachman, 1978) represents current

research in the theory and design of frame-based systems.

Work on script-based processing in AI has for the most part been

carried on by Schank and Abelson (1977) and their colleagues. They

have used scripts to investigate the notions of causality and the under-

standing of sequences of events. In particular, the SAM program

(Article IV.F6) attempts to understand short stories using a script to

222 Knowledge Representation HI

guide the interpretation of occurrences in the story. After establishing

the appropriate script and filling some of its slots with information from

the story, SAM can make inferences from script-based information about

similar events.

Summary

Frames and scripts are recent attempts by AJ researchers to provide

a method for organizing the large amounts of knowledge needed to per-

form cognitive tasks. Much of the work in this area is quite conjec-

tural, and there are many fundamental differences in approach among

the researchers who have designed frame-based systems. The devel-

opment of large-scale organizations of knowledge and the concomitant

ability of these structures to provide direction for active cognitive

processing are the current direction of AI research in knowledge

representation. A number of serious problems must be solved before the

conjectured benefits of frames will be realized.

References

Minsky (1975) coined the word frame and set off the recent flurry of

AI work in the area. The clearest detailed descriptions of frame-based

reasoning systems are Kuipers (1975) and Bobrow and Winograd (1977b).

Fahlman (1975), Charniak (1978), and Brachman (1978) discuss some

important current research issues in this area. Schank and Abelson

(1977) provide an excellent discussion of AI research on scripts.

Chapter IV

Understanding Natural Language

CHAPTER IV: UNDERSTANDING NATURAL LANGUAGE

A. Overview / 225

B. Machine Translation / 288

C. Grammars / 289

1. Formal Grammars / 289

2. Transformational Grammars / 245

8. Systemic Grammar / 249

4. Case Grammars / 252

D. Parsing / 256

1. Overview of Parsing Techniques / 256

2. Augmented Transition Networks / 268

8. The General Syntactic Processor / 268

E. Text Generation / 278

F. Natural Language Processing Systems / 281

1. Early Natural Language Systems / 281

2. Wilks's Machine Translation System / 288

8. LUNAR / 292

4. SHRDLU / 295

5. MARGIE / 800

6. SAM and PAM / 806

7. LIFER / 816

A. OVERVIEW

The MOST COMMON WAY that people communicate is by speaking or

writing in one of the "natural" languages, like English, French, or

Chinese. Computer programming languages, on the other hand, seem

awkward to humans. These "artificial" languages are designed so that

sentences have a rigid format, or syntax, making it easier for compilers

to parse the programs and convert them into the proper sequences of

computer instructions. Besides being structurally simpler than natural

languages, programming languages can express easily only those concepts

that are important in programming: "Do this, then do that," "See

whether such and such is true," and so forth. The things that can be

meant by expressions in a language are referred to as the semantics of

the language.

The research described in this chapter concerns the development of

computer programs that try to deal with the full range of meaning in

languages like English. If computers could understand what people

mean when people type (or speak) English sentences, the systems would

be easier to use and would fit more naturally into people's lives.

Furthermore, AI researchers hope that learning how to build computers

that can communicate as people do will extend our understanding of the

nature of language and of the mind.

So far, programs have been written that are quite successful at pro-

cessing somewhat constrained input: The user is limited in either the

structural variation of his sentences (syntax constrained by an artificial

grammar) or in the number of things he can mean (in domains with

constrained semantics). Some of these systems are adequate for building

English "front ends" for a variety of data processing tasks and are

available commercially. But the fluent use of language typical of hu-

mans is still elusive, and understanding natural language (NL) is an

active area of research in AI.

This article presents a brief sketch of the history of research in

natural language processing and an idea of the state of the art in NL.

The next article is a historical sketch of research on machine translation

from one language to another, which was the subject of the very earliest

ideas about processing language with computers. It is followed by sev-

eral technical articles on some of the grammars and parsing techniques

that AI researchers have used in their programs. Then, after an article

on text generation, that is, the creation of sentences by a program to

226 Understanding Natural Language IV

express what it wants to say, there are several articles describing the

NL programs themselves: the early systems of the 1960s and the major

research projects of the last decade, including Wilks's machine

translation system, Winograd's SHRDLU, Woods's LUNAR, Schank's

MARGIE, SAM, and PAM, and Hendrix's LIFER.

Two other chapters of the Handbook are especially relevant to NL
research. Speech understanding research (Chap, v) attempts to build

computer interfaces that understand spoken language. In the 1970s, re-

search on speech and understanding natural language was often closely

linked. Increasingly inseparable from NL research is the study of

knowledge representation (Chap, m), because AI researchers have come

to believe that a very large amount of knowledge about the world is

needed to understand even simple dialogues. AI research in the repre-

sentation of knowledge explores ways of making this world knowledge

accessible to the computer program by building representational data

structures in the machine's memory.

Early History

Research in computational linguistics, the use of computers in the

study of language, started soon after computers became available in the

1940s (Bott, 1970). The machine's ability to manipulate symbols was

readily applied to written text to compile word indexes (lists of word

occurrences) and concordances (indexes that included a line of context

for each occurrence). Such surface-level machine processing of text was

of some value in linguistic research, but it soon became apparent that

the computer could perform much more powerful linguistic functions

than merely counting and rearranging data.

In 1949, Warren Weaver proposed that computers might be useful

for "the solution of world-wide translation problems" (Weaver, 1955,

p. 15). The resulting research, on what was called machine translation,

attempted to simulate with a computer the presumed functions of a

human translator: looking up each word in a bilingual dictionary,

choosing an equivalent word in the output language, and, after pro-

cessing each sentence in this way, arranging the resulting string of

words to fit the output language's word order.

Despite the attractive simplicity of the idea, many unforeseen

problems arose, both in selecting appropriate word equivalences and in

arranging them to produce a sentence in the output language. (Article

IV.B discusses the history, problems, and current state of research on

machine translation.) The concept of translating by replacing words

with their equivalents and then adjusting the word order was

abandoned. In its place, eventually, understanding became the focus of

A Overview 227

AI research in language—if the machine could actually "understand the

meaning" of a sentence, it could presumably paraphrase it, answer

questions about it, or translate it into another language. But the

nature of understanding is itself a difficult problem. New AI approaches

to natural language processing were influenced by many scientific

developments of the 1960s, including high-level programming languages

and list processing, vastly expanded computer power and memory

capacity, and Chomsky's breakthroughs in linguistic theory.

In the 1960s, AI researchers developed a new group of computer

programs, attempting to deal with some of the issues that had thwarted

attempts at machine translation. These early natural language programs

marked the beginning of AI work in understanding language. They

began to view human language as a complex cognitive ability involving

knowledge of different kinds: the structure of sentences, the meaning of

words, a model of the listener, the rules of conversation, and an ex-

tensive, shared body of general information about the world. (Several of

these programs are described briefly in Article iv.fi.) The general AI

approach has been to model human language as a knowledge-based

system for processing communications and to create computer programs

that serve as working instantiations of those models (see Winograd,

1980b, however, for a discussion of some possible limitations of this

approach to the study of language).

AI researchers in natural language processing expect their work to

lead both to the development of practical, useful, language under-

standing systems and to a better understanding of language and the

nature of intelligence. The computer, like the human mind, has the

ability to manipulate symbols in complex processes, including processes

that involve decision making based on stored knowledge. It is an

assumption of the field that the human use of language is a cognitive

process of this sort. By developing and testing computer-based models

of language processing that approximate human performance, researchers

hope to understand better how human language works.

Approaches to NL Processing

Natural language research projects have had diverse emphases and

have employed diverse methods, making their classification difficult.

One coherent scheme, borrowed from Winograd (1972), groups natural

language programs according to how they represent and use knowledge

of their subject matter. On this basis, natural language programs can

be divided into four historical categories.

The earliest natural language programs sought to achieve only

228 Understanding Natural Language IV

limited results in specific, constrained domains. These programs, like

Green's BASEBALL, Lindsay's SAD-SAM, Bobrow's STUDENT, and

Weizenbaum's ELIZA, used ad hoc data structures to store facts about a

limited domain (see Article rv.Fi). Input sentences were restricted to

simple declarative and interrogative forms and were scanned by the

programs for predeclared key words or patterns that indicated known
objects and relationships. Domain-specific rules, called heuristics, were

used to derive the required response from the key words in the sentence

and the knowledge in the database. Because their domains of discourse

were so restricted, these early systems were able to ignore many of the

complexities of language and achieve sometimes impressive results in

answering questions. (Weizenbaum, 1976, argues that to the extent the

results were impressive, they were also misleading.)

Another early approach to NL processing was tried in PROTO-
SYNTHEX-I (Simmons, Burger, and Long, 1966) and Semantic Memory
(Quillian, 1968). These systems essentially stored a representation of the

text itself in their databases, using a variety of clever indexing schemes

to retrieve material containing specific words or phrases. In this text-

based approach, the systems were not tied by their construction to a

specific domain, since the textual database could cover any subject.

However, they were still severely restricted in the sense that they could

only respond with material that had been prestored explicitly. Though

more general than their predecessors, these programs still failed to notice

even obvious implications of the sentences in the database, because they

did not deal with the meaning of the English language input—that is,

they had no deductive powers.

To approach the problem of how to characterize and use the mean-

ing of sentences, a third group of programs was developed during the

mid-1960s. In these limited-logic systems, including SIR (Raphael, 1968),

TLC (Quillian, 1969), DEACON (Thompson, 1966), and CONVERSE
(Kellogg, 1968), the information in the database was stored in some

formal notation, and mechanisms were provided for translating input

sentences into this internal form (semantic analysis). The formal nota-

tion was an attempt to liberate the informational content of the input

from the structure of English. The overall goal of these systems was to

perform inferences on the database in order to find answers to questions

that were not stored explicitly in the database. For instance, if a

system has been told that Fido is a collie and that All collies are dogs,

then it should be able to answer the question, Is Fido a dog? The

systems of this period were limited in the sense that the deductions

they could make were only a subset of the full range of logical

inferences used in ordinary conversation.

A Overview 229

The fourth group of natural language understanding programs might

be called knowledge-based systems; their development is closely inter-

twined with AI research on the representation of knowledge (see Chap,

m). These programs use a large amount of information about the

domain under discussion to help understand sentences—knowledge that is

stored within the program using some knowledge representation scheme

like logic, procedural semantics, semantic networks, or frames. But

before discussing these knowledge-based systems of the 1970s, we should

first mention an important development in the study of language during

the preceding decade that strongly influenced their design.

Grammars and Parsing

A grammar of a language is a scheme for specifying the sentences

allowed in the language, indicating the syntactic rules for combining

words into well-formed phrases and clauses. The theory of generative

grammar introduced by Chomsky (1957) radically influenced all linguistic

research, including AI work in computational linguistics. In natural

language processing programs, the grammar is used in parsing to "pick

apart" the sentences that were input to the program to help determine

their meaning and thus an appropriate response. Several very different

kinds of grammars have been used in NL programs, including phrase-

structure grammars, transformational grammars, case grammars, systemic

grammars (described in Sec. rv.C), and semantic grammars (see Article

DC.C3, in Vol. n).

Parsing is the "delinearization" of linguistic input, that is, the use of

grammatical rules and other sources of knowledge to determine the func-

tions of the words in the input sentence (a linear string of words) in

order to create a more complicated data structure, for example, a der-

ivation tree. This structure depicts some of the relations between words

in the sentence ("this adjective modifies that noun, which is the object

of a prepositional phrase . . .
") and can be used to get at the "mean-

ing" of the sentence. All natural-language-processing computer systems

contain a parsing component of some sort, but those of the early NL
programs were based on keywords expected in the input or were

constrained to quite limited phrase structures. The practical application

of grammars to the full range of natural language has proved difficult.

The design of a parser is a complex problem, in both theory and

implementation. The first part of the design concerns the specification

of the grammar to be used. The rest of the parsing system is con-

cerned with the method of use of the grammar, that is, the manner in

which strings of words are matched against patterns of the grammar.

These considerations run into many of the general questions of computer

230 Understanding Natural Language IV

science and Artificial Intelligence concerning process control and manip-

ulation of representational data structures (see, e.g., recent work by

Marcus, 1980, on the PARSIFAL system).

Knowledge-based Natural Language Systems

In the early 1970s, two systems were built that attempted to deal in

a comprehensive way with both syntactic and semantic aspects of lan-

guage processing. William Woods's LUNAR program answered questions

about the samples of rock brought back from the moon, using a large

database provided by the National Aeronautics and Space Agency (see

Article IV.F3). It was one of the first programs to attack the problems

of English grammar, by means of an augmented transition network

parser (Article IV.D2). LUNAR utilized the notion of procedural seman-

tics in which queries were first converted systematically into a "pro-

gram" to be executed by the information retrieval component. The

other system, Terry Winograd's SHRDLU, carried on a dialogue with a

user in which the system simulated a robot manipulating a set of simple

objects on a table top (see Article IV.F4). The naturalness of the

dialogue, as well as SHRDLU's apparent reasoning ability, made it

particularly influential in the development of AI ideas on natural

language processing. These two systems integrated syntactic and

semantic analysis with a body of world knowledge about a limited

domain, allowing them to deal with more sophisticated aspects of

language and discourse than had previously been possible.

Central to these two systems is the idea of representing knowledge

about the world as procedures within the system. The meanings of

words and sentences were expressed as programs in a computer lan-

guage, and the execution of these programs corresponded to reasoning

from the meanings. Procedural representations are often the most

straightforward way to implement the specific reasoning steps needed for

a natural language system. Most of the actual working systems that

have been developed have made heavy use of specialized procedural

representations, to fill in those places where the more declarative

representation schemes—those where the "knowledge" is encoded in

passive data structures that are interpreted by other procedures—are

insufficient. (The procedural-declarative controversy was at one time an

important focus in the development of AI; see Article m.A.)

Perhaps the most influential declarative representation schemes were

logic and semantic networks. Semantic networks were first proposed by

Quillian (1968) as a model for human associative memory. They applied

the concepts of graph theory, representing words and meanings as a set

A Overview 231

of linked nodes implemented as data structures in the computer pro-

gram. By using a systematic set of link types, Quillian was able to

program simple operations (such as following chains of links) that cor-

responded to drawing inferences. The advantage of semantic networks

over standard logic as a representation scheme (see Article m.Ci) is that

some selected set of inferences, of those that are possible, can be made

in a specialized and efficient way. If these correspond to the inferences

that people make naturally, then the system will be able to do a more

natural sort of reasoning than can be easily achieved by formal logical

deduction. Semantic networks have been the basis for representation of

the knowledge in a number of systems, including LIFER (Article IV.F7)

and many of the speech understanding systems (Chap. v). Recently

there has been a good deal of work on formalizing the network notions,

so that there is a clear correspondence between the graph operations

and the formal semantics of the statements represented (see Article m.C3

on semantic nets).

Case representations extend the basic notions of semantic nets with

the idea of a case frame, a cluster of the properties of an object or

event into a single concept (Article IV.C4). There have been several

variations on this idea, some of which remain close to the linguistic

forms. Others, such as conceptual dependency, are based on the notion

of semantic primitives, that is, the construction of all semantic notions

from a small set of elementary concepts (see Article m.C6). Conceptual

dependency theory was developed by Roger Schank and his colleagues

and used in their NL systems, MARGIE and SAM. (See Articles IV.F5

and IV.F6 and also Schank, 1980, which is a recent review of his work

in natural language understanding.)

As with semantic networks, the advantage of case representations

lies in their focus on grouping relevant sets of relationships into single

data structures. The idea of clustering structures in a coherent and effi-

cient way has been carried much further in representation schemes based

on the notion of a frame (Minsky, 1975; see Article m.C7). Where case

representations deal primarily with single sentences or acts, frames are

applied to whole situations, complex objects, or series of events. In

analyzing a sentence, narrative, or dialogue, a frame-based language

understanding system tries to match the input to the prototypes of

objects and events in its domain that are stored in its database.

For example, Schank's SAM system makes use of frame-like data

structures called scripts, which represent stereotyped sequences of events,

to understand simple stories. It assumes that the events being described

will fit (roughly) into one of the scripts in its knowledge base, which it

then uses to fill in missing pieces in the story. The GUS system

232 Understanding Natural Language IV

(Bobrow et al., 1977) is an experimental, frame-based travel consultant,

engaging in dialogue to help a person schedule an air trip.

The important common element in all of these systems is that the

prototype frames make it possible to use expectations about the usual

properties of known concepts and about what typically happens in a

variety of familiar situations to help understand sentences about those

objects and situations. When a sentence or phrase is input that is am-

biguous or underspecified, it can be compared to a description of what

would be expected based on the prototype. If there is a plausible match,

assumptions can be made about what was meant. This expectation-

driven processing seems to be an important aspect of the human use of

language, where incomplete or ungrammatical sentences can be under-

stood in appropriate contexts (see Article v.A).

Investigation of script- and frame-based systems is the most active

area of AI research in natural language understanding at the present

time. Recent systems expand the domain of expectations used in pro-

cessing language beyond those involving typical objects and events to

include those based on how people use plans to achieve goals (see, e.g.,

Schank and Abelson, 1977; Wilensky, 1978b) and on the rules people

appear to follow in a dialogue (Cohen and Perrault, 1979; Kaplan, 1979;

Grosz, 1980; Robinson et al., 1980). The state of the art in operational

(nonexperimental) NL systems is exemplified by ROBOT (Harris, 1979),

LIFER (Hendrix, 1977a), and PHLIQA1 (Landsbergen, 1976).

References

General discussions of natural-language-processing research in AI in-

clude those by Boden (1977), Charniak and Wilks (1976), Schank and

Abelson (1977), and Winograd (in press). The recent review articles by

Schank (1980) and Winograd (1980b) give interesting perspectives to the

history of their NL research. Waltz (1977) contains more than 50 brief

summaries of current projects and systems.

In addition, many historically important NL systems are described

in Feigenbaum and Feldman (1963), Minsky (1968), and Rustin (1973).

Bobrow and Collins (1975), COLING (1976), TINLAP-1 (1975), and

TINLAP-2 (1978) are proceedings of conferences that describe current

work in the field. Related AI work on speech understanding is described

in the collection of articles edited by Lea (1980b).

B. MACHINE TRANSLATION

The concept of translation from one language to another by machine

is older than the computer itself. According to Yehoshua Bar-Hillel,

one of the early investigators in the field, the idea was conceived

perhaps already in the early 1930s by P. P. Smirnov-Troyansky of the

Soviet Union and G. B. Artsouni of France (see Bar-Hillel, 1964, p. 7).

Their work apparently never received much attention, lying dormant

until a decade later, when the climate was much more favorable because

of the recent invention of the digital computer. In certain quarters of

the scientific world, people imagined—with some justification—that com-

puters would lead to many entirely new and far-reaching ideas about

man and—perhaps less justifiably—that computers would help bring

about a new world order. In short, there was tremendous excitement

over the potential of these new thinking machines, as they were quickly

dubbed. This was also the time when Claude Shannon was formulating

his ideas on information theory, when Norbert Wiener was devising the

concept of cybernetics, and when Pitts and McCullough were developing

their ideas on neural nets and brain function. During the war, more-

over, computing had just passed with flying colors its initial tests—in

such strategic tasks as breaking codes and calculating complicated

nuclear cross sections.

It would be well to bear in mind that when machine translation

(MT) work began, programming was done by wiring boards and the only

computer language available was machine language. Such concepts as

arrays and subroutines were yet to appear—not to mention pushdown

stacks, compiler languages, recursive procedures, and the like. Further-

more, no one had heard of context-free and context-sensitive grammars,

or of transformational grammars, or of augmented transition networks.

At the forefront of computational linguistics—the application of the

computer to the study of language—were statistical experiments with

language, such as compiling matrices of letter frequencies and of

transition frequencies between successive letters. Such matrices could be

used to produce interesting samples of pseudo-language by producing

words from randomly generated letters with the same characteristics as

English words. (See the related discussion of Yngve's random text

generation system in Article IV.E.)

234 Understanding Natural Language IV

First Attempts

The real genesis of machine translation dates from a series of dis-

cussions between Warren Weaver and A. Donald Booth in 1946. Both

men were familiar with the work on code breaking by computers, based

on letter-frequency and word-frequency tables. It seemed to them that

some of the same methods would be applicable to translation and that

the principal obstacle would be incorporating a full dictionary of the

two languages. Of course, they recognized that simply having a dic-

tionary would not solve all problems. Some of the remaining problems

would be the following: (a) Many words have several translations,

depending upon context; (b) word orders vary from language to lan-

guage; and (c) idiomatic expressions cannot be translated word for word

but must be translated in toto. Nevertheless, it appeared plausible, at

the time, that the major problem in translating between two languages

was simply that of vocabulary—and so at least a large part of trans-

lation seemed mechanizable.

In 1947, Booth and D. H. V. Britten worked out a program for dic-

tionary lookup. This was a full-form dictionary, in that each variant of

any basic word (e.g., love, loves, loving) had to be carried as a separate

entry in the dictionary. In 1948, R. H. Richens suggested the addition

of rules concerning the inflections of words, so that the redundancy of

the multiple dictionary entries could be eliminated.

In 1949, Weaver distributed a memorandum entitled "Translation"

to about 200 of his acquaintances (see Weaver, 1955), and a considerable

wave of interest ensued. In addition to the idea that all languages have

many features in common, three other items from that memorandum are

worth repeating. The first is the notion of a window through which one

can view exactly 2N + 1 words of text; Weaver suggests that when N
is sufficiently large, one will be able to determine the unique, correct

translation for the word that sits in the middle of the window. He

then points out that N may be a function of the word, rather than a

constant, and discusses the idea of choosing a value of N such that,

say, 95% of all words would be correctly translated 98% of the time.

The second is this intriguing statement: "When I look at an article in

Russian, I say, This is really written in English, but it has been coded

in some strange symbols. I will now proceed to decode." This certainly

carries to an extreme the concept that source text and translated text

"say the same thing." In fact, it leads naturally to the third provocative

idea of the memorandum that translating between languages A and B
means going from A to an intermediate "universal language," or

interlingua, that, supposedly, all humans share, and thence to B. This

B Machine Translation 235

idea, of an intermediate representation of the semantics or meaning of

an utterance, appears often in modern, natural language processing work

in AI under the rubric representation of knowledge (see discussion in

Article IV.A and in Chap. m).

After Weaver's memorandum, work began in several centers in the

United States. Erwin Reifler conceived the idea of two auxiliary func-

tions to be performed by human beings, those of pre- editor and post-

editor. The pre-editor would prepare the input text to be as free as

possible of ambiguities and other sources of difficulty; the post-editor

would take the machine-translated text and turn it into grammatical,

comprehensible prose.

A conference in 1952 produced recommendations to implement a

dictionary-lookup program and to work towards the invention, or discov-

ery, of the hypothetical universal language, called Machinese, which

Weaver had proposed as an intermediate language for machine transla-

tion.

A. G. Oettinger was one of the first to design a program that car-

ried out word-for-word translation of Russian text into English. A very

high percentage of the Russian words had more than one possible trans-

lation, so all of them were listed in the output English text, enclosed in

parentheses. Thus, a sample of English output text read as follows:

(In, At, Into, To, For, On) (last, latter, new, latest, lowest, worst)

(time, tense) for analysis and synthesis relay-contact electrical

(circuit, diagram, scheme) parallel- (series, successive, consecutive,

consistent) (connection, junction, combination) (with, from) (success,

luck) (to be utilize, to be take advantage of) apparatus Boolean

algebra. (Oettinger, 1955, p. 55)

A cleaned-up version of this sentence reads: "In recent times Boolean

algebra has been successfully employed in the analysis of relay networks

of the series-parallel type" (p. 58). Readers of the translated text were

expected to discern from the jumble of synonyms what the cleaned-up

text really should be. Clearly, there was still a long, long way to go

toward mechanical translation.

In the next year or two, most of the effort was directed toward de-

vising ways to handle different endings of inflected words and estimat-

ing the size of vocabulary needed for translations of varying degrees of

quality. In 1954, a journal of mechanical translation was founded,

called MT. Machine translation received considerable public attention

when a group from IBM and Georgetown University made grand claims

for a program that translated from Russian to English, although this

program was not particularly advanced over any others. In any case,

machine-translation research groups sprang up in many countries.

236 Understanding Natural Language IV

Problems Encountered

Early attempts focusing on syntactic information were able to pro-

duce only low-quality translation and led eventually to extreme pessi-

mism about the possibility of the endeavor. It has since become clear

that high-quality translation systems must in some sense understand the

input text before they can reconstruct it in a second language. For the

first time, it was becoming apparent that much "world knowledge" is

applied implicitly when human beings translate from one language to

another. Bar-Hillel gave as an example the pair of sentences, The pen

is in the box and The box is in the pen. Of this example he said, "I

now claim that no existing or imaginable program will enable an

electronic computer to determine that the word pen" in the second

sentence has the meaning "an enclosure where small children can play"

(Bar-Hillel, 1960, p. 159). He goes on to remark that, to his amaze-

ment, no one had ever pointed out that in language understanding there

is a world-modeling process going on in the mind of the listener and

that people are constantly making use of this subconscious process to

guide their understanding of what is being said. Bar-Hillel continues:

A translation machine should not only be supplied with a dic-

tionary but also with a universal encyclopedia. This is surely

utterly chimerical and hardly deserves any further discussion. . .

.

We know . . . facts by inferences which we are able to perform . . .

instantaneously, and it is clear that they are not, in any serious

sense, stored in our memory. Though one could envisage that a

machine would be capable of performing the same inferences, there

exists so far no serious proposal for a scheme that would make a

machine perform such inferences in the same or similar cir-

cumstances under which an intelligent human being would perform

them. (pp. 160-161)

Bar-Hillel despaired of ever achieving satisfactory machine transla-

tion. His sentiments were not universally shared, but in 1966 they came

to prevail officially in the so-called ALPAC report (National Research

Council, 1966). This report, made to the National Research Council

after a year of study by its Automatic Language Processing Advisory

Committee, resulted in the discontinuance of funding for most machine

translation projects. The report stated:

"Machine Translation" presumably means going by algorithm from

machine-readable source text to useful target text, without recourse

to human translation or editing. In this context, there has been

no machine translation of general scientific text, and none is in

immediate prospect, (p. 19)

B Machine Translation 237

Examples of the output of several MT systems were included in the re-

port; they showed little improvement from the results Oettinger had ob-

tained 10 years before. Even with post-editing, the output was found

to be generally of poorer quality, and sometimes slower and more ex-

pensive to obtain, than entirely human translation.

Current Status

The conclusions of the ALPAC report were directed only against

funding for MT as a practical tool. Support for computational linguis-

tics, evaluated in terms of its scientific worth rather than its immediate

utility, was to be continued. It was also recognized that there had been

fundamental changes in the study of linguistics, partly as a result of

cross-fertilization with computational activities.

Both linguistics and computer science have made contributions rele-

vant to the revival of MT research. A signal event was the publication

in 1957 of Noam Chomsky's Syntactic Structures, in which transforma-

tional grammars were introduced. This book spurred many new de-

velopments in the analysis of syntax. Concurrently, new computer

languages and new types of data structures were being explored by

computer scientists, leading to the creation (in 1960) of both ALGOL
and LISP, with their features of lists, recursion, and so forth. These

languages were the first in a series of languages geared more toward

symbol manipulation than toward "number crunching," as discussed in

Chapter VI, in Volume n. In Artificial Intelligence, the 1960s saw

considerable progress toward natural language understanding, such as the

development of programs that carried on a dialogue of sorts with the

user—BASEBALL, SAD-SAM, STUDENT, SIR, and the like—which are

described in Article iv.fi.

The early 1970s saw some revival of interest in machine translation,

partly because some progress had been made in the internal represen-

tation of knowledge. The programs of Wilks (Article IV.F2) and Schank

(Articles IV.F5 and IV.F6) can perform translation tasks. They begin by

translating input sentences into internal data structures based on

semantic primitives that are intended to be language independent

—

that is, elements of meaning that are common to all natural languages.

The internal representation can be manipulated relatively easily by

procedures that carry out inferences; it forms in effect an internal

language or interlingua for modeling the world.

It is difficult to evaluate the practicality of machine translation. In

some applications it is worthwhile to have even a very bad translation,

if it can be done by a computer in a much shorter time (or much more

238 Understanding Natural Language IV

cheaply) than by humans. In others (such as the preparation of in-

struction manuals) it is possible to deal with input texts that use a

specially restricted form of the language, thereby making translation

easier. There is also the possibility of machine-human interactive trans-

lating, in which the output of the computer is used not by the ultimate

reader but by someone engaged in producing the final translation. The

computer can perform subtasks (like dictionary lookup) or can produce

more or less complete translations that are then checked and polished

by a human post-editor, who perhaps does not know the original lan-

guage.

At the present time, computers are being used in these ways in a

number of translation systems. There is also a renewed interest in fully

automatic translation, based on some of the techniques developed for

dealing with the meaning of sentences, as described in the articles that

follow. However, it is not clear whether the goal of "fully automatic,

high-quality translation" is yet realistic. Much current AI work on lan-

guage is based on a belief that deep understanding of what is being said

is vital to every use of language. Applied to translation, this means

that an MT program must first understand a subject before it can

translate material written about that subject. And the machine's ability

to understand is, of course, the focus of current AI research in all areas.

References

A brief, popular review of current work in machine translation can

be found in Wilks (1977d). For the earliest history, see the introduc-

tion to Locke and Booth (1955). Later surveys include Bar-Hillel

(1960), Josselson (1971), and Hays and Mathias (1976).

See also Bar-Hillel (1964), Booth (1967), National Research Council

(1966), Oettinger (1955), Schank (1975a), Weaver (1955), and Wilks

(1973).

C. GRAMMARS

CI. Formal Grammars

A grammar of a language is a scheme for specifying the sentences

allowed in the language, indicating the rules for combining words into

phrases and clauses. In natural language processing programs, the gram-

mar is used in parsing— "picking apart"—the sentences input to the pro-

gram, in order to determine their meaning and thus an appropriate

response. Several very different kinds of grammars have been used in NL
programs and are described in the articles that follow.

One of the more important contributions to the study of language

was the theory of formal languages introduced by Noam Chomsky in the

1950s. The theory has developed as a mathematical study, not a lin-

guistic one, and has strongly influenced computer science in the design

of computer programming languages (artificial languages). Nevertheless,

it is useful in connection with natural language understanding systems,

as both a theoretical and a practical tool.

Definitions

A formal language is defined as a (possibly infinite) set of strings of

finite length formed from a finite vocabulary of symbols. (E.g., the

strings might be sentences composed from a vocabulary of words.) The

grammar of a formal language is specified in terms of the following

concepts.

1. The syntactic categories (such as <SENTENCE> and <NOUN
PHRASE>). These syntactic categories are referred to as nonterminal

symbols, or variables. Notationally, the nonterminals of a grammar are

often indicated by enclosing the category names in angle brackets, as

above.

2. The terminal symbols of the language (e.g., the words in En-

glish). The terminal symbols are to be concatenated into strings called

sentences (if the terminals are words). A language is then just a subset

of the set of all the strings that can be formed by combining the ter-

minal symbols in all possible ways. Exactly which subset is permitted in

the language is specified by the rewrite rules, described next.

3. The rewrite rules, or productions, which specify the relations

between certain strings of terminal and nonterminal symbols. Some

examples of productions are:

240 Understanding Natural Language IV

<SEI\ITEMCE> -» <I\I0UN PHRASE) <VERB PHRASE)

<I\I0UI\I PHRASE) — the <N0UI\l>

<I\I0UI\I> - dog

<I\I0UN> — cat

<VERB PHRASE) -» runs

The first production says that the nonterminal symbol <SENTENCE>
may be "rewritten" as the symbol <NOUN PHRASE> followed by the

symbol <VERB PHRASE>. The second permits <NOUN PHRASE> to

be replaced by a string composed of the word the, which is a terminal

symbol, followed by the nonterminal <NOUN>. The next two allow

<NOUN> to be replaced by either dog or cat. Since there are se-

quences of productions permitting <NOUN PHRASE> to be replaced by

the dog or the cat, the symbol <NOUN PHRASE> is said to generate

these two terminal strings. Finally, <VERB PHRASE> can be replaced

by the terminal runs.

4. The start symbol. One nonterminal is distinguished and called

the "sentence" or "start" symbol, typically denoted <SENTENCE> or S.

The set of strings of terminals that can be derived from this distin-

guished symbol, by applying sequences of productions, is called the

language generated by the grammar. In the simple grammar of our ex-

ample, exactly two sentences are generated:

The cat runs.

The dog runs.

The important aspect of defining languages formally, from the point

of view of computational linguistics and natural language processing, is

that if the structure of the sentences the system is to process is well

understood, then a parsing algorithm for analyzing the input sentences

will be relatively easy to write (see Article iv.di).

The Four Types of Formal Grammars

Within the framework outlined above, Chomsky delineated four

types of grammars and numbered them through 3. The most general

class of grammar is type 0, which has no restrictions on the form that

rewrite rules can take. For successive grammar types, the form of the

rewriting rules allowed is increasingly restricted, and the languages that

are generated are correspondingly simpler. The simplest formal lan-

guages (types 2 and 3) are, as it turns out, inadequate for describing

the complexities of human languages (see Article IV.C2 for a fuller dis-

cussion). On the other hand, the most general formal languages are dif-

ficult to handle computationally. There is an intimate and interesting

CI Formal Grammars 241

connection between the theory of formal languages and the theory of

computational complexity (see Hopcroft and Ullman, 1969). The follow-

ing discussion gives a brief, formal account of the different restrictions

applied in each of the four grammar types.

A grammar G is defined by a quadruple
(
VN, VT, P, S) represent-

ing the nonterminals, the terminals, the productions, and the start sym-

bol, respectively. The symbol V, for vocabulary, represents the union of

the sets VN and VT, which are assumed to have no elements in com-

mon. Each production in P is of the form

X^ Y,

where X and Y are strings of elements in V, and X is not the empty

string. *

Type 0. A type grammar is defined as above: a set of produc-

tions over a given vocabulary of symbols with no restrictions on the

form of the productions. It has been shown that a language can be gen-

erated by a type grammar if and only if it can be recognized by a

Turing machine, that is, if we can build a Turing machine that will

halt in an ACCEPT state for exactly those input sentences that can be

generated by the language.

Type 1. A type grammar is also of type 1 if the form of the

rewrite rules is restricted so that, for each production X — Y of the

grammar, the right-hand side, Y, contains at least as many symbols as

the left-hand side, X. Type 1 grammars are also called context-sensitive

grammars. An example of a context-sensitive grammar with start sym-

bol S and terminals a, b, and c is the following:

S -> aSBC

S - aBC

CB - BC

aB — ab

bB -> bb

bC -> be

cC — cc

The language generated by this grammar is the set of strings abc,

aabbec, aaabbbece, . . . This language, where each symbol must occur

the same number of times and must appear in the proper position in

the string, cannot be generated by any grammar of a more restricted

type (i.e., type 2 or type 3).

An alternate (equivalent) definition for context-sensitive grammars is

that the productions must be of the form

uXv — uYv ,

242 Understanding Natural Language IV

where X is a single nonterminal symbol; u and v are arbitrary strings,

possibly empty, of elements of V; and Y is a nonempty string over V.

It can be shown that this restriction generates the same languages as

the first restriction, but this latter definition clarifies the term context-

sensitive: X may be rewritten as Y only in the context of u and v.

Type 2. Context-free grammars, or type 2 grammars, are grammars

in which each production must have only a single nonterminal symbol

on its left-hand side. For example, a context-free grammar generating

the sentences ab, aabb, aaabbb, ... is:

S -* aSb

S -> ab

Again, it is not possible to write a context-free grammar for the lan-

guage composed of the sentences abc, aabbcc, aaabbbccc, . . . ; having

the same number of c's at the end makes the language more complex.

The simpler language here, in turn, cannot be generated by a more

restricted (type 3) grammar.

An example of a context-free grammar that might be used to

generate some sentences in natural language is the following:

<SEI\ITEI\ICE> -> <I\I0UN PHRASE) <VERB PHRASE)

<I\I0UN PHRASE) -+ <DETERNINER> <I\I0UN>

<l\J0UN PHRASE) - <I\I0UI\I>

<VERB PHRASE) -> <VERB> <M0UN PHRASE)

<DETERNIMER> — the

<I\I0UM> — boys

<N0UI\l> — apples

<VERB> — eat

In this example, the, boys, apples, and eat are the terminals in the

language, and <SENTENCE> is the start symbol.

An important property of context-free grammars in their use in NL
programs is that every derivation can conveniently be represented as a

tree, which can be thought of as displaying the structure of the derived

sentence. Using the grammar above, the sentence The boys eat apples

has the following derivation tree:

<SEI\ITENCE>

/ \
<M0UM PHRASE) <VERB PHRASE)

/ \ / \
<DETERNII\IER> <W0UI\J> <VERB> <N0UN PHRASE)

the boys eat <N0UN>

appl es

CI Formal Grammars 243

Of course, The apples eat boys is also a legal sentence in this language.

Derivation trees can also be used with context-sensitive (type 1) gram-

mars, provided the productions have the alternate form uXv — uYv,

described above. For this reason, context-free and context-sensitive gram-

mars are often called phrase-structure grammars (see Chomsky, 1959,

pp. 143-144, and Lyons, 1968, p. 236).

Type 3. Finally, if every production is of the form

X — aY or X — a
,

where X and Y are single variables and a is a single terminal, the

grammar is a type 3 or regular grammar. For example, a regular

grammar can be given to generate the set of strings of one or more a's

followed by one or more 6's (but with no guarantee of an equal number

of a's and &'s):

S - aS

S - aT

T - b

T - bT

Discussion: Language and Computational Algorithms

Because of the increasingly restricted forms of productions in gram-

mars of types 0, 1, 2, and 3, each type is a proper subset of the type

above it in the hierarchy. A corresponding hierarchy exists for formal

languages. A language is said to be of type i if it can be generated by

a type i grammar. It can be shown that there are languages that are

context free (type 2) but not regular (type 3), context sensitive (type 1)

but not context free, and type but not context sensitive. Examples

of the first two have been given above.

For regular and context-free grammars, there are practical parsing

algorithms to determine whether or not a given string is an element of

the language and, if so, to assign to it a syntactic structure in the form

of a derivation tree. Context-free grammars have considerable appli-

cation to programming languages. Natural languages, however, are not

generally context-free (Chomsky, 1963; Postal, 1964), and they also

contain features that can be handled more conveniently, if not exclu-

sively, by a more powerful grammar. An example is the requirement

that the subject and verb of a sentence be both singular or both plural.

Some of the types of grammars and parsing algorithms that have been

explored as more suitable for natural language are discussed in the

articles that follow.

244 Understanding Natural Language IV

References

For a general discussion of the theory of formal grammars and their

relation to automata theory, see Hopcroft and Ullman (1969). Their use

in NL research is discussed in Winograd (in press).

Also of interest are the works of Chomsky (especially 1956, 1957,

and 1959), as well as Lyons (1968, 1970) and Postal (1964).

C2. Transformational Grammars

The term transformational grammar refers to a theory of language

introduced by Noam Chomsky in Syntactic Structures (1957). In the

theory, an utterance is characterized as the surface manifestation of a

"deeper" structure representing the "meaning" of the sentence. The

deep structure can undergo a variety of "transformations" of form (word

order, endings, etc.) on its way up, while retaining its essential meaning.

The theory assumes that an adequate grammar of a language like

English must be a generative grammar, that is, that it must be a

statement of finite length capable of (a) accounting for the infinite

number of possible sentences in the language and (b) assigning to each a

structural description that captures the underlying knowledge of the

language held by an idealized native user. A formal system of rules is

such a statement; it "can be viewed as a device of some sort for

producing the sentences of the language under analysis" (Chomsky, 1957,

p. 11). The operation of the device is not intended to reflect the pro-

cesses by which people actually speak or understand sentences, just as a

formal proof in mathematics does not purport to reflect the processes by

which the proof was discovered. As a model of abstract knowledge and

not of human behavior, generative grammar is said to be concerned with

competence, as opposed to performance.

The Inadequacy of Phrase-structure Grammars

Given that a grammar is a generative rule-system, it becomes a cen-

tral task of linguistic theory to discover what the rules should look like.

In Syntactic Structures and elsewhere (Chomsky, 1957, 1963; Postal,

1964), it was shown that English is neither a regular nor a context-free

language. The reason is that those restricted types of grammars (de-

fined in Article rv.Ci) cannot generate certain common constructions in

everyday English, such as the one using respectively:

Arthur, Barry, Charles, and David are the husbands of

Jane, Joan, Jill, and Jennifer, respectively.

It was not determined whether a more powerful (i.e., context-sensitive)

grammar could be written to generate precisely the sentences of English;

rather, such a grammar was rejected for the following reasons.

1. It made the description of English unnecessarily clumsy and

complex—for example, in the treatment required for conjunc-

tion, auxiliary verbs, and passive sentences.

246 Understanding Natural Language IV

2. It assigned identical structures (derivation trees) to sentences

that are understood differently, as in the pair:

The picture was painted by a new technique.

The picture was painted by a new artist.

3. It provided no basis for identifying as similar the sentences that

have different surface structures but much of their "meaning" in

common:

John ate an apple.

Did John eat an apple?

What did John eat?

Who ate an apple?

The failure of phrase-structure grammar to explain such similarities and

differences was taken to indicate the need for analysis on a higher level,

which transformational grammar provides.

Transformational Rules

In Syntactic Structures, Chomsky proposed that grammars should

have a tripartite organization. The first part was to be a phrase-

structure grammar generating strings of morphemes representing simple,

declarative, active sentences, each with an associated phrase marker or

derivation tree. Second, there would be a sequence of transformational

rules rearranging the strings and adding or deleting morphemes to form

representations of the full variety of sentences. Finally, a sequence of

morphophonemic rules would map each sentence representation to a

string of phonemes. Although later work has changed this model of the

grammar, as well as the content of the transformational rules, it pro-

vides a basis for a simple illustration.

Suppose the phrase-structure grammar is used to produce the

following derivation tree:

SENTENCE

NOUN
/

PHRASE
\
VERB PHRASE

NP-SINGULAR
/
VERB

\
NOUN PHRASE

/
DETERMINER

\
NOUN

A
AUX V

1

NP-PLURAL

the boy TENSE eat
/ 1 \

DETERMINER NOUN

the apple

C2 Transformational Grammars 247

To generate The boy ate the apples, one would apply transformations

mapping "TENSE + eaf to "eat + PAST"; a morphophonemic rule

would then map "eat + PAST" to ate. To derive The boy eats the

apples, the transformational rule used would select present tense and,

because the verb follows a singular noun phrase, would map
"TENSE + eaf to "eat + s." It is noteworthy that the transformational

rule must look at nonterminal nodes in the derivation tree to determine

that the boy is in fact a singular noun phrase. This example illustrates

one way in which transformational rules are broader than the rules of a

phrase-structure grammar.

The transformations mentioned so far are examples of obligatory

transformations, ensuring agreement in number of the subject and the

verb. To obtain The apples were eaten by the boy, it would be neces-

sary first to apply the optional passive transformation, changing a string

analyzed as

NOUM-PHRASE-l + AUX + V + NOUIM-PHRASE-2

to

l\IOUI\l-PHRASE-2 + (AUX + be) + (en + V) + by + M0UI\I-PHRASE-1 .

In other words, this optional transformation changes "The boy TENSE
eat the apples" to "The apples TENSE be (en eat) by the boy," and then

forces agreement of the auxiliary verb with the new plural subject.

Further obligatory transformations would yield "The apples be PAST
eaten by the boy" (where "be + PAST," as opposed to "be + s + PAST,"

is ultimately mapped to were). The ordering of transformational rules

is thus an essential feature of the grammar.

Revisions to the Model

In Aspects of the Theory of Syntax (1965), Chomsky made several

revisions to the model presented in Syntactic Structures (1957). The ver-

sion outlined in the more recent book has been called the "standard

theory" of generative grammar and has served as a common starting

point for further discussion. In the standard theory (as summarized in

Chomsky, 1971), sentence generation begins from a context-free grammar

generating a sentence structure and is followed by a selection of words

for the structure from a lexicon. The context-free grammar and lexicon

are said to form the base of the grammar; their output is called a deep

structure. A system of transformational rules maps deep structures to

surface structures; together, the base and transformational parts of the

grammar form its syntactic component. The sound of a sentence is

determined by its surface structure, which is interpreted by the

248 Understanding Natural Language IV

phonological component of the grammar; deep structure, interpreted by

the semantic component, determines sentence meaning. It follows that

the application of transformational rules to deep structures must pre-

serve meaning: This was the Katz-Postal hypothesis, which required en-

larging the generative capacity of the base and revising many of the

transformational rules suggested earlier (Katz and Postal, 1964).

The place of the semantic component in the standard theory has

been the major source of current issues. For example, the following

pairs of sentences have different meanings, but their deep structures, in

the standard theory, are the same.

Not many arrows hit the target.

Many arrows didn't hit the target.

Each of Mary's sons loves his brothers.

His brothers are loved by each of Mary's sons.

Chomsky's response was to revise the standard theory so that both the

deep structure of a sentence and its subsequent transformations are

input to the semantic component (Chomsky, 1971). He exemplifies the

position of interpretive semantics, which keeps the syntactic component

an autonomous system. The opposing view, called generative semantics,

is that syntax and semantics cannot be sharply separated and, conse-

quently, that a distinct level of syntactic deep structure does not exist.

(This issue is discussed in Charniak and Wilks, 1976.)

There have been a number of developments within the theory of

transformational grammar since the work reviewed here, and current de-

bates have called into question many of the basic assumptions about the

role of transformations in a grammar. For current discussions of these

issues, see Culicover, Wasow, and Akmajian (1977) and Bresnan (1978).

References

The classic references here are, of course, Chomsky (1957) and

Chomsky (1965). Chomsky (1971) is a shorter and more recent dis-

cussion. Culicover, Wasow, and Akmajian (1977) and Bresnan (1978)

are the latest word on transformation theory.

Also see Akmajian and Heny (1975), Charniak and Wilks (1976),

Chomsky (1956, 1959, 1963), Harman (1974), Katz and Postal (1964),

Lyons (1968, 1970), Postal (1964), and Steinberg and Jakobovits (1971).

C3. Systemic Grammar

Systemic grammar, developed by Michael Halliday and others at the

University of London, is a theory within which linguistic structure as

related to the function or use of language, often termed pragmatics, is

studied. According to Halliday (1961, p. 241), an account of linguistic

structure that pays no attention to the functional demands made on

language is lacking in perspicacity, since it offers no principles for ex-

plaining why the structure is organized one way rather than another.

This viewpoint is in contrast to that of transformational grammar, which

has been concerned with the syntactic structure of an utterance apart

from its intended use.

The Functions of Language

Halliday distinguishes three general functions of language, all of

which are ordinarily served by every act of speech.

The ideational function serves for the expression of content. It says

something about the speaker's experience of the world. Analyzing a

clause in terms of its ideational function involves asking questions like

the following: What kind of process does the clause describe—an ac-

tion, a mental process, or a relation? Who is the actor (the logical sub-

ject)? Are there other participants in the process, such as goal (direct

object) or beneficiary (indirect object)? Are there adverbial phrases

expressing circumstances like time and place? The organization of this

set of questions is described by what Halliday calls the transitivity

system of the grammar. (This is related to the ideas of case grammars

discussed in Article IV. C4.)

The interpersonal function relates to the purpose of the utterance.

The speaker may be asking a question, answering one, making a request,

giving information, or expressing an opinion. The mood system of

English grammar expresses these possibilities in terms of categories such

as statement, question, command, and exclamation.

The textual function reflects the need for coherence in language use

(e.g., how a given sentence is related to preceding ones). Concepts for

analysis in textual terms include (a) the theme, that is, the element

that the speaker chooses to put at the beginning of a clause, and

(b) the distinction between what is new in a message and what is

given—the latter being the point of contact with what the hearer

already knows.

250 Understanding Natural Language IV

Categories of Systemic Grammar

The model of a grammar proposed by Halliday has four primitive

categories:

1. The units of language, which form a hierarchy. In English, these

are the sentence, clause, group, word, and morpheme. The rank

of a unit refers to its position in the hierarchy.

2. The structure of units. Each unit is composed of one or more

units at the rank below, and each of these components fills a

particular role. The English clause, for example, is made up of

four groups, which serve as subject, predicator, complement, and

adjunct.

3. The classification of units, as determined by the roles to be filled

at the level above. The classes of English groups, for instance,

are the verbal, which serves as predicator; the nominal, which

may be subject or complement; and the adverbial, which fills

the adjunct function.

4. The system. A system is a fist of choices representing the

options available to the speaker. Since some sets of choices are

available only if other choices have already been made, the

relation between systems is shown by combining them into

networks, as in the simple example below:

clause

i ndependent

dependent —

imperati ve

i nd i cati ve dec larati ve

i nterrogati ve

The interpretation is that each clause is independent or depen-

dent; if independent, it is either imperative or indicative; and if

either indicative or dependent, then it is either declarative or

interrogative. In general, system networks can be defined for

units of any rank, and entry to a system of choices may be

made to depend on any Boolean combination of previous

choices.

Conclusion

Systemic grammar views the act of speech as a simultaneous selec-

tion from among a large number of interrelated options, which represent

the "meaning potential" of the language. If system networks represent-

ing these options are suitably combined and carried to enough detail,

they provide a way of writing a generative grammar quite distinct from

C3 Systemic Grammar 251

that proposed by transformational grammar (see Hudson, 1971, 1976;

McCord, 1975; Self, 1975). Furthermore, this formalism has been found

more readily adaptable for use in natural language understanding pro-

grams in AI (see especially Winograd's SHRDLU system, Article IV.F4).

References

Halliday (1961) and Halliday (1970b) are the most general original

references. Winograd (1972) discusses the application of systemic gram-

mar in his famous SHRDLU system.

Also see Halliday (1967-68, 1970a), Hudson (1971, 1976), McCord

(1975), Mcintosh and Halliday (1966), and Self (1975).

C4. Case Grammars

Case systems, as used both in modern linguistics and in Artificial

Intelligence, are descendants of the concept of case as it occurs in

traditional grammar. Traditionally, the case of a noun was denoted by

an inflectional ending indicating the noun's role in the sentence. Latin,

for example, has at least six cases: nominative, accusative, genitive,

dative, ablative, and vocative. The rules for case endings make the

meaning of a Latin sentence almost independent of word order: The

function of a noun depends on its inflection rather than on its position

in the sentence. Some present-day languages, including Russian and

German, have similar inflection systems, but English limits case forms

mainly to the personal pronoun—as in I, my, me—and to the possessive

ending "'5." Case functions for nouns are indicated in English by word

order or by the choice of preposition to precede a noun phrase—as in

"of the people, by the people, and for the people."

The examples above describe what have been called "surface" cases;

they are aspects of the surface structure of the sentence. Case systems

that have attracted more recent attention are "deep" cases, proposed by

Fillmore (1968) in his paper "The Case for Case," as a revision to the

framework of transformational grammar. The central idea is that the

proposition embodied in a simple sentence has a deep structure con-

sisting of a verb (the central component) and one or more noun phrases.

Each noun phrase is associated with the verb in a particular relation-

ship. These relationships, which Fillmore characterized as "semantically

relevant syntactic relationships," are called cases. For example, in the

sentence

John opened the door with the key.

John would be the AGENT of the verb opened, the door would be the

OBJECT, and the key would be the INSTRUMENT. For the sentence

The door was opened by John with the key.

the case assignments would be the same, even though the surface

structure has changed.

It was important to Fillmore's theory that the number of possible

case relationships be small and fixed. Fillmore (1971b) proposed the

following cases:

C4 Case Grammars 253

Agent — the instigator of the event.

Counter-Agent — the force or resistance against which the

action is carried out.

Object — the entity that moves or changes or whose

position or existence is in consideration.

Result — the entity that comes into existence as a

resu It of the action .

Instrument — the stimulus or immediate physical cause of

an event.

Source — the place from which something moves.

Goal — the place to which something moves.

Experiencer — the entity which receives or accepts or

experiences or undergoes the effect of an action.

Still another proposal (Fillmore, 1971a) recognizes nine cases: Agent, Ex-

periencer, Instrument, Object, Source, Goal, Location, Time, and Path.

Verbs were classified according to the cases that could occur with

them. The cases for any particular verb formed an ordered set called a

case frame. For example, the verb open was proposed to have the case

frame

[OBJECT (INSTRUMENT) (AGENT)
]

indicating that the object is obligatory in the deep structure of the

sentence, whereas it is permissible to omit the instrument (John opened

the door) or the agent (The key opened the door), or both (The door

opened). Thus, verbs provide templates within which the remainder of

the sentence can be understood.

The Case for Case

The following are some of the kinds of questions for which case

analysis was intended to provide answers:

1. In a sentence that is to contain several noun phrases, what

determines which noun phrase should be the subject in the sur-

face structure? Cases are ordered, and the highest ranking case

that is present becomes the subject.

2. Since one may say Mother is baking or The pie is baking, what is

wrong with Mother and the pie are baking? Different cases may
not be conjoined.

3. What is the precise relationship between pairs of words like buy

and sell or teach and learn? They have the same basic meaning

but different case frames.

254 Understanding Natural Language IV

One way of looking at deep cases is to view the verb as a predicate

taking an appropriate array of arguments. Fillmore has extended the

class of predicates to include other parts of speech, such as nouns and

adjectives, as well as verbs. Viewing warm as a predicate, for example,

enabled case distinctions to account for the differences among the fol-

lowing sentences:

I am warm. [experiencer]

This jacket is warm. [instrument]

Summer is warm. [time]

The room is warm. [location]

The Representation of Case Frames

In AI programs, such predicates and their arguments can readily be

equated to nodes in semantic networks; and the case relations, to the

types of links between them. Systems making such identifications in-

clude those of Hendrix (Article IV.F7), Schank (Articles IV.F5 and IV.F6),

Simmons (Article iv.e), and Norman and Rumelhart (Article XI.E4, in

Vol. m). Semantic nets and related work on semantic primitives and

frames are discussed in Chapter m.

There are many other systems using case representations. As point-

ed out in an extensive survey by Bruce (1975), considerable variation is

found in both the sets of cases adopted and the ways in which case

representation is applied. The number of cases used varies from four or

five (Schank) to over 30 (Martin). Bruce's proposal on criteria for

choosing cases, which departs significantly from Fillmore's original goal

of finding a small, fixed set of relationships, is that

a case is a relation which is "important" for an event in the con-

text in which it is described. (Bruce, 1975)

Case notation has been used to record various levels of sentence

structure. As Fillmore introduced it, within the transformational gram-

mar framework, deep cases were deep in the sense that John opened the

door and The door was opened by John were given the same repre-

sentation. They can also be viewed as relatively superficial, however, in

that John bought a car from Bill and Bill sold a car to John could have

distinct representations since they have different verbs. At this level,

cases have been used in parsing (Taylor and Rosenberg, 1975; Wilks,

1976); in the representation of English sentences as opposed to their

underlying meanings, as discussed above (Simmons, 1973); and in text

generation (see Article IV.E).

C4 Case Grammars 255

Systems using case at the deepest level, on the other hand, may
represent the meaning of sentences in a way that collapses buy and sell,

for example, into a single predicate (Norman and Rumelhart, 1975;

Schank, 1975a). A typical problem attacked by these systems is para-

phrasing, in which identifying sentences with the same deep structure is

the goal. Schank also requires that all cases be filled, even if the

information required was not explicitly given in the input sentences (see

Article IV.F5). Charniak (1975) suggests that the appropriate use of case

at this level of representation is in drawing inferences: The "meaning"

of a case would then be the set of inferences one could draw about an

entity knowing only its case. In the view of some writers, however, the

function of case in natural language understanding systems is usually

only as a convenient notation (see Charniak, 1975; Welin, 1975).

References

Fillmore (1968) is the classic reference on case grammars. Bruce

(1975) is a thorough review of different approaches to case grammar.

Also see Charniak (1975), Fillmore (1971a, 1971b), Norman and

Rumelhart (1975), Samlowski (1976), Schank (1973b, 1975a), Schank and

Abelson (1977), Simmons (1973), Taylor and Rosenberg (1975), Welin

(1975), and Wilks (1976).

D. PARSING

Dl. Overview of Parsing Techniques

Parsing is the "delinearization" of linguistic input, that is, the use of

syntax and other sources of knowledge to determine the functions of the

words in the input sentence in order to create a data structure, like a

derivation tree, that can be used to get at the "meaning" of the sen-

tence. A parser can be viewed as a recursive pattern matcher seeking

to map a string of words onto a set of meaningful syntactic patterns.

For example, the sentence John kissed Mary could be matched to the

pattern:

SENTENCE

/ \
SUBJECT PREDICATE

/ \
VERB OBJECT

The set of syntactic patterns used is determined by the grammar of the

input language. (Several types of grammars are described in the articles

in Sec. rv.C.) In theory, by applying a comprehensive grammar, a

parser can decide what is and what is not a grammatical sentence and

can build up a data structure corresponding to the syntactic structure of

any grammatical sentence it finds. All natural-language-processing com-

puter systems contain a parsing component of some sort, but the

practical application of grammars to natural language processing has

proved difficult.

The design of a parser is a complex problem, in both theory and

implementation. The first part of the design concerns the specification

of the grammar to be employed. The rest of the parsing system is con-

cerned with the method of use of the grammar, that is, the manner in

which strings of words are matched against patterns of the grammar.

These considerations run into many of the general questions of computer

science and Artificial Intelligence concerning process control and manip-

ulation of knowledge.

Dl Overview of Parsing Techniques 257

General Issues in Parser Design

The design considerations discussed below overlap; that is, a decision

in one dimension affects other design decisions. Taken together, they

present a picture of the variety of issues involved in parsing natural lan-

guage.

Uniformity. Parsers may represent their knowledge about word

meanings, grammar, and so forth, with a single scheme or with special-

ized structures for specific tasks. The representation scheme affects the

complexity of the system and the application of that knowledge during

parsing. If rules and processes are based on specialized knowledge of

what the input to the parser will contain, it is possible to do things

more quickly and efficiently. On the other hand, if one has a simple,

uniform set of rules and a consistent algorithm for applying them, the

job of writing and modifying the language understanding system is

greatly simplified, since all the knowledge in the system is uniformly

explicated. In general, there is a trade-off between efficiency and uni-

formity; an algorithm specially designed for only one language can per-

form more efficiently than one that could uniformly handle any

language.

Multiple sources of knowledge. Parsing, as originally developed (and

still used in compilers for programming languages), was based purely on

syntactic knowledge—knowledge about the form of sentences allowed in

the language. However, it is possible to design systems in which

syntax-based parsing is intermixed with other levels of processing, such

as word recognition and use of word meanings. Such methods can

alleviate many of the problems of language complexity by bringing more

information to bear. Present systems tend toward such intermixed

structures, both for effective performance and for more psychologically

valid modeling of human language understanding (see, e.g., Article IV.F4

on SHRDLU; the extensive discussion of multiple sources of knowledge in

Article DCC3, in Vol. n, on the SOPHIE system; and the blackboard

model described in Chap. v).

Precision. Another major trade-off in parser design is precision ver-

sus flexibility. Humans are capable of understanding sentences that are

not quite grammatical; even if a person knows that a sentence is

"wrong" syntactically, he can often understand it, that is, assign a

meaning to it. Some natural language processing systems, such as

PARRY (Colby, Weber, and Hilf, 1971) and ELIZA (Article iV.Fi), have

258 Understanding Natural Language IV

been designed to incorporate this kind of flexibility. By looking for key

words and applying loose grammatical criteria, these systems can accept

far more sentences than would a precise parser. However, these

"knowledge-poor," flexible parsers lose many benefits of the more

complete analysis possible with a precise system, since they rely on

vaguer notions of sentence meaning than a precise system does. While

they reject less often, flexible systems tend to misinterpret more often.

Many systems attempt to apply additional knowledge sources, especially

domain- specific knowledge, to increase flexibility while retaining precision.

Type of structure returned. As mentioned, parsing is the process of

assigning structures to sentences. The form of the structure can vary,

from a representation that closely resembles the surface structure of the

sentence to a deeper representation in which the surface structure has

been extensively modified. Which form is chosen depends on the use to

which the parse structure will be put. Currently, most work in natural

language favors the deep structure approach.

These four issues—uniformity, multiple knowledge sources, precision,

and level of representation—are very general questions and are dealt

with in different ways by different systems. In implementing a parser,

after settling such general design questions, natural-language program-

mers run up against another set of problems involving specific parsing

strategies.

Parsing Strategies

Backtracking versus parallel processing. Unfortunately for computa-

tional linguists, the elements of natural languages do not always have

unique meanings. For example, in going through a sentence, the parser

might find a word that could be either a noun or a verb, like can, or

pick up a prepositional phrase that might be modifying any of a

number of the other parts of the sentence. These and many other

ambiguities in natural languages force the parser to make choices

between multiple alternatives as it proceeds through a sentence.

Alternatives may be dealt with all at the same time, through parallel

processing, or one at a time, using a form of backtracking—backing up

to a previous choice-point in the computation and trying again. Both

of these methods require a significant amount of bookkeeping to keep

track of the multiple possibilities: all the ones being tried, in the case

of parallel processing, or all the ones not yet tried, in the case of

backtracking. Neither strategy can be said to be intrinsically superior,

though the number of alternatives that are actually tried can be

Dl Overview of Parsing Techniques 259

significantly reduced when backtracking is guided by "knowledge" about

which of the choices are more likely to be correct—called heuristic

knowledge (see Article n.A).

Top-down versus bottom-up processing. In deriving a syntactic struc-

ture, a parser can operate from the goals, that is, the set of possible

sentence structures (top-down processing), or from the words actually in

the sentence (bottom-up processing). A strictly top-down parser begins

by looking at the rules for the desired top-level structure (sentence,

clause, etc.); it then looks up rules for the constituents of the top-level

structure and progresses until a complete sentence structure is built up.

If this sentence matches the input data, the parse is successfully com-

pleted; otherwise, it starts back at the top again, generating another

sentence structure. A bottom-up parser looks first for rules in the

grammar to combine the words of the input sentence into constituents

of larger structures (phrases and clauses) and continues to try to

recombine these to show how all the input words form a legal sentence

in the grammar. Theoretically, both of these strategies arrive at the

same final analysis, but the kind of work required and the working

structures employed are quite different. The interaction of top-down

and bottom-up process control is a common theme in AI research (see,

e.g., the extended discussion in Article V.b).

Choosing how to expand or combine. With either a top-down or a

bottom-up technique, it is necessary to decide how words and constit-

uents will be combined (bottom-up) or expanded (top-down). The two

basic methods are to proceed systematically in one direction (normally

left to right) or to start anywhere and systematically look at neigh-

boring chunks of increasing size (this method is sometimes called island

driving). Both these methods will eventually look at all possibilities, but

the choice of how to proceed at this level can have a significant effect

on the efficiency of the parser. This particular feature is especially

relevant to language processing in the presence of input uncertainty, as

occurs, for example, in the speech understanding systems.

Multiple knowledge sources. As mentioned above, another important

design decision that was especially conspicuous in the speech under-

standing systems was the effective use of multiple sources of knowledge.

Given that there are a number of possibly relevant sets of facts to be

used by the parser (phonemic, lexical, syntactic, semantic, etc.), which

does one use when?

The issues discussed here under parsing strategies are all questions of

efficiency. They will not in general affect the final result if com-

putational resources are unlimited, but they will affect the amount of

resources expended to reach it.

260 Understanding Natural Language IV

Actual Parsing Systems

Every natural language processing program deals with these seven

issues in its own fashion. Several types of parsers have developed as

experience with natural language systems increases.

Template matching. Most of the early NL programs (e.g., SIR,

STUDENT, ELIZA) performed parsing by matching their input against a

series of predefined templates—binding the variables of the template to

corresponding pieces of the input string (see Article rv.Fi). This ap-

proach was successful, up to a point. Given a very limited topic of dis-

cussion, the form of many of the input sentences could be anticipated

by the system's designer, who then incorporated appropriate templates.

However, the method was inextensible, and template matching was soon

abandoned in favor of more sophisticated methods.

Simple phrase-structure grammar parsers. These parsers make use of

a type of context-free grammar with various combinations of the parsing

techniques mentioned above. The advantage of a phrase-structure gram-

mar is that the structures derived correspond directly to the grammar

rules; thus, the subsequent semantic processing is simplified. By using

large grammars and skirting linguistic issues that are outside their

limitations (such as some types of agreement, see Article IV. C2), a

phrase-structure grammar parser can deal with a moderately large subset

of English. Phrase-structure grammars are used primarily to produce

systems with useful performance on a limited domain, rather than to

explore more difficult language-processing issues (see, e.g., the early

SAD-SAM system, Article iv.Fi).

Transformational grammar parsers. These parsers attempt to extend

the notions of transformational grammar into a parsing system. Trans-

formational grammar is a much more comprehensive system than phrase-

structure grammar, but it loses phrase structure's direct, rule-to-structure

correspondence. Moreover, methods that have been tried, such as anal-

ysis by synthesis (building up all possible sentences until one matches

the input) and inverse transformations (looking for transformation rules

that might have produced the input), have often failed because of

combinatorial explosion—the proliferation of alternatives the system must

examine—and other difficulties with reversing transformations. One of

the major attempts to implement a transformational parser was that by

Petrick (1973).

Extended grammar parsers. One of the most successful AI ap-

proaches to parsing yet developed has been to extend the concept of

phrase-structure rules and derivations by adding mechanisms for more

complex representations and manipulations of sentences. Methods such

Dl Overview of Parsing Techniques 261

as augmented transition net grammars (ATNs) and charts provide addi-

tional resources for the parser to draw on beyond the simple phrase-

structure approach (Articles IV.D2 and IV.D3, respectively). Some of

these mechanisms have validity with respect to some linguistic theory,

while others are merely computationally expedient. The very successful

NL systems of Woods (1973a), Winograd (1972), and Kaplan (1973), as

described in the articles in Section IV.F, use extended grammar parsers.

Semantic grammar parsers. Another very successful modification to

the traditional phrase-structure-grammar approach involves changing the

conception of grammatical classes from the traditional <NOUN>,
<VERB>, and so forth, to classes that are motivated by concepts in

the domain being discussed. For instance, such a semantic grammar for

a system that talks about airline reservations might have grammatical

classes like <DESTINATION;^ <FLIGHT>, <FLIGHT-TIME>, and so

on. The rewrite rules used by the parser would describe phrases and

clauses in terms of these semantic categories (see Article V.B for a more

complete discussion). The LIFER and SOPHIE systems (Articles IV.F7

and DC.C3 [Vol. n], respectively) use semantic-grammar-based parsers.

Grammarless parsers. Some NL system designers have abandoned

totally the traditional use of grammars for linguistic analysis. Such sys-

tems are sometimes referred to as ad hoc, although they are typically

based on some loose theory that happens to fall outside the scope of

standard linguistics. These "grammarless" parsers opt for flexibility in

the above-mentioned trade-off between precision and flexibility. They

are based on special procedures (often centered on individual words

rather than syntactic elements) that use semantics-based techniques to

build up structures relevant to meaning, and these structures bear little

resemblance to the normal structures that result from syntactic parsing.

A good example of this approach can be found in the work of Riesbeck

(1975; see Article IV.F5).

Conclusion

Recent research in parsing has been directed primarily towards two

kinds of simplification: simplified systems for dealing with less than full

English and simplified underlying mechanisms that bring the computer

parsing techniques closer to being a theory of syntax. Systems such as

LIFER (Article IV.F7) have been developed that use the basic mech-

anisms of augmented grammars in a clean and easily programmable way.

Although they cannot deal with the more difficult problems of syntax,

systems of this sort can be used to assemble specialized parsers

relatively quickly and easily and are likely to be the basis for natural

language "front ends" for simple applications.

262 Understanding Natural Language IV

At the same time, there has been a reevaluation of the fundamental

notions of parsing and syntactic structure, viewed from the perspective

of programs that understand natural language. Systems like PARSIFAL
(Marcus, 1980) attempt to capture in their design the same kinds of

generalizations that linguists and psycholinguists posit as theories of

language structure and language use. Attention is being directed toward

the interaction between the structural facts about syntax and the con-

trol structures for implementing the parsing process. The current trend

is away from simple methods of applying grammars (as with phrase-

structure grammars), toward more integrated approaches. In particular,

the grammar-strategy dualism mentioned earlier in this article has been

progressively weakened by the work of Winograd (1972) and Riesbeck

(1975). It appears that any successful attempt to parse natural lan-

guage must be based upon some more powerful approach than tradi-

tional syntactic analysis. Also, parsers are being called upon to handle

more "natural" text, including discourse, conversation, and sentence

fragments. These involve aspects of language that cannot be easily

described in the conventional, grammar-based models.

References

Again, much of this discussion is based on Winograd (in press).

Other general surveys include Charniak and Wilks (1976) and Grishman

(1976). For examples of recent work, the proceedings of the TINLAP

conferences (1975, 1978) are recommended.

D2. Augmented Transition Networks

Augmented transition networks (ATNs) were first developed by

William Woods (1970) as a versatile representation of grammars for nat-

ural languages. The concept of an ATN evolved from that of a finite -

state transition diagram, with the addition of tests and "side effect"

actions to each arc, as described below. These additions resulted in the

power needed for handling features of English like embedding and

agreement that could not be conveniently captured by regular (or even

context-free) grammars. An ATN can thus be viewed as either a gram-

mar formalism or a machine.

Many current language processors use an ATN-like grammar; in some

ways, it may be considered state of the art, at least for actual working

systems.

Preliminary Theoretical Concepts

A finite-state transition diagram (FSTD) is a simple theoretical de-

vice consisting of a set of states (nodes) with arcs leading from one

state to another. One state is designated the START state. The arcs

of the FSTD are labeled with the terminals of the grammar (i.e., words

of the language), indicating which words must be found in the input to

allow the specified transition. A subset of the states is identified as

FINAL; the device is said to accept a sequence of words if, starting

from the START state at the beginning of the sentence, it can reach a

FINAL state at the end of the input.

FSTDs can recognize only regular (type 3) languages (see the dis-

cussion of formal languages in Article rv.Ci). To recognize a language, a

machine must be able to tell whether an arbitrary sentence is part of

the language or not. Regular grammars (those whose rewrite rules are

restricted to the form Y —> aX or Y — a) are the simplest, and FSTDs

are only powerful enough to recognize these languages. In other words,

it is impossible to build an FSTD that can dependably distinguish the

sentences in even a context-free language.

For example, the following FSTD, in which the start state is the

left-most node and the final state is labeled **, will accept any sentence

that begins with the, ends with a noun, and has an arbitrary number of

adjectives in between (Fig. D2-1).

264 Understanding Natural Language IV

<adjecti ve>

the
\ /

<noun>

**

Figure D2-1. A finite-state transition diagram.

Let's follow through the net with the input phrase the pretty

picture. We start in the START state and proceed along the arc

labeled the, because that is the left-most word in the input string. This

leaves us in the middle box, with pretty picture left as our string to be

parsed. After one loop around the adjective arc, we are again at

middle node, but this time with the string picture remaining. Since this

word is a noun, we proceed to the FINAL node, **, and arrive there

with no words remaining to be processed. Thus, the parse is successful;

in other words, our sample FSTD accepts this string.

However, regular grammars are inadequate for dealing with the com-

plexity of natural language, as discussed in Article IV.C2. A natural

extension to FSTDs, then, is to provide a recursion mechanism that

increases their recognition power to handle the more inclusive set of

context-free languages. These extended FSTDs are called recursive

transition networks (RTNs). An RTN is a finite-state transition diagram

in which labels of an arc may include not only terminal symbols but

also nonterminal symbols that denote the name of another subnetwork

to be given temporary control of the parsing process.

An RTN operates similarly to an FSTD. If the label on an arc is a

terminal (word or word class), the arc may be taken, as in FSTDs, if

the word being scanned matches the label. For example, the word ball

would match an arc labeled <noun> but not one labeled <adjective>.

Otherwise, if the arc is labeled with a nonterminal symbol, representing

a syntactic construct (e.g., PREPOSITIONAL PHRASE) that corresponds

to the name of another network, the current state of the parse is put

on a stack and control is transferred to the corresponding named sub-

network, which continues to process the sentence, returning control when

it finishes or fails.

Whenever an accepting state is reached, control is transferred to the

node obtained by "popping the stack" (i.e., returning to the point from

which the subnetwork was entered). If an attempt is made to pop an

empty stack, and if the last input word was the cause of this attempt,

D2 Augmented Transition Networks 265

the input string is accepted by the RTN; otherwise, it is rejected. The

effect of arcs labeled with names of syntactic constructs is that an arc

is followed only if a construction of the corresponding type follows as a

phrase in the input string. Consider the following example of an RTN
(Fig. D2-2):

pp

S:

MP <verb> MP
\ /

**

<adj> PP

MP:

MP

<det>
\ I

<noun>
\ /

**

PP:

PP

<prep> MP

**

Figure D2-2. A recursive transition network.

Here NP denotes a noun phrase; PP, a prepositional phrase; det, a deter-

miner; prep, a preposition; and adj, an adjective. Accepting nodes are

labeled **. If the input string is The little boy in the swimsuit kicked

the red ball, the above network would parse it into the following

phrases:

MP The little boy in the swimsuit

PP in the swimsuit

MP the swimsuit

Verb k i eked

MP the red ba 1 1

Notice that any subnetwork of an RTN may call any other sub-

network, including itself; in the example above, for instance, the prepo-

sitional phrase contains a noun phrase. Also notice that an RTN may
be nondeterministic in nature; that is, there may be more than one

possible arc to be followed at a given point in a parse. Parsing algo-

rithms handle nondeterminism by parallel processing of the various

266 Understanding Natural Language IV

alternatives or by trying one and then backtracking if it fails. These

general parsing issues are discussed in Article rv.Di.

Context-free grammars, however, are still insufficient to handle nat-

ural language. The RTNs, then, must be extended, to provide even more

parsing power.

ATNs

An augmented transition network (ATN) is an RTN that has been

extended in three ways:

1. A set of registers has been added; these can be used to store

information, such as partially formed derivation trees, between

jumps to different subnetworks.

2. Arcs, aside from being labeled by word classes or syntactic con-

structs, can have arbitrary tests associated with them that must

be satisfied before the arc is taken.

3. Certain actions may be "attached" to an arc, to be executed

whenever it is taken (usually to modify the data structure re-

turned).

This addition of registers, tests, and actions to the RTNs extends their

power to that of Turing machines, thus making ATNs theoretically

powerful enough to recognize any language that might be recognized by

a computer. ATNs offer a degree of expressiveness and naturalness not

found in the Turing machine formalism and are a useful tool to apply

to the analysis of natural language.

The operation of the ATN is similar to that of the RTN except that

if an arc has a test, then the test is performed first and the arc is

taken only if the test is successful. Also, if an arc has actions asso-

ciated with it, then these operations are performed after following the

arc. In this way, by permitting the parsing to be guided by the parse

history (through tests on the registers) and by allowing for a re-

arrangement of the structure of the sentence during the parse (through

the actions on the registers), ATNs are capable of building deep struc-

ture descriptions of a sentence in an efficient manner. For a well-

developed and clear example, the reader is referred to Woods (1970).

Evaluation of A TNs and Results

ATNs serve as a computationally implementable and efficient solu-

tion to some of the problems of recognizing and generating natural

language. Their computational power provides the capability of embed-

ding different kinds of grammars, making them an effective testbed for

D2 Augmented Transition Networks 267

new ideas (Woods, 1970, p. 602). Two of the features of ATNs, the

test and the actions on the arcs, make them especially well suited to

handling transformational grammars. The ability to place arbitrary con-

ditions on the arcs provides context sensitivity, equivalent to the precon-

ditions for applying transformational rules. The capability of rearranging

the parse structure, by copying, adding, and deleting components,

provides the full power of transformations (see Article IV.C2).

The ATN paradigm has been successfully applied to question answer-

ing in limited (closed) domains, such as the LUNAR program, which is

described in Article rv.F3. Also, ATNs have been used effectively in a

number of text generation systems (Article rv.E). In addition, the BBN
speech understanding system, HWIM, used an ATN control structure (see

Article V.C3).

There are limitations to the ATN approach; one, in particular, is

that the heavy dependence on syntax restricts the ability to handle un-

grammatical (although meaningful) utterances.

References

The principal references here are, of course, Woods (1970), Woods
and Kaplan (1971), and Woods (1973a). Also see Bobrow and Fraser

(1969), Conway (1963), Matuzceck (1972), and Winograd (1976).

D3. The General Syntactic Processor

Ronald Kaplan's (1973) General Syntactic Processor (GSP) is a ver-

satile system for the parsing and generation of strings in natural

language. Its data structures are intuitive and the control structures are

conceptually straightforward and relatively easy to implement. Yet, by

adjusting certain control parameters, GSP can directly emulate several

other syntactic processors, including Woods's ATN grammar (Article

IV.D2), Kay's MIND parser (Kay, 1973), and Friedman's text generation

system (Article IV.e).

GSP represents an effort both to synthesize the formal characteristics

of different parsing methods and to construct a unifying framework

within which to compare them. In this respect, GSP is a meta-system

—

it is not in itself an approach to language processing, but rather it is a

system in which various approaches can be described.

Data Structure: Charts

GSP gains much of its power through the use of a single, basic data

structure—the chart—to represent both the grammar and the input sen-

tence. A chart can be described as a modified tree, which, in turn, is

usually defined as a set of nodes that can be partitioned into a root

and a set of disjoint subtrees. A tree encodes two sorts of relations

between nodes: DOMINANCE, the relation between a parent and

daughter node, and PRECEDENCE, the relation between a node and its

right-hand sister node. Figure D3-1 shows a tree representing a

particular noun phrase.

NP

DET ADJ

the ta I I man

Figure D3-1. A tree for a noun phrase.

A chart is basically a tree that has been modified in two ways:

1. The arcs of the tree have been rearranged to produce a binary

tree, that is, a tree in which each node has at most two

D3 The General Syntactic Processor 269

dangling nodes (this rearrangement is described by Knuth [1973,

p. 333] as the "natural correspondence" between trees and bi-

nary trees).

2. The nodes and arcs have been interchanged; what were previ-

ously nodes are now arcs, and vice versa.

For example, Figure D3-2 is the chart representation for the tree of

Figure D3-1:

NP

-*

DET ADJ

O >Q &-

the ta I I man

-o-

Figure D3-2. A chart for a noun phrase.

The chart representation has a number of advantages, including ease

of access for certain purposes. For example, in Figure D3-1 there is no

direct connection from DET to ADJ. In Figure D3-2 this connection has

been made; that is, the PRECEDENCE relations have been made

explicit, and the DOMINANCE ones have been removed. This explicit

encoding of precedence can be helpful in language processing, where the

concept of one element following another is a basic relation.

Also, the chart can be used to represent a "string of trees" or

"forest"—that is, a set of disjoint trees. For example, Figure D3-3a

shows a string of two disjoint trees, headed by NP and V. Note that

these trees cannot be connected, except with a dummy parent node

(labeled ?). In Figure D3-3b, the equivalent chart representation is

shown.

MP

NP V

/ \
DET M

I I

the man walked

Figure D3-3a. Two disjoint trees. Figure D3-3b. The equivalent chart.

270 Understanding Natural Language IV

Finally, the chart provides a representation for multiple inter-

pretations of a given word or phrase, through the use of multiple edges.

The arcs in a chart are called edges and are labeled with the names of

words or grammatical constructs. For example, Figure D3-4 represents

the set of trees for I saw the log, including the two interpretations for

the word saw. The chart allows explicit representation of ambiguous

phrases and clauses, as well as of words.

PRO V

o <>

see (past t.)

Figure D3-4. A chart showing multiple interpretations.

Note that ambiguity could also be represented by distinct trees,

one for every possible interpretation of the sentence. However, this

approach is inefficient, as it ignores the possibility that certain subparts

may have the same meaning in all cases. With the chart represen-

tation, these common subparts can be merged.

As mentioned above, the arcs in a chart are called edges and are

labeled with the names of words or grammatical constructs. The nodes

are called vertexes. The chart can be accessed through various func-

tions, which permit one to retrieve specific edges, sets of edges, or ver-

texes.

At any given moment during the processing of a sentence, the at-

tention of the system is directed to a particular point in the chart

called the CHART FOCUS. The focus is described by a set of global

variables: EDGE (the current edge), VERTEX (the name of the node

from which EDGE leaves), and CHART (the current subchart being con-

sidered by the processing strategy). GSP's attention is redirected by

changing the values of these variables.

When the chart is initialized, each word in the sentence is rep-

resented by an edge in the chart for each category of speech the word

can take. Figure D3-4 was an example of an initial chart configuration,

preparatory to parsing. Each analysis procedure that shares the chart is

restricted to adding edges, which makes it possible in later analyses to

modify or ignore earlier possibilities without constraining future inter-

pretations. In this way, the individual syntactic programs remain

relatively independent while building on each other's work in a generally

bottom-up way.

D3 The General Syntactic Processor 271

It should be emphasized that the chart is just a data structure and

is not directly related to the grammar. It merely serves as the global

blackboard upon which the various pieces of the grammar operate. We
still must specify the sorts of operations that use the chart—that is, the

form of the grammar itself.

Data Structure: Grammatical Rules

Grammars for syntactic processing of language can be understood in

terms of a network model like Woods's ATN grammar. That is, a gram-

mar is viewed as a series of states, with transitions between the states

accomplished by following arcs (see Article IV.D2).

The grammars encoded by GSP fit this description. What gives GSP
its power, however, is that a grammar can be represented in the same

way as a chart. That is, we can use the chart manipulation mech-

anisms, already developed, to operate upon the grammar itself. There is

a difference, of course. The chart is merely a passive data store; the

grammar contains instructions for (a) acting on the chart—adding pieces

and shifting attention—and (b) acting on the grammar—shifting atten-

tion (i.e., moving from one grammar state to another).

Control Structure

To handle the full complexity of grammars, GSP has some extra

features. These include:

1. REGISTERS. As in ATNs, these are used as pointers to struc-

tures.

2. LEVELSTACK. This is a stack used to implement recursion.

The chart focus, grammar focus (state), and register list are

saved before a recursive call.

3. NDLIST (nondeterminism list). This is a list of choice points in

the grammar. Whenever a choice is made, the user can op-

tionally save the current configuration on NDLIST, to allow for

backtracking.

4. PROCSTACK. This is a list of suspended processes. GSP allows

a co-routining facility, under which processes can be suspended

and resumed (ATNs have no equivalent to this).

Features like recursion, backtracking, and movement of the pointer

through the input sentence must all be implemented by the user within

the general framework provided. This approach can be beneficial, par-

ticularly with features such as backtracking: Automatic backtracking

can be a less than desirable feature in a grammar (see the discussion in

Chap, vi, Vol. n).

272 Understanding Natural Language IV

Using GSP

Note one facet of the approach outlined: All operations on the

grammar and chart must be explicitly stated. Thus, GSP has placed

much power in the hands of the grammar designer, with a corresponding

cost in complexity.

GSP appears to be similar to an ATN, with three extensions:

1. The data structure used is a chart, instead of simply a string of

word 8.

2. The grammar is encoded in the same manner as the chart;

thus, it is accessible to the system.

3. Processes can be suspended and resumed.

ATNs do not fully demonstrate the power of GSP. Kaplan also used

GSP to implement Kay's MIND parser (a context-free, bottom-up system)

and Friedman's transformational-grammar text-generation system. The

last two made more extensive use of GSP's capabilities, in particular:

(a) the possibilities of multiple levels in the chart, (b) the ability to

suspend and restart processes, and (c) the ability to rearrange the chart,

changing it as necessary. The Kay algorithm, in particular, made exten-

sive use of the ability to modify the chart "on the fly," adding sections

as required.

Conclusions and Observations

GSP provides a simple framework within which many language pro-

cessing systems can be described. It is not intended to be a high-level

system that will do many things for the user; rather, it provides a

"machine language" for the user to specify whatever operations he

wants. GSP's small set of primitive operations appears to be sufficient

for representing most of the desirable features of syntax-based parsing.

The clean, uniform structure allows GSP to be used as a tool for com-

parison (and possibly evaluation) of different systems.

The chart seems to be an effective data structure for representing

the syntax of natural language sentences. It provides convenient merg-

ing of common subparts (i.e., to prevent scanning known components

again), while permitting representation of various forms of ambiguity.

As Kay explained, the function of the chart is to "record hypotheses

about the phraseological status of parts of the sentence so that they will

be available for use in constructing hypotheses about larger parts at

some later time" (Kay, 1973, p. 167).

References

Kaplan (1973) is the principal reference.

E. TEXT GENERATION

Computer text generation is the process of constructing text

(phrases, sentences, paragraphs) in a natural language—in a sense, it is

the opposite of natural language understanding by machine. Although

this problem has been investigated for 15 years, few coherent principles

have emerged, and the approaches have varied widely. Attempts at gen-

erating text have been made with two general research goals: (a)

generating random sentences to test a grammar or grammatical theory

and (b) converting information from an internal representation into a

natural language.

Random Generation

This approach, the random generation of text constrained by the

rules of a test grammar, is of limited interest to workers in Artificial

Intelligence, since it is oriented more toward theoretical linguistics than

toward functional natural-language-processing systems. The objective of

implementing a generation system of this sort is to test the descriptive

adequacy of the test grammar, as illustrated by the following two

systems.

Victor Yngve (1962) was one of the first researchers to attempt

English text generation; the work was seen as preliminary to a full

program for machine translation (see Article iv.b). Yngve used a gen-

erative context-free grammar and a random-number generator to produce

"grammatical" sentences: The system randomly selected one production

from among those that were applicable at each point in the generation

process, starting from those productions that "produced" <SENTENCE

>

and finally randomly selecting words to fill in the <NOUN>, <VERB>,
and other like positions. This is an example of the text produced by

the system:

The water under the wheels in oiled whistles and its polished shiny

big and big trains is black.

Joyce Friedman's (1969, 1971) system was designed to test the ef-

fectiveness of transformational grammars (Article IV. C2). It operated by

generating phrase markers (derivation trees) and by performing transfor-

mations on them until a surface structure was generated. The generation

was random, but the user could specify an input phrase marker and

semantic restrictions between various terminals in order to test specific

rules for grammatical validity.

274 Understanding Natural Language IV

These two systems, while relevant to work in linguistics, are only

peripherally related to recent work in Artificial Intelligence. The funda-

mental emphasis in AI text-generation work has been on the meaning,

as opposed to the syntactic form, of language.

Surface Realization of Meaning

The general goal of text-generation programs in the AI paradigm is

to take some internal representation of the "meaning" of a sentence and

convert it to surface-structure form, that is, into an appropriate string

of words. There has been considerable variety among such systems, re-

flecting differences both in the type of internal representation used and

in the overall purpose for which the text is generated. Representation

schemes have included largely syntactic dependency trees, stored gener-

ation patterns of different degrees of complexity, and several versions of

semantic nets (see Chap. m). Purposes have included automatic para-

phrasing or machine translation of an input text, providing natural-

sounding communication with the user of an interactive program, and

simply testing the adequacy of the internal representation.

Sheldon Klein (1965) made a first step beyond the random gener-

ation of sentences, by means of a program that attempted to generate a

paraphrase of a paragraph of text through an internal representation of

that text (see also Klein and Simmons, 1963). The program used a type

of grammar called dependency grammar, a context-free grammar with

word-dependency information attached to each production. That is, the

right-hand side of each rule in the grammar has a "distinguished

symbol"; the "head" of the phrase associated with that rule is the head

of the phrase that is associated with the distinguished symbol. All

other words that are part of the phrase associated with the production

are said to depend on this head.

For instance, given the following simple dependency grammar and

the sentence The fierce tigers in India eat meat, Klein's parser would

produce both an ordinary phrase-structure derivation tree (see Article

iV.Ci) and also the dependency tree shown below (Fig. E-l):

TIGERS

S «- NP* + MP

IMP <- DET + ADJ + l\l* + PP

PP «- PREP* + NOUN

VP <- V* + OBJ

MDIA NEAT

Figure E-l. A dependency tree.

E Text Generation 275

The symbols followed by * are the distinguished symbols in the

productions. The dependency trees from the individual sentences of the

input paragraph were bound together with "two-way dependency" links

between similar nouns. For example, the input paragraph

The man rides a bicycle. The man is tall. A bicycle

is a vehicle with wheels.

would yield the dependency structure shown in Figure E-2. One

paraphrase generated from the given paragraph was The tall man rides

a vehicle with wheels.

MAM < MAM

THE RIDES THE IS

1 i
BICYCLE < BICYCLE TALL

A A IS

I
VEHICLE

I I
A WITH

I
WHEELS

Figure E-2. Multiple dependency trees.

The grammar used in generating the paraphrases was similar to the

one used for analysis. Rule selection was random (as in Yngve's method)

but with the added constraint that all dependencies among the words

that were generated must be derivable from the initial dependency trees.

In the example above, vehicle could be generated as the object of rides

because vehicle depends on is, is on bicycle, and bicycle on rides. Two
restrictions were imposed on the transitivity of dependency relations:

Dependency did not cross verbs other than be or prepositions other than

of. Thus, The man rides wheels could not be generated.

The use of dependency trees was expected to ensure that the output

sentences would "reflect the meaning of the source text" (Klein, 1965,

p. 74). A difficulty, however, was that the trees encoded only the

crudest of the semantic relations present in the paragraph. In fact, the

dependency relation between words only indicates that some semantic

relation exists between them without really specifying the nature of the

relation.

Ross Quillian (1968), in contrast, emphasized the expression of se-

mantic relationships almost to the exclusion of concern for syntactic

276 Understanding Natural Language IV

well-formedness. Quillian did pioneering work in the representation of

knowledge (see Chap, m) and was also one of the first to deal with the

problems of text generation. His system employed a semantic net to

represent the relations between words, which can be interpreted as their

meaning. The task the system was then to perform was to compare

two words, that is, find some semantic relation between them, and then

to express the comparison in "understandable, though not necessarily

grammatically perfect, sentences" (p. 247). For example:

Compare: Plant, Live

Answer: PLANT IS A LIVE STRUCTURE.

This relation between the two words was discovered as a path in the

net between the nodes that represented the words. Although this was a

primitive semantic net scheme, many fundamental issues were first raised

by Quillian 's system.

One important point was that paths in the semantic net did not

necessarily correspond to input sentences. Instead, the discovery of paths

between two nodes amounted to making inferences on the knowledge in

memory. For example, another relation the system found between plant

and live was:

PLANT IS STRUCTURE WHICH GET-FOOD FROM AIR. THIS FOOD

IS THING WHICH BEING HAS-TO TAKE INTO ITSELF TO KEEP LIVE.

In order to have found this connection, the system had to discover a

connection between PLANT and LIVE, by way of FOOD, that was not

directly input.

Although Quillian 's semantic net system was limited, it strongly in-

fluenced much of the later work in NL and the representation of knowl-

edge in AI. This influence reflected Quillian 's stress on the importance

of the semantic versus the surface components of language:

As a theory, the program implies that a person first has something

to say, expressed somehow in his own conceptual terms (which is

what a "path" is to the program), and that all his decisions about

the syntactic form that a generated sentence is to take are then

made in the service of this intention. (Quillian, 1968, p. 255)

This is a strong statement about language, and this view, of a cognitive

process manipulating an internal representation, is perhaps the essence of

the AI perspective.

Terry Winograd's blocks world program, SHRDLU (1972), contained

several text-generation devices. Their function was to allow the sys-

tem, which is described in Article IV.F4, to answer questions about the

state of its tabletop domain and certain of the system's internal states.

E Text Generation 277

The basic text-generation techniques used were "fill in the blank"

and stored response patterns. For example, if an unfamiliar word was

used, SHRDLU responded, "I don't know the word ..." More complex

responses were called for by questions asking why or how an action had

been done. For why, the system answered with "because < event>" or

"in order to <event>," where < event> referred to a goal that the

program had had when the action was taken. For example, "Why did

you clear off that cube?" might be answered by "To put it on a large

green cube." The program retrieved the appropriate event from its his-

tory list and then used a generation pattern associated with events of

that type. For an event of the type "(PUTON OBJ1 OBJ2)," the pat-

tern would be:

(<correct form of to puty, <I\IP for 0BJ1>, ON, <NP for 0BJ2>)

Noun phrases in the pattern were generated by associating an English

word with every known object; adjectives and relative clauses were

added until a unique object (within the domain of discourse) was de-

scribed.

The stilted text generated by this scheme was moderated by the

(heuristic) use of pronouns for noun phrases. For example, if the

referent of a noun phrase had been mentioned in the same answer or in

the previous one, an appropriate pronoun could be selected for it.

SHRDLU' s limited domain of discourse allowed it to exhibit surprisingly

natural dialogue with such simple techniques.

Simmons and Slocum (1972) developed a natural language system

that generated sentences from a semantic network representation of

knowledge, based on a case grammar (see Article IV. C4). The program

produced surface structure from the network by means of an augmented

transition net (ATN), adapted for the purpose of generation rather than

parsing (see Article IV.D2). The object of the work was to substantiate

the claim that "the semantic network adequately represents some impor-

tant aspect of the meaning of discourse"; if the claim were true, then

"the very least requirement" was that "the nets be able to preserve

enough information to allow regeneration of the sentences—and some of

their syntactic paraphrases—from which the nets were derived" (p. 903).

An illustration of the capabilities of the system is given by the

paragraph below, which was initially hand-coded into semantic network

notation. (For a later version of the program in which the parsing was

done automatically, see Simmons, 1973.)

John saw Mary wrestling with a bottle at the liquor bar. He went

over to help her with it. He drew the cork and they drank

champagne together.

278 Understanding Natural Language IV

The network notation, in simplified form, is indicated by the following

representation of John saw Mary wrestling:

ci

C2

TOKEN (see) C3 TOKEN (wrest 1 e)

TINE PAST TIME PROGRESSIVE PAST

DATIVE C2 AGENT C4

OBJECT C3

TOKEN (John) C4 TOKEN (Mary)

NUMBER SINGULAR NUMBER SINGULAR

Here CI, C2, C3, and C4 are nodes in the network representing concepts

that are tokens of meanings of see, wrestle, John, and Mary. PAST
and SINGULAR are also nodes. TOKEN, TIME, OBJECT, and the like

are types of arcs, or relations.

The representation shown was augmented by other relations, at-

tached to verb nodes, such as MOOD (indicative or interrogative),

VOICE (active or passive), and information about the relative times of

events. Using this representation, the system was able to reconstruct

several versions of the original paragraph. One read:

John saw Mary wrestling with a bottle at the liquor bar. John

went over to help her with it before he drew the cork. John and

Mary together drank the champagne.

The actual generation was accomplished by an ATN in which the

arcs were labeled with the names of relations that might occur in the

semantic net. The actual path followed through the ATN—and thus the

exact text generated—depended both on which relations were actually

present and on which node or nodes were chosen as a starting point.

Wong (1975) has extended this approach, incorporating features to

handle extended discourse.

Neil Goldman's (1975) program generates surface structure from a

database of conceptual dependency networks, as the text-generation part

of the MARGIE system, described in Article IV.F5. The conceptual de-

pendency (CD) knowledge representation scheme is based on language-

independent semantic primitives, so the actual word selection for output

must be performed by Goldman's text-generation subsystem, called

BABEL. This is accomplished by means of a discrimination net (a kind

of binary decision tree—see Article XI.D, in Vol. m) that operates on a

CD network that is to be verbalized. This discrimination net is used to

select an appropriate verb sense to represent the event specified by the

CD. (A verb sense is a meaning of the verb—DRINK, for example, has

two senses, to drink a fluid and to drink alcohol.) Essentially, there are

E Text Generation 279

only a few verbs that can represent the event, and a set of predicates

determines which one to use. For instance, the primitive INGEST can

be expressed as eat, drink, or breathe, depending on the nature of the

substance ingested:

(EQ (ACTION) INGEST)

(PROP (OBJECT) FLUID)

drink (PROP (OBJECT) GAS)

breathe eat

Figure 1. A sample discrimination net from MARGIE.
(Goldman, 1975, p. 331)

Once a verb sense has been selected, an associated framework is

used to generate a case-oriented syntax net, which is a structure similar

to the semantic net of Simmons and Slocum. These frameworks include

information concerning the form of the net and where in the concep-

tualization the necessary information is located. After the framework

has been filled out, other language-specific functions operate on the

syntax net to complete it syntactically with respect to such things as

tense, form, mood, and voice. Finally, an ATN is used to generate the

surface structure, as in the Simmons and Slocum program.

Yorick Wilks (1973) has developed a program that generates French

from a semantic base of templates and paraplates. This is part of his

machine translation system described in Article IV.F2.

Discussion

In computer text generation, as the richness and completeness of the

underlying semantic representation of the information has increased, the

quality of the resulting paraphrase has improved. Like other areas of

AI, the basic problem is to determine exactly what the salient points to

be discussed are and to obtain a good representation of them. Future

work in text generation will also have to address areas such as extended

discourse and stylistics. In this direction, Clippinger (1975) has looked

at psychological mechanisms underlying discourse production, and Cohen

280 Understanding Natural Language IV

(1978) has studied the planning of speech acts for communication in

context.

References

Recent research in text generation is described by Appelt (1980),

McDonald (1980), McKeown (1980), and Mann and Moore (1980).

F. NATURAL LANGUAGE PROCESSING SYSTEMS

Fl. Early Natural Language Systems

Early work on machine processing of natural language assumed that

the syntactic information in the sentence, along with the meaning of a

finite set of words, was sufficient to perform certain language tasks—in

particular, to answer questions posed in English. Several of these early

natural language programs are reviewed here—their techniques, their suc-

cesses, and their shortcomings. These programs were limited to dialogues

about restricted domains in simple English and ignored the difficult

grammatical problems of complex constructions found in unrestricted

English. Through work with programs of this genre, it became apparent

that people constantly apply extensive world-knowledge in processing

language and that a computer could not hope to be a competent lan-

guage user without "understanding." These programs bridge the gap

between the early machine translation attempts of the 1950s and cur-

rent, semantics-based natural language systems (see Article iv.a).

SAD-SAM

SAD-SAM (Syntactic Appraiser and Diagrammer—Semantic Analyzing

Machine) was programmed by Robert Lindsay (1963a) at Carnegie Insti-

tute of Technology in the IPL-V list-processing language. The program

accepts English sentences about kinship relations, builds a database, and

answers questions about the facts it has stored.

It accepts a vocabulary of Basic English (about 1,700 words) and

follows a simple context-free grammar. The SAD module parses the input

from left to right, builds a derivation tree structure, and passes this

structure on to SAM, which extracts the semantically relevant (kinship-

related) information to build the family trees and find answers to

questions.

Though the subset of English processed by SAD is quite impressive

in extent and in complexity of structure, only kinship relations are con-

sidered by SAM; all other semantic information is ignored. SAM does

not depend on the order of the input for building the family trees; if a

first input assigns offspring B and C to X, and offspring D and E to Y,

two "family units" will be constructed, but they will be collapsed into

one if we learn later that E and C are siblings. (Multiple marriages are

282 Understanding Natural Language IV

illegal.) However, SAM cannot handle certain ambiguities; the sentence

Joe plays in his Aunt Jane's yard indicates that Jane is either the sister

or sister-in-law of Joe's father, but SAM assigns one and only one con-

nection at a time and therefore cannot use the ambiguous information:

The structure of the model permits storing definite links but not

possible inferences.

BASEBALL

Also in the early 1960s, Bert Green and his colleagues at Lincoln

Laboratories wrote a program called BASEBALL (Green et al., 1963),

again using the IPL-V programming language. BASEBALL is essentially

an information retrieval program, since its database of facts about all of

the American League games during one year is not modified by the pro-

gram. Acceptable input questions from the user must have only one

clause, no logical connectives (and, or, not), no comparatives (higher,

longer), and no facts about sequences of events; also, most words must

be recognized by the extensive dictionary.

The parsing system uses 14 categories of parts of speech and right

to left scanning to structure the input question into functional phrases.

Using this structure and the keywords found in the question, the input

is transformed into a specification list that is the canonical expression

for the meaning of the question. For example, the question How many

games did the Yankees play in July? becomes:

TEAM = YANKEES

MONTH = JULY

GAMES (number of) = ?

The answer is found by searching the database for data items matching

the specification list, storing them on a "found" list, and eventually

processing and outputting them.

The size of the dictionary and the heuristics for resolving syntactic

ambiguities (score can be a verb or a noun; Boston, a place or the

name of a team) make it possible for BASEBALL to answer most rea-

sonable English questions about the games stored in the database. How-

ever, BASEBALL does not return to the user for clarification of semantic

ambiguities. It simply fails to parse the sentence and asks for a re-

phrasing of the question. Though the database is not modified by the

program, BASEBALL exhibits deductive abilities in parsing questions and

processing the found-list.

Fl Early Natural Language Systems 283

SIR

SIR (Semantic Information Retrieval) was written in LISP by

Bertram Raphael (1968) as part of his thesis research at M.I.T. It is a

prototype "understanding" machine, since it can accumulate facts and

then make deductions about them in order to answer questions.

SIR accepts a restricted subset of English. It matches sentences

against 24 matching patterns of the following sort:

* IS *

* is part of *

Is * * ?

How many * d oes * have ?

What is the * of * ?

where the elements matched against * are nouns, possibly modified by a

"quantifier" such as a, the, every, each, or a number. The match with

a pattern triggers the appropriate action in the program. A sample con-

versation might look like this:

Every boy is a person

I UNDERSTAND

A finger is part of a hand

I UNDERSTAND

There are two hands on each person

I UNDERSTAND

How many fingers does John have ?

THE ABOVE SENTENCE IS AMBIGUOUS BUT I ASSUME (has) MEANS

(has as parts)

I DON'T KNOW WHETHER FINGER IS PART OF JOHN

John is a boy

I UNDERSTAND

How many fingers does John have ?

THE ABOVE SENTENCE IS AMBIGUOUS BUT I ASSUME (has) MEANS

(has as parts)

HOW MANY FINGERS PER HAND ?

Every hand has 5 fingers

THE ABOVE SENTENCE IS AMBIGUOUS BUT I ASSUME (has) MEANS

(has as parts)

THE ANSWER IS 10

Who is President of the United States ?

STATEMENT FORM NOT RECOGNIZED

284 Understanding Natural Language IV

SIR's world is concerned with only a small group of relations be-

tween objects, as specified by the 24 matching patterns. Declarative

input statements are used to build the model, and the patterns have

been chosen to express concepts that commonly occur in human conver-

sation: set inclusion, spatial relationship, and the like. The program

has certain built-in knowledge (like transitivity of set inclusion) that

allows it to answer questions about some facts not explicitly stated

during input. SIR can also interact with the user to gather more infor-

mation or to resolve ambiguities.

STUDENT

STUDENT is another pattern-matching natural language program,

written by Daniel Bobrow (1968) as his doctoral research project at

M.I.T. STUDENT can read and solve high-school-level algebra story

problems like the following:

If the number of customers Tom gets is twice the square of 20 per

cent of the number of advertisements he runs, and the number of

advertisements he runs is 45, what is the number of customers

Tom gets?

The entire subset of English recognized by STUDENT is derived

from the following set of basic patterns:

(WHAT ARE * AMD *) (FIND * AND *)

(WHAT IS *) (* IS MULTIPLIED BY *)

(HOW MANY *1 IS *) (* IS DIVIDED BY *)

(HOW MANY * DO * HAVE) (* IS *)

(HOW MANY * DOES * HAVE) (* (*1/VERB) *1 *)

(FIND *)

(* (*1/VERB) * AS MANY * AS * (+1/VERB) *)

The * sign indicates a string of words of any length, *1 indicates one

word, and (*1/VERB) means the matching element must be recognized

as a verb by the dictionary.

To construct the algebraic equations that will lead to the solution,

the problem statement is scanned, first for linguistic forms associated

with the equality relation (such as [* IS *]), then for algebraic oper-

ators. STUDENT then builds a list of the answers required, the units

involved in the problem, and a list of all the variables in the equations.

Then STUDENT invokes the SOLVE module with the set of equations

and the desired unknowns.

If SOLVE fails, STUDENT applies heuristics such as expanding idi-

oms, identifying two previously "slightly different" variables, or invoking

the REMEMBER module that contains special facts like:

Fl Early Natural Language Systems 285

(FEET IS THE PLURAL OF FOOT)

(ONE HALF ALWAYS MEANS .5)

(SUCCESSFUL CANDIDATES SOMETIMES MEANS STUDENTS WHO

PASSED THE ADMISSIONS TEST)

(DISTANCE EQUALS SPEED TIMES TIME)

(ONE FOOT EQUALS 12 INCHES)

If all else fails, STUDENT can request more information from the user.

Each time a heuristic succeeds in finding a new equation, the aug-

mented set is sent to SOLVE. STUDENT finally prints the solution

(using the pattern "variable IS value") or reports its inability to solve

the problem. In this example, STUDENT would print

(THE NUMBER OF CUSTOMERS TOM GETS IS 162)

STUDENT'S simple pattern-matching scheme, combined with its small

set of well-chosen heuristics, does an impressive job of parsing typical

high-school-algebra word problems. The program can be tricked easily

(Bill has 3 apples, 2 pears, and one dog would be parsed into two

clauses); but as implemented, it solved the problems submitted as fast

as humans could (in one case, several times faster than an M.LT. grad-

uate student who was not using the special "age problem" heuristics).

A slightly modified version was found to be a good model for human

problem solving, in a study conducted by Paige and Simon (1966).

ELIZA

Perhaps the most famous of these "pattern-matching" natural lan-

guage programs was ELIZA, written by Joseph Weizenbaum (1966) at

M.LT. This program assumes the role of a Rogerian, or "nondirective,"

therapist in its dialogue with the user. Although ELIZA's dialogue with

the user appears surprisingly realistic, the program uses no more intel-

ligent mechanisms than those described above. Rather, the nature of

therapist-patient dialogue lends itself to simulation in this manner. A
sample dialogue might look like this (with ELIZA's response in caps):

Men are all a I ike.

IN WHAT WAYS

They re always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.

I AM SORRY TO HEAR THAT YOU ARE DEPRESSED

286 Understanding Natural Language IV

It's true. I'm unhappy.

DO YOU THINK CONING HERE WILL HELP YOU NOT TO BE UNHAPPY

I need some help, that much seems certain.

WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP

Perhaps I could learn to get along with my mother.

TELL ME MORE ABOUT YOUR FAMILY

WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER

Bu II i es

.

DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR

BOYFRIEND MADE YOU COME HERE

ELIZA is programmed in the SLIP language (Symmetric List Proces-

sor), developed by Weizenbaum (1963). An off-line script composed of

key lists specifies the nature of the input language by specifying for

each keyword a set of patterns to look for and the possible transforma-

tions associated with each pattern. For example, assuming the keyword

is me, a pattern used for matching might be

(0 YOU ME)

and one of the transformation rules associated with this pattern might

be

(WHAT MAKES YOU THINK I 3 YOU)

where in the pattern matches any string of words, and 3 in the

transformation rule designates the third element matched (in this case,

everything between YOU and ME). The input is scanned from left to

right for a keyword; a systematic hashing procedure very quickly elim-

inates words that cannot be keywords. ELIZA deletes the part of text

preceding a punctuation delimiter if no keyword has been found; other-

wise, the part following it (ensuring thus that the transformation will be

applied to one single phrase or sentence). If several keywords are

found, they are stored in turn in a "key stack" according to the rank

of precedence associated with each of them; then the input is matched

against each decomposition rule in turn. These patterns can be ordered

in the key list so that the more complex ones are tried first; for

example, the pattern

(0 10 DEPRESSED 0)

Fl Early Natural Language Systems 287

for the keyword / is hard to match, but if a match is achieved, the

answer can be more spectacular than the transformations for the "gen-

eral match" pattern for /,

(oio) .

When a match is found, ELIZA generates a response, cyclically using the

reassembly rules associated with the appropriate decomposition rule. If

no decomposition rule matches for a given keyword, the key stack is

popped and the pattern-matching procedure is repeated for the new

keyword. If the key stack is empty, a response like "Please go on," "I

see," or "Very interesting" will always do.

Several other tricks—like substituting for keywords in its response,

associating keywords with a class or situation (Mother implies family),

and remembering these keyword affiliates over the course of the conver-

sation—help enhance the illusion of intelligent dialogue.

Conclusions

None of these early natural language systems dealt with the syntax

of language in any sophisticated way. In these programs, the semantic

knowledge needed to respond to the user was implicit in the patterns

and the ad hoc rules used for parsing. More recent natural language

programs maintain large databases of explicit world-knowledge that they

use to assist in parsing the sentence as well as in interpreting it.

References

For general reference, see Boden (1977), in which there are lucid

discussions of several of these systems; see also Simmons (1965, 1970)

and Winograd (1974). The collections edited by Feigenbaum and Feld-

man (1963) and by Minsky (1968) contain much of the original material.

F2. Wilks's Machine Translation System

Current work in machine translation of languages is exemplified by

Yorick Wilks's system (1973), which can produce good French from

small English paragraphs. The system stresses semantics-based proces-

sing over conventional syntactic analysis in both the analysis and the

generation stages. The input English text is first converted to a

semantic representation and then to the final translated text. (The use

of an intermediate representation bears some similarity to Weaver's idea

of interlingua, discussed in Article IV.B.) Wilks stresses that his se-

mantic representation is designed for machine translation and may not

be appropriate for other NL tasks like question answering. The ra-

tionale for this is that an explicit representation of all of the logical

implications of a sentence, which is necessary for some tasks, may be

mostly unnecessary for translation: If the two languages are similar, an

appropriate target sentence with the same implications can often be

found in a more straightforward way.

Wilks's system first fragments the input text into substrings of

words; it then replaces each word in the text fragments with the in-

ternal formulas representing the word's meanings and matches the

resulting string of formulas against a set of standard forms called bare

templates. The output of this stage is a first approximation to a seman-

tic representation of each of these fragments. The system then tries to

tie together these representations to produce a more densely connected

representation for the complete text. When this process has been com-

pleted, the generation of the output text is accomplished by unwinding

the interlingual representation using functions that interpret it in the

target language.

The interlingual representation is based on semantic primitives that

Wilks calls elements. Elements express the basic entities, states, qual-

ities, and actions about which humans communicate. In the system as

reported in Wilks (1973), there were 60 of these elements, which fell

into five classes. For example, the class ENTITIES contains elements

like MAN and STUFF, and the class ACTIONS includes CAUSE and

FLOW. (See Article m.C6 for a thorough dicussion of the status of

semantic primitives in Wilks's research.)

The elements are used to build up formulas—each formula represents

the sense of a word and is composed of elements combined into a

binarily bracketed list-data structure. For example, the sense of the

word drink when used as a verb is represented by the following formula:

F2 Wilks's Machine Translation System 289

((AMI SUBJ)

(((FLOW STUFF) OBJE)

((*ANI IN) (((THIS (*AI\II (THRU PART))) TO) (BE CAUSE)))))

In other words, the word drink is an action, (BE CAUSE), done by ani-

mate subjects, (*ANI SUBJ), to liquids, ((FLOW STUFF) OBJE). It causes

the liquid to be in the animate object, (*ANI IN), through a particular

aperture of the animate object, ((THIS (*ANI (THRU PART))) TO).

Wilks and Herskovits (1973) point out that the formulas represent

information about a word, or one sense of a word, not knowledge about

the thing that the word stands for. In particular, the formulas rep-

resent the preferences a word has for being used in sentences with cer-

tain other kinds of words. For example, in analyzing the sentence John

drank a whole pitcher, it is the preference of drink for a liquid object

that would help select the formula representing the container- of-liquid

sense of pitcher rather than the baseball-player sense. And these are

preferences, not requirements, since in understanding the metaphorical

sentence My car drinks gasoline, the preference of drink for an animate

subject must be overlooked.

The system's dictionary contains formulas for all the word senses

paired with stereotypes for producing the translated words in the target

language. The following is an example of two stereotypes for the word

advise (into French):

(ADVISE (CONSEILLER A (FN1 FOLK NAN))

(CONSEILLER (FN2 ACT STATE STUFF)))

The two functions FN1 and FN2 are used to distinguish the two

possible constructions in French for the object of conseiller: conseiller

a . . . and simply conseiller . . . The first would be used in translating

I advise John to have patience; the second, for / advise patience.

Functions like these in stereotypes are evaluated by the generation

routines. Each function evaluates either to NIL, in which case the

stereotype fails, or to words that will appear in the output text. The

stereotypes serve the purpose of a text generation grammar, providing

complex, context-sensitive rules for overriding defaults where required,

without search of a large store of such rules. This is an example of

procedural representation of knowledge (see Article m.C2).

Analysis of an English sentence by the system proceeds in several

stages. First, as mentioned above, the text is broken into fragments (at

punctuation marks, conjunctions, prepositions, etc.), and each fragment

is replaced by a sequence of formulas, one formula for each word in the

290 Understanding Natural Language IV

fragment. Now, the dictionary may contain several formulas for a

word, representing its different senses, so there may be several alter-

native sequences of formulas that could represent a given fragment.

To select the right formula sequence, each sequence is reduced to

the sequence of elements that form the heads of its formulas. For ex-

ample, the sentence Small men sometimes father big sons would produce

the following head-element sequences:

(KIND MAW HOW MAN KIND MAN)

(KIND MAN HOW CAUSE KIND MAN)

which reflect the two senses of father, noun and verb, respectively.

These sequences of head elements are matched against the bare tem-

plates, a built-in set of element triples in actor-action-object format.

Examples of such triples are MAN-CAUSE-MAN (which happens to

match the second interpretation above) and MAN-DO-THING. The

system interprets a sentence fragment on the basis of one of the bare

templates that matches one of the alternative sequences of formula

headers. It is assumed that it is possible to build up a finite inventory

of bare templates that would be adequate for the analysis of ordinary

language. The inventory for the system has been determined empirically

and is easily modified. Special forms of templates are available to

match fragments like prepositional phrases.

At the initial stage of bare-template matching, some senses of the

words in the fragment can be rejected because they produce head-

element sequences that fail to match any bare template (as does the

first interpretation of father above). However, more than one candidate

template may remain. For example, if the fragment is The policeman

interrogated the crook, there will still be two possible bare templates,

MAN-FORCE-MAN and MAN-FORCE-THING, that match the fragment

when crook is taken to be a person and a shepherd's staff, respectively.

At the next stage of the analysis, called expansion, a more detailed

matching algorithm is used. The principle followed is that the final tem-

plate representation chosen for a fragment is the one in which the most

preferences are satisfied. In this example, the preference of interrogate

for a human object is decisive. The result of this stage is a full tem-

plate—a network of formulas—for each fragment, in which semantic

dependencies among the formulas (indicating satisfied preferences) have

been noted. The overall goal of semantic density—that is, of maximizing

the interdependence of formulas—is one of the key ideas in Wilks's

work and produces a good solution to many problems of ambiguity.

In the succeeding stage of analysis, the templates for individual frag-

ments are tied together with higher level dependencies, expressed in

F2 Wilks's Machine Translation System 291

terms of paraplates, or patterns that span two templates. The use of

paraplates is to resolve prepositional or case ambiguities (see Article

IV.C4). For example, the fragments he ran the mile and in four minutes

would be tied together by a paraplate for the TIMELOCATION case;

had the second fragment been in a plastic bag, a CONTAINMENT case

paraplate would have matched instead. A similar technique is used to

resolve simple problems of pronoun reference, as in / bought the wine,

sat on a rock, and drank it. In both cases, the chief preference of the

system is for semantic density.

Finally, the system applies some commonsense inference rules to

deal with situations in which, to resolve pronoun references, more ex-

plicit world-knowledge is required than formulas, templates, and para-

plates provide. At the completion of this analysis, the input text has

been replaced by an interlingual representation with suitable markers,

and other information is used by the text generation routines in a rel-

atively straightforward manner to produce the final output text.

References

This description of Wilks's work is based primarily on Wilks (1973)

and Wilks and Herskovits (1973). Other descriptions include Wilks

(1975a, 1975b, 1975c, 1977b, 1978).

Also of interest: Charniak and Wilks (1976) and Schank (1975a).

F3. LUNAR

LUNAR is an experimental, natural-language, information retrieval

system designed by William Woods at BBN (Woods, Kaplan, and Nash-

Webber, 1972; Woods, 1973b) to help geologists access, compare, and

evaluate chemical-analysis data on moon rock and soil composition ob-

tained from the Apollo-11 mission. The primary goal of the designers

was research on the problems involved in building a man-machine

interface that would allow communication in ordinary English. A "real

world" application was chosen for two reasons: First, it tends to focus

effort on the problems really in need of solution (sometimes this is

implicitly avoided in "toy" problems) and, second, the possibility of

producing a system capable of performing a worthwhile task lends addi-

tional impetus to the work.

LUNAR operates by translating a question entered in English into an

expression in a formal query language (Codd, 1974). The translation is

done with an augmented transition network (ATN) parser coupled with a

rule-driven semantic interpretation procedure, which guides the analysis

of the question. The "query" that results from this analysis is then ap-

plied to the database to produce the answer to the request. The query

language is a generalization of the predicate calculus (Article m.Ci). Its

central feature is a quantifier function that is able to express, in a

simple manner, the restrictions placed on a database-retrieval request by

the user. This function is used in concert with special enumeration

functions for classes of database objects, freeing the quantifier function

from explicit dependence on the structure of the database. LUNAR also

served as a foundation for the early work on speech understanding at

BBN (see Article V.C3).

Detailed Description

The following list of requests is indicative of the kinds of English

constructions that can be handled by LUNAR (shown as they would

actually be presented to the system):

1. (WHAT IS THE AVERAGE CONCENTRATION OF ALUMINUM IN

HIGH ALKALI ROCKS?)

2. (WHAT SAMPLES CONTAIN P205?)

3. (GIVE ME THE MODAL ANALYSES OF P205 IN THOSE SAMPLES)

4. (GIVE ME EU DETERMINATIONS IN SAMPLES WHICH CONTAIN ILM)

LUNAR processes these requests in the following three steps:

F3 LUNAR 293

Syntactic analysis using an augmented transition network parser and

heuristic information (including semantics) to produce the most

likely derivation tree for the request;

Semantic interpretation to produce a representation of the meaning

of the request in a formal query language;

Execution of the query language expression on the database to pro-

duce the answer to the request.

LUNAR 's language processor contains an ATN grammar for a large

subset of English, the semantic rules for interpreting database requests,

and a dictionary of approximately 3,500 words. As an indication of the

capabilities of the processor, it is able to deal with tense and modality,

some anaphoric references and comparatives, restrictive relative clauses,

certain adjective modifiers (some of which alter the range of quan-

tification or interpretation of a noun phrase), and embedded complement

constructions. Some problems do arise in parsing conjunctive construc-

tions and in resolving ambiguity in the scope of quantifiers. Emphasis

has been placed on the types of English constructions actually used by

geologists, so that the system knows how geologists habitually refer to

the objects in its database.

The Query Language

The formal query language contains three types of objects: desig-

nators, which name classes of objects in the database (including func-

tionally defined objects); propositions, which are formed from predicates

with designators as arguments; and commands, which initiate actions.

Thus, if SI0046 is a designator for a particular sample, OLIV is a

designator for the mineral olivine, CONTAIN is a predicate, and TEST is

a truth-value-testing command, then "(TOST (CONTAIN S10046 OLIV))"

is a sample expression in the query language. The primary function in

the language is the quantifier function FOR, which is used in expressions

of the following type:

(FOR QUANT X / CLASS : PX ; QX)

where QUANT is a quantifier like each or every, or a numerical or com-

parative quantifier, X is a variable of quantification, CLASS determines

the class of objects over which the quantification is to range, PX spec-

ifies a restriction on the range, and QX is the proposition or command
being quantified. FOR is used with enumeration functions that can

access the database. Thus, FOR itself is independent of the database

structure. As an example (taken from Woods, 1973b), if SEQ is an

enumeration function for enumerating a precomputed list, and if

294 Understanding Natural Language IV

PRINTOUT is a command that prints a representation for the designator

given as its argument, then

(FOR EVERY XI / (SEQ TYPECS) : T
;

(PRINTOUT XI)
)

prints the sample numbers for all type C samples. In this case, there is

no restriction on the range of quantification in that PX = T.

A fuller example of the operation of LUNAR (simplified slightly from

the same source) is shown below.

Request:

(DO ANY SAMPLES HAVE GREATER THAN 13 PERCENT ALUMINUM)

Query Language Translation (after parsing):

(TEST (FOR SOME XI / (SEQ SAMPLES) : T
;

(CONTAIN XI

(NPR* X2 / 'AL203) (GREATERTHAN 13 PCT))))

Response:

YES

LUNAR is perhaps the best operational example of a finely tuned

ATN parsing system applied to a real-world problem. Since the system

does have limited performance goals (in that facilitating database inquiry

is not as demanding as, say, holding an interesting conversation), some

of the complications inherent in understanding natural language dia-

logues are avoided.

References

See Woods (1973b), Woods and Kaplan (1971), and Woods, Kaplan,

and Nash-Webber (1972).

F4. SHRDLU

The natural language processing system SHRDLU was written by

Terry Winograd (1972) as his doctoral research project at M.I.T. It was

written in LISP and MICRO-PLANNER, a LISP-based programming lan-

guage. The design of the system was based on the belief that to

understand language, a program must deal in an integrated way with

syntax, semantics, and reasoning. The basic viewpoint guiding its imple-

mentation was that meanings (of words, phrases, and sentences) can be

embodied in procedural structures and that language is a way of acti-

vating appropriate procedures within the hearer. Thus, instead of repre-

senting knowledge about syntax and meaning as rules in a grammar or

as patterns to be matched against the input, Winograd embodied the

knowledge in SHRDLU in pieces of executable computer code. For

example, the context-free rule saying that a sentence is composed of a

noun phrase and a verb phrase,

S -> NP VP
,

is embodied in the MICRO-PLANNER procedure:

(PDEFINE SENTENCE

(((PARSE NP) NIL FAIL)

((PARSE VP) FAIL FAIL RETURN)))

When called, this program, named SENTENCE, uses independent pro-

cedures for parsing a noun phrase followed by a verb phrase. These, in

turn, can call other procedures. The process FAILs if the required con-

stituents are not found. With such special procedural representations

for syntactic, semantic, and reasoning knowledge, SHRDLU was able to

achieve unprecedented performance levels.

SHRDLU operates within a small "toy" domain so that it can have

an extensive model of the structures and processes allowed in the do-

main. The program simulates the operation of a robot arm that manip-

ulates toy blocks on a table. The system maintains an interactive

dialogue with the user: It can accept statements and commands as well

as answer questions about the state of its world and the reasons for its

actions. The implemented system consists of four basic elements: a

parser, a recognition grammar for English, programs for semantic anal-

ysis (to change a sentence into a sequence of commands to the robot or

into a query of the database), and a problem solver (which knows about

how to accomplish tasks in the blocks world).

296 Understanding Natural Language IV

Each procedure can make any checks on the sentence being parsed,

perform any actions, or call on other procedures that may be required

to accomplish its goal. For example, the VERB PHRASE procedure

called above contains calls to functions that establish verb-subject agree-

ment by searching through the entire derivation tree for other constit-

uents while still in the middle of parsing the VP. SHRDLU's knowledge

base includes a detailed model of the blocks world it manipulates, as

well as a simple model of its own reasoning processes, so that it can

explain its actions.

Reasoning in SHRDLU

SHRDLU's model of the world and reasoning about it are done in

the MICRO-PLANNER programming language, which facilitates the rep-

resentation of problem-solving procedures, allowing the user to specify

his own heuristics and strategies for a particular domain. (The philos-

ophy and implementation of PLANNER are described in Article VI.C2, in

Vol. n—the brief discussion here will illustrate its use in SHRDLU.)

Knowledge about the state of the world is translated into MICRO-
PLANNER assertions, and manipulative and reasoning knowledge is em-

bodied in MICRO-PLANNER programs. For example, the input sentence

The pyramid is on the table might be translated into an assertion of the

form:

(ON PYRAMID TABLE)

SHRDLU's problem solver consists of a group of "theorems" about

the robot's environment and actions, represented as MICRO-PLANNER
procedures. In operation, the theorem prover manipulates the state of

the domain by running MICRO-PLANNER programs that perform the

actions requested by the user.

The main idea of PLANNER is to solve problems by means of spe-

cific procedures built into the problem statements themselves, as well as

by applying general problem-solving rules. The advantage of these

problem- specific rules, or heuristics, is that they can radically increase

the efficiency of the process. Furthermore, the problem statements are

programs and thus can carry out actions in the problem-solving process.

Thus, to put one block on another, there might be a MICRO-PLANNER
program of the form:

(THGOAL (ON ?X ?Y)

(OR (ON-TOP ?X ?Y)

(AND (CLEAR-TOP ?X)

(CLEAR-TOP ?Y)

(PUT-ON ?X ?Y))))

F4 SHRDLU 297

This means that, if X is not already on Y, such a state can be

achieved by clearing off everything that is stacked on top of X (so that

the robot can move X), clearing off Y (so that X can be placed on top

of Y), and then putting X on Y. The procedure resembles a predicate

calculus theorem, but there are important differences. The PLANNER
procedure is a program, and its operators carry out actions. The

THGOAL procedure finds an assertion in the database or proves it with

other procedures. AND and OR are logical connectives. The crucial

element is that though PLANNER may end up doing a proof, it does so

only after checking some conditions that may make the proof trivial, or

impossible, and it only performs the proof on relevant arguments, rather

than checking all entities in the database as a blind theorem prover

might. Moreover, no sharp distinction is drawn between proof by

showing that a desired assertion is already true and proof by finding a

sequence of actions (manipulating blocks) that will make the assertion

true.

Grammar, Syntax, and Semantics

SHRDLU's grammar is based on the notion of systemic grammar, a

system of choice networks that specifies the features of a syntactic unit,

how the unit functions, and how it influences other units (as described

in Article IV.C3). Thus, a systemic grammar contains not only the con-

stituent elements of a syntactic group but also higher level features such

as mood, tense, and voice.

To facilitate the analysis, the parsing process looks for syntactic

units that play a major role in meaning, and the semantic programs are

organized into groups of procedures that are applicable to a certain type

of syntactic unit. In addition, the database definitions contain semantic

markers that can be used by the syntactic programs to rule out gram-

matical but semantically incorrect sentences such as The table picks up

blocks. These markers are calls to semantic procedures that check for

restrictions, for example, that only animate objects pick up things.

These semantic programs can also examine the context of discourse to

clarify meanings, establish pronoun referents, and initiate other

semantically guided parsing functions.

Parsing

To write SHRDLU's parser, Winograd first wrote a programming lan-

guage, embedded in LISP, which he called PROGRAMMAR. This

language supplies primitive functions for building systemically described

syntactic structures. The theory behind the language is that basic

298 Understanding Natural Language IV

programming methods, such as procedures, iteration, and recursion, are

also basic to the cognitive process. Thus, a grammar can be imple-

mented without additional programming paraphernalia; special syntactic

items (such as conjunctions) are dealt with through calls to special

procedures. PROGRAMMER operates basically in a top-down, left-to-

right fashion but uses neither a parallel processing nor a backtracking

strategy in dealing with multiple alternatives (see Article rv.Di). It finds

one parsing rather directly, since decisions at choice points are guided

by the semantic procedures. By functionally integrating its knowledge of

syntax and semantics, SHRDLU can avoid exploring alternative choices

in an ambiguous situation. If the choice does fail, PROGRAMMAR has

primitives for returning to the choice point with the reasons for the

failure and informing the parser of the next best choice based on these

reasons. This "directed backup" is far different from PLANNER'S
automatic backtracking in that the design philosophy of the parser is

oriented toward making an original correct choice rather than es-

tablishing exhaustive backtracking.

The key to the system's successful operation is the interaction of

PLANNER reasoning procedures, semantic analysis, and PROGRAMMAR.
All three of these elements examine the input and help direct the

parsing process. By making use of this multiple-source knowledge and

programmed-in "hints" (heuristics), SHRDLU successfully dealt with lan-

guage issues such as pronouns and referents. The reader is referred to

Winograd's Understanding Natural Language (1972), pages 8-15, for an

illustrative sample dialogue with SHRDLU.

Discussion

SHRDLU constituted a significant step forward in natural language

processing research because of its attempts to combine models of human
linguistic and reasoning methods in the language understanding process.

Before SHRDLU, most AI language programs were linguistically simple;

they used keyword and pattern-oriented grammars. Furthermore, even

the more powerful grammar models used by linguists made little use of

inference methods and semantic knowledge in the analysis of sentence

structure. A union of these two techniques gives SHRDLU impressive

results and makes it a more viable theoretical model of human language

processing.

SHRDLU does have its problems, however. Like most existing nat-

ural language systems, SHRDLU cannot handle many of the more com-

plex features of English. Some of the problem areas are agreement,

dealing with hypotheses, and handling words like the and and.

F4 SHRDLU 299

Wilks (1974) has argued that SHRDLU's power does not come from

linguistic analysis but from the use of problem-solving methods in a sim-

ple, logical, and closed domain (blocks world), thus eliminating the need

to face some of the more difficult language issues. It seems doubtful

that if SHRDLU were extended to a larger domain, it would be able to

deal with these problems. Further, the level at which SHRDLU seeks to

simulate the intermixing of knowledge sources typical of human rea-

soning is embedded in its processes rather than made explicit in its

control structure, where it would be most powerful. Lastly, its problem

solving is still highly oriented toward predicate calculus and limited in

its use of inferential and heuristic data (Winograd, 1974, pp. 46-48).

References

Winograd (1972) is the principal reference on SHRDLU. A conve-

nient summary is given in Winograd (1973). Boden (1977) also presents

a clear and concise discussion of the system. Winograd (1980b) reviews

SHRDLU and subsequent directions of his research into understanding

language.

Also of interest are the MICRO-PLANNER manual (Sussman, Wino-

grad, and Charniak, 1970) and Wilks (1974), Winograd (1974), and

Winograd (in press).

F5. MARGIE

MARGIE (Meaning Analysis, Response Generation, and Inference on

English) was a program developed by Roger Schank and his students at

the Stanford AI Laboratory (see Schank, 1975a). Its intent was to pro-

vide an intuitive model of the process of natural language understand-

ing. More recent work by Schank and his colleagues at Yale University

on script-based story understanding in their SAM and PAM systems is

described in Article IV.F6.

Conceptual Dependency Theory

Schank (1973b) developed conceptual dependency (CD) as a represen-

tation for the meaning of phrases and sentences. The "basic axiom" of

conceptual dependency theory is:

For any two sentences that are identical in meaning, regardless of

language, there should be only one representation of that meaning

in CD. (Schank and Abelson, 1977, p. 11)

Schank thus allies himself with the early machine translation concept of

interlingua, or intermediate language (see Article IV.B), and has in fact

done some machine translation research in conjunction with the story

understanding project, SAM.

A second important idea is that conceptual dependency representa-

tions are made up of a very small number of semantic primitives, which

include primitive acts and primitive states (with associated attribute

values). Examples of primitive acts are:

PTRANS The transfer of the physical location of an

object. For one to "go" is to PTRANS oneself.

"Putting" an object somewhere is to PTRANS it

to that place.

PROPEL The application of physical force to an object.

ATRANS The transfer of an abstract relationship. To

"give" is to ATRANS the relationship of possession

or ownership.

NTRANS The transfer of mental information between people

or within a person. "Telling" is an NTRANS between

people; "seeing" is an NTRANS within a person.

NBUILD The construction of new information from old.

"Imagining," "inferring," and "deciding" are NBUILDs.

F5 MARGIE 301

In the most recent version of CD theory (1977), Schank and Abelson

included 11 of these primitive acts. Relations among concepts are called

dependencies, and there is a fixed number of these, each represented

graphically by a special kind of arrow. For example, the canonical

representation of the sentence John gives Mary a book is the graph:

o R
|

Mary

John <===> ATRANS < book <

«- John

where John, book, and Mary are concept nodes, and the ATRANS node

represents one of the primitive acts. The complicated, three-pointed

arrow labeled "R" indicates a recipient-donor dependency between Mary

and John and the book, since Mary got the book from John. The

arrow labeled "o" indicates an "objective" dependency; that is, the book

is the object of the ATRANS, since it is the thing being given. Depen-

dency links may link concepts or other conceptual dependency networks.

Examples of primitive states in conceptual dependency theory in-

clude:

STATES

:

Nary HEALTH (-10) Nary is dead.

John MENTAL STATE(+10) John is ecstatic.

Vase PHYSICAL STATE(-IO) The vase is broken.

The number of primitive states is much larger than the number of

primitive actions. States and actions can be combined; for example, the

sentence John told Mary that Bill was happy can be represented (in a

newer, arrowless representation) as

John MTRANS (Bill BE MENTAL-STATE (5)) to Mary.

An important class of sentences involves causal chains, and Schank

and Abelson and their colleagues have worked out some rules about cau-

sality that apply to conceptual dependency theory. Five important rules

are:

1. Actions can result in state changes.

2. States can enable actions.

3. States can disable actions.

4. States (or acts) can initiate mental events.

5. Mental events can be reasons for actions.

These are fundamental pieces of knowledge about the world, and CD
includes a shorthand representation of each (and combinations of some)

called causal links.

302 Understanding Natural Language IV

The third important idea in conceptual dependency theory is:

Any information in a sentence that is implicit must be made
explicit in the representation of the meaning of that sentence.

(Schank and Abelson, 1977, p. 11)

This idea is the basis for much of the sophisticated inferential ability of

MARGIE and the later systems. It can be illustrated by the CD repre-

sentation of the sentence John eats the ice cream with a spoon:

o D

John <===> INGEST < ice cream <—

ice cream

A

<

v
CONTAIN (spoon)

- John I John

«

-<- spoon

MOVE

- spoon

D

ice cream mouth

where the D and / arrows indicate direction and instrument depen-

dencies, respectively. Note that in this example, mouth has entered the

diagram as part of the conceptualization, even though it was not in the

original sentence. This is a fundamental difference between conceptual

dependency networks and the derivation tree that is produced in parsing

a sentence. John's mouth as the recipient of the ice cream is inherent

in the meaning of the sentence, whether it is expressed or not. In fact,

the diagram can never be finished, because we could add such details as

"John INGESTed the ice cream by TRANSing the ice cream on a spoon

to his mouth, by TRANSing the spoon to the ice cream, by GRASPing

the spoon, by MOVing his hand to the spoon, by MOVing his hand

muscles," and so on. Such an analysis is known to both the speaker

and the hearer of the sentence and normally would not need to be ex-

panded.

For some tasks, like paraphrasing and question answering, CD rep-

resentation has a number of advantages over more surface-oriented sys-

tems. In particular, sentences like

Shakespeare wrote Hamlet

and

The author of Hamlet was Shakespeare.

F5 MARGIE 303

which in some sense have the same meaning, map into the same

CD structure. Another important aspect of conceptual dependency

theory is its independence from syntax; in contrast with earlier work in

the paradigms of transformational grammar or phrase-structure grammar,

a "parse" of a sentence in conceptual dependency bears little relation to

the syntactic structure. Schank (1975a) also claims that conceptual

dependency has a certain amount of psychological validity, in that it

reflects intuitive notions of human cognition. The status of semantic

primitives in conceptual dependency theory is discussed further in Article

m.C6.

MARGIE

The MARGIE system, programmed in LISP 1.6, was divided into

three components. The first, written by Christopher Riesbeck, was a

conceptual analyzer, which took English sentences and converted them

into an internal conceptual-dependency representation. This was done

through a system of "requests," which are similar to demons or pro-

ductions (see Article m.C4). A request is essentially a piece of code that

looks for some surface linguistic construct and takes a specific action if

it is found. It consists of a test condition, to be searched for in the

input, and an action, to be executed if the test is successful. The test

might be as specific as a particular word or as general as an entire

conceptualization. The action might contain information about (a) what

to look for next in the input, (b) what to do with the input just found,

and (c) how to organize the representation. The flexibility of this

formalism allows the system to function without depending heavily on

syntax, although it is otherwise quite similar to the tests and actions

that make ATNs such a powerful parsing mechanism.

The middle phase of the system, written by Charles Rieger, was an

inferencer designed to accept a proposition (stated in conceptual depen-

dency) and deduce a large number of facts from the proposition in the

current context of the system's memory. The reason behind this com-

ponent was the assumption that humans understand far more from a

sentence than is actually stated. Sixteen types of inferences were iden-

tified, including cause, effect, specification, and function. The inference

knowledge was represented in memory in a modified semantic net.

Inferences were organized into "molecules," for the purpose of applying

them. An example of this process might be:

John hit Mary

.

from which the system might infer (among many other things):

304 Understanding Natural Language IV

John was angry with Nary.

Nary might hit John back.

Nary might get hurt.

The module does relatively unrestricted forward inferencing, which

tended to produce large numbers of inferences for any given input.

The last part of the system was a text generation module written

by Neil Goldman. This took an internal conceptual-dependency represen-

tation and converted it into English-like output, in a two-part process:

1. A discrimination net was used to distinguish between different

word-senses. This permitted the system to use English-specific

contextual criteria for selecting words (especially verbs) to

"name" conceptual patterns.

2. An ATN was used to linearize the conceptual dependency rep-

resentation into a surface-like structure.

The text generation module is also discussed in Article IV.E,

MARGIE ran in two modes: inference mode and paraphrase mode.

In inference mode, it would accept a sentence and attempt to make in-

ferences from that sentence, as described above. In paraphrase mode, it

would attempt to restate the sentence in as many equivalent ways as

possible. For example, given the input

John killed Nary by choking her.

it might produce the paraphrases

John strangled Nary.

John choked Nary and she died because she was unable to breathe.

Discussion

Of particular interest in MARGIE, an experimental system that pro-

vided a foundation for Schank's further work in computational lin-

guistics, was the use of conceptual dependency as an interlingua, a

language-independent representation scheme for encoding the meaning of

sentences. Once the sentence was processed, the surface structure was

dropped and all further work was done using the conceptual dependency

notation. The existence of a canonical representation for all sentences

with the same meaning facilitates tasks like paraphrasing and question

answering.

F5 MARGIE 305

References

Conceptual dependency theory and all three parts of the MARGIE
system are described in detail in Schank (1975a). Since then, the theory

has evolved considerably, and several new systems have been built using

the CD formalisms, all described very well in Schank and Abelson

(1977). Other references for MARGIE include Schank (1973b) and

Schank et al. (1973). The review article by Schank (1980) is a very

interesting discussion of the development of his ideas about natural lan-

guage.

F6. SAM and PAM

Story Understanding

SAM (Script Applier Mechanism) and PAM (Plan Applier Mechanism)

are computer programs developed by Roger Schank, Robert Abelson,

and their students at Yale University to demonstrate the use of scripts

and plans in understanding simple stories (Schank et al., 1975; Schank

and Abelson, 1977). Most work in natural language understanding prior

to 1973 involved parsing individual sentences in isolation; it was thought

that text composed of paragraphs could be understood simply as col-

lections of sentences. But just as sentences are not unconstrained collec-

tions of words, so paragraphs and stories are not without structure.

The structures of stories have been analyzed (Propp, 1968; Rumelhart,

1975; Thorndyke, 1977), and it is clear that the context provided by

these structures facilitates sentence comprehension, just as the context

provided by sentence structure facilitates word comprehension. For ex-

ample, if we have been told in a story that John is very poor, we can

expect later sentences to deal with the consequences of John's poverty

or with the steps he takes to alleviate it.

Different researchers have very different ideas about what constitutes

the structure of a story. Some story grammars are rather syntactic;

that is, they describe a story as a collection of parts like setting, char-

acters, goal introduction, and plans, determined by their sequential posi-

tion in the story rather than by their meaning. The work of Schank

and Abelson reported here has a more semantic orientation. They

propose an underlying representation of each phrase in a story that is

based on a knowledge representation formalism called conceptual depen-

dency theory (CD; described in Article IV.F5). Conceptual dependency,

which creates, from a set of semantic primitives, unique representations

for all sentences with the same meaning, is the theoretical basis for

more complex story structures such as scripts, plans, goals, and themes.

The SAM and PAM programs understand stories using these higher level

structures.

Conceptual dependency representation is, then, the interlingua that

is produced when SAM or PAM parses sentences. The parser for these

programs is an extension of the one developed by Christopher Riesbeck

(1975) for the MARGIE system (Article IV.F5). Further processing in

SAM and PAM involves the manipulation of CD structures and of higher

level structures built on them—scripts, plans, goals, and themes.

F6 SAM and PAM 307

Scripts

A script is a standardized sequence of events that describes some

stereotypical human activity, such as going to a restaurant or visiting a

doctor. Schank and Abelson's assumption is that people know many
such scripts and use them to establish the context of events. A script

is functionally similar to a frame (Minsky, 1975) or a schema (Bartlett,

1932; Rumelhart, 1975), in the sense that it can be used to anticipate

aspects of the events it represents. For example, the RESTAURANT
script (see Fig. F6-1) involves going to a restaurant, being seated,

consulting the menu, and so on. People who are presented with an

abbreviated description of this activity, for example, the sentence John

went out to dinner, infer from their own knowledge about restaurants

that John ordered, ate, and paid for food. Moreover, they anticipate

from a sentence that fills part of the script (e.g., John was given a

menu) what sort of sentences are likely to follow (e.g., John ordered the

lamb). Scripts attempt to capture the kind of knowledge that people

apply to make these inferences. (Article m.C7 discusses scripts, frames,

and representation schemes.)

Players: customer, server, cashier

Props: restaurant, table, menu, food, check, payment, tip

Events:

1. customer goes to restaurant

2. customer goes to table

3. server brings menu

4. customer orders food

5. server brings food

6. customer eats food

7. server brings check

8. customer leaves tip for server

9. customer gives payment to cashier

10. customer leaves restaurant

Header: event 1

Main concept: event 6

Figure F6-1. Restaurant script.

Two components of scripts are of special importance. We will dis-

cuss later how the first component, the script header, is used by SAM
to match scripts to parsed sentences. The second important component

308 Understanding Natural Language IV

is the main concept, or goal, of the script. In the restaurant script, the

goal is to eat food.

The scripts in SAM grew out of Abelson's (1973) notion of scripts as

networks of causal connections. However, they do not depend on ex-

plicit causal connections between their events. In hearing or observing

events that fit a standard script, one need not analyze the sequence of

events in terms of causes, since they can be anticipated just on the

basis of knowing what typically happens in situations in which the

script applies. The identification of events as filling their slots in the

script gives us the intuition of "understanding what happened."

Scripts describe everyday events, but frequently these events (or our

relating of them) do not run to completion. For example:

I went to the restaurant. I had a hamburger.

Then I bought some groceries.

This story presents several problems for a system like SAM that matches

scripts to input sentences. One problem is that the restaurant script is

"left dangling" by the introduction of the last sentence. It is not clear

to the system whether the restaurant script (a) has terminated and a

new (grocery shopping) script has started, (b) has been distracted by a

"fleeting" (one sentence) grocery script, or (c) is interacting with a new

grocery script (e.g., buying groceries in the restaurant). Another thing

that can happen to everyday scripts is that they can be thwarted, as in:

I went to the gas station to fill up my car.

But the owner said he was out of gas.

This is called an obstacle.

Scripts describe rather specific events, and although it is assumed

that adults know thousands of them, story comprehension cannot be

simply a matter of finding a script to match a story. There are just

too many possible stories. Moreover, there are clear cases in which

people comprehend a story even though it does not give enough in-

formation to cause a program to invoke a script, as in

John needed money. He got a gun and went to a liquor store.

Schank and Abelson point out that even if the program had a script for

Robbery, this story offers no basis for invoking it. Nonetheless, people

understand John's goals and his intended actions.

F6 SAM and PAM 309

There must be relevant knowledge available to tie together sen-

tences that otherwise have no obvious connection. . . . The
problem is that there are a great many stories where the

connection cannot be made by the techniques of causal chaining

nor by reference to a script. Yet they are obviously connectable.

Their connectability comes from these stories' implicit reference to

plans. (Schank and Abelson, 1977, p. 75)

Plans

Schank and Abelson introduce plans as the means by which goals

are accomplished, and they state that understanding plan-based stories

involves discerning the goals of the actor and the methods by which the

actor chooses to fulfill those goals. The distinction between script-based

and plan-based stories is very simple: In a script-based story, parts or

all of the story correspond to one or more scripts available to the story

understander; in a plan-based story, the understander must discern the

goals of the main actor and the actions that accomplish those goals.

An understander might process the same story by matching it with a

script or scripts or by figuring out the plans that are represented in the

story. The difference is that the first method is very specialized since a

script refers to a specific sequence of actions, while plans can be very

general since the goals they accomplish are general. For example, in

John wanted to go to a movie. He walked to the bus stop.

we understand that John's immediate goal (called a delta goal or D-goal

because it brings about a change necessary for accomplishment of the

ultimate goal) is to get to the movie theater. Going somewhere is a

very general goal and does not apply just to going to the movies. In

Schank and Abelson's theory, this goal has associated with it a set of

plan boxes, which are standard ways of accomplishing the goal. Plan

boxes for going somewhere include riding an animal, taking public

transportation, driving a car, and so forth.

Obviously, a story understander might have a "Go to the movies"

script in its repertoire, so that analysis of John's goals would be

unnecessary—the system would just "recognize" the situation and re-

trieve the script. This script can be thought of as the standardized

intersection of a number of more or less general goals and their asso-

ciated plan boxes. It would be a "routinized plan" made up of a set of

general subplans: Go to somewhere (the theater), Purchase something (a

ticket), Purchase something (some popcorn), and so forth.

310 Understanding Natural Language IV

A routinized plan can become a script, at least from the planner's

personal point of view.

Thus, plans are where scripts come from. They compete for

the same role in the understanding process, namely as explanations

of sequences of actions that are intended to achieve a goal.

(Schank and Abelson, 1977, p. 72)

The process of understanding plan-based stories involves determining

the actor's goal, establishing the subgoals (D-goals) that will lead to the

main goal, and matching the actor's actions with plan boxes associated

with the D-goals. For example, in

John was very thirsty. He hunted for a glass.

we recognize the D-goal of PTRANSing liquid and the lower level goal

(specified in the plan box for PTRANSing liquid) of finding a container

to do it with.

Goals and Themes

In story comprehension, goals and subgoals may arise from a number

of sources. For example, they may be stated explicitly, as in

John wanted to eat.

they may be nested in a plan box, or they may arise from themes. For

example, if a LOVE theme holds between John and Mary, it is rea-

sonable to expect the implicit, mutual goal of protecting each other

from harm: "Themes, in other words, contain the background infor-

mation upon which we base our predictions that an individual will have

a certain goal" (Schank and Abelson, 1977, p. 132).

Themes are rather like production systems in their situation-action

nature. A theme specifies a set of actors, the situations they may be

in, and the actions that will resolve the situation in a way consistent

with the theme. The goals of a theme are to accomplish these actions.

Schank and Abelson have proposed seven types of goals; we have al-

ready considered D-goals. Other examples are:

A- or Achievement-goals: To desire wealth is to have an

A-Noney goa I

.

P- or Preservation-goal: To protect someone may be a P-Health

or P-Nenta I State goal.

C- or Crisis-goal: A special case of P-goals, when action

is immediately necessary.

The LOVE theme can be stated in terms of some of these goals:

F6 SAM and PAM 311

X is the lover; Y is the loved one; Z is another person.

SITUATION ACTIOM

Z cause Y harm A-Health(Y) and possibly

cause Z harm

or C-Health(Y)

not-Love(Y,X) A-Love(Y,X)

General goals: A-Respect(Y)

A-Narry(Y)

A-Approval (Y)

To summarize the knowledge structures we have discussed, we note

their interrelationships:

1. Themes give rise to goals.

2. A plan is understood when its goals are identified and its ac-

tions are consistent with the accomplishment of those goals.

3. Scripts are standardized models of events.

4. Scripts are specific; plans are general.

5. Plans originate from scripts.

6. Plans are ways of representing a person's goals. These goals are

implicit in scripts, which represent only the actions.

7. A script has a header, which is pattern-matched to an input

sentence. Plans do not have headers, but each plan is sub-

sumed under a goal.

SAM

Both SAM and PAM accept stories as input; both use an English-to-

CD parser to produce an internal representation of the story (in con-

ceptual dependency). Both can paraphrase the story and make intelligent

inferences from it. They differ with respect to the processing that goes

on after the CD representation has been built.

SAM understands stories by fitting them into one or more scripts.

After this match is completed, it makes summaries of the stories. The

process of fitting a story into a script has three parts—a PARSER, a

memory module (MEMTOK), and the script applier (APPLY). These

modules work together: The parser generates a CD representation of

each sentence, but APPLY gives it a set of Verb-senses to use once a

script has been identified. For example, once the restaurant script has

312 Understanding Natural Language IV

been established, APPLY tells the parser that the appropriate sense of

the verb to serve is to serve food rather than, for example, to serve in

the army.

The parser does not make many inferences; thus, it does not realize

that it refers to the hot dog in The hot dog was burned. It tasted awful.

This task is left to MEMTOK. This module takes references to people,

places, things, and so forth and fills in information about them. It

recognizes that the it in the sentence above refers to the hot dog, and

"instantiates" the it node in the CD representation of the second sen-

tence with the "hot dog" node from the first sentence. Similarly, in a

story about John, MEMTOK would replace he with John where appro-

priate, and would continually update the John data structure as more

information became available about him.

The APPLY module has three functions. First, it takes a sentence

from the parser and checks whether it matches the current script, a

concurrent (interacting) script, or any script in the database. If this

matching is successful, it makes a set of predictions about likely inputs

to follow. Its third task is to instantiate any steps in the current script

that were "skipped over" in the story. For example, if the first

sentence of a story is John went to a restaurant, APPLY finds a match

with the script header of the restaurant script in its database (refer

back to Fig. F6-1). APPLY then sets up predictions for seeing the

other events listed in the restaurant script in the input. If the next

sentence is John had a hamburger, then APPLY successfully matches this

sentence to the restaurant script (event 6). It then assumes that

events 2-5 happened, and instantiates structures in its CD representation

of the story to this effect. Events 7-10 remain as predictions.

When the whole story has been mapped into a CD representation in

this manner, the SAM program can produce a summary of the story or

answer questions about it. (See Schank and Abelson, 1977, pp. 190-204,

for an annotated sample protocol.) Consistent with the idea of an

interlingua, SAM can produce summaries in English, Chinese, Russian,

Dutch, and Spanish. An example of a SAM paraphrase follows; note

the powerful inferences made by instantiating intermediate script steps:

ORIGINAL: John went to a restaurant. He sat down. He got mad.

He left.

PARAPHRASE: JOHN WAS HUNGRY. HE DECIDED TO GO TO A RESTAURANT.

HE WENT TO ONE. HE SAT DOWN IN A CHAIR. A WAITER

DID NOT GO TO THE TABLE. JOHN BECAME UPSET. HE

DECIDED HE WAS GOING TO LEAVE THE RESTAURANT. HE

LEFT IT.

F6 SAM and PAM 313

SAM inferred that John left the restaurant because he did not get any

service. The basis for this inference is that in the restaurant script,

event 3 represents the waiter coming over to the table after the main

actor has been seated. SAM knows that people can get mad if their

expectations are not fulfilled and infers that John's anger results from

the nonoccurrence of event 3.

PAM

Wilensky's (1978a) PAM system understands stories by determining

the goals that are to be achieved in the story and attempting to match

the actions of the story with the methods that it knows will achieve the

goals. More formally:

The process of understanding plan-based stories is as follows:

a) Determine the goal,

b) Determine the D-goals that will satisfy that goal,

c) Analyze input conceptualizations for their potential realization of

one of the planboxes that are called by one of the determined

D-goals. (Schank and Abelson, 1977, p. 75)

PAM utilizes two kinds of knowledge structures in understanding goals:

named plans and themes. A named plan is a set of actions and sub-

goals for accomplishing a main goal. It is not very different from a

script, although the emphasis in named plans is on goals and the means

to accomplish them. For example, a script for rescuing a person from a

dragon would involve riding to the dragon's lair and slaying it—

a

sequence of actions—but a named plan would be a list of subgoals (find

some way of getting to the lair, find some way of killing the dragon,

etc.) and their associated plan boxes. When PAM encounters a goal in

a story for which it has a named plan, it can make predictions about

the D-goals and the actions that will follow. It will look for these D-

goals and actions in subsequent inputs. Finding them is equivalent to

understanding the story.

Themes provide another source of goals for PAM. Consider the

sentences:

1. John wanted to rescue Nary from the dragon.

2. John loves Nary. Nary was stolen away by a dragon.

In both of these cases, PAM will expect John to take actions that are

consistent with the goal of rescuing Mary from the dragon, even though

this goal was not explicitly mentioned in sentence 2. The source of this

goal in sentence 2 is, of course, the LOVE theme mentioned above—if

314 Understanding Natural Language IV

another actor tries to cause harm to a loved one, the main actor sets

up the goal of Achieving-Health of the loved one and possibly harming

the evil party. (It is assumed that the dragon stole Mary in order to

hurt her.)

PAM determines the goals of an actor by (a) noting their explicit

mention in the text of the story, (b) establishing them as D-goals for

some known goal, or (c) inferring them from a theme mentioned in the

story. To understand a story is to "keep track of the goals of each of

the characters in a story and to interpret their actions as means of

achieving those goals" (Schank and Abelson, 1977, p. 217). The pro-

gram begins with written English text, converts it into CD represen-

tation, and then interprets each sentence in terms of goals (predicting D-

goals and actions to accomplish them) or actions themselves (marking

the D-goals as accomplished). When this process is completed, PAM can

summarize the story and answer questions about the goals and actions

of the characters.

Summary

Scripts, plans, goals, and themes are knowledge structures built upon

conceptual dependency theory. SAM is a program for understanding

script-based stories. It matches the input sentences of a story to events

in one or more of the scripts in its database. As such, it processes

input based on expectations it has built up from the scripts. PAM un-

derstands plan-based stories by determining the goals of the characters

of the story and by interpreting subsequent actions in terms of those

goals or subgoals that will achieve them. A great deal of inference can

be required of PAM simply to establish the goals and subgoals of the

story from the input text.

Schank and Abelson argue that human story-understanding is a

mixture of applying known scripts and inferring goals (where no script

is available or of obvious applicability). They are experimenting with

interactions of SAM and PAM, particularly with using SAM to handle

script-based substories under the control of PAM.

References

The recent book by Schank and Abelson (1977) is the most com-

plete and readable source on both of these systems and on the current

state of conceptual dependency theory. For a thorough treatment of

PAM, see the doctoral dissertation by Wilensky (1978a). Schank (1980)

reviews the development of his ideas about natural language processing

and his work on these NL systems.

F6 SAM and PAM 315

Also of interest: Abelson (1973), Bartlett (1932), Minsky (1975),

Propp (1968), Riesbeck (1975), Rumelhart (1975), Schank (1973b),

Schank et al. (1975), Thorndyke (1977), and Wilensky (1978b).

F7. LIFER

The natural language systems described in the preceding articles fall

into two categories: those built to study natural language processing

issues in general and those built with a particular task domain in mind.

In contrast, LIFER, built by Gary Hendrix (1977a) as part of the inter-

nal research and development program of SRI International, is designed

to be an off-the-shelf utility for building "natural language front-ends"

for applications in any domain. In other words, LIFER can be used by

systems designers to create a program that interprets English input and

produces the appropriate sequence of commands for their system—for

example, formal queries for an information retrieval system. The front-

end designers can augment LIFER to fit their particular applications,

and even the eventual users can tailor the LIFER-supported front-end to

meet their individual styles and needs.

Language Specification and Parsing

The LIFER system has two major components: (a) a set of inter-

active functions for specifying a language and (b) a parser. Initially it

contains neither a grammar nor the semantics of any language domain.

An interface builder uses the language specification functions to define

an application language, which is a subset of English that is appropriate

for interacting with his or her application system. The LIFER system

then uses this language specification to interpret natural language inputs

as commands for the application system.

The interface builder specifies the language primarily in terms of

grammatical rewrite rules (see Article IV.Ci). LIFER automatically trans-

lates these into transition trees, which are a simplified form of aug-

mented transition networks (Article IV.D2). Using the transition tree,

the parser interprets inputs in the application language. The result is

an interpretation in terms of the appropriate routines from the

applications system, as specified by the interface builder. The parser

attempts to parse an input string from the top down and left to right

by nondeterministically tracing down the transition tree whose root node

is the start symbol (known as <L.T.G.> for "LIFER top grammar").

For example, suppose the interface builder has specified the following

three production rules as part of the application language:

<L.T.G.> - WHAT IS THE <ATTRIBUTE> OF <PERS0I\I>
|

el

<I_.T.G.> -> WHAT IS <PERS0N> <ATTRIBUTE>
|

e2

<L.T.G.> -¥ HOW <ATTRIBUTE> IS <PERS0I\I> I e3

F7 LIFER 317

If an input matches one of these patterns, the corresponding expres-

sion (e1? e2 >
or e3) *s evaluated—these are the appropriate interpretations

that the system is to make for the corresponding input. The transition

tree built by the language specification functions would look like this:

/
—THE-<ATTRIBUTE> OF <PERS0f\l>

|
el

WHAT IS
\—<PERS0M> <ATTRIBUTE> I e2

<L.T.G.>

HOW <ATTRIBUTE> IS <PERS0I\J> e3

Sentences such as:

What is the age of Nary's sister?

How old is Nary 's sister?

What is John's height?

How ta I I is John?

might be parsed with this simple transition tree, depending on how

the nonterminal symbols or meta-symbols, <ATTRIBUTE> and

<PERSON>, are defined. (The interface builder can supply a preproces-

sing function that is applied to the input string before LIFER attempts

to parse it. Typically, the preprocessor strips trailing apostrophes and

s's, so that LIFER sees John's as John.)

During parsing, LIFER starts at the symbol <L.T.G.> and attempts

to move toward the expressions to be evaluated at the right. The parser

follows a branch only if some portion at the left of the remaining input

string can be matched to the first symbol on the branch. Actual words

(such as what or of in the above example) can be matched only by

themselves. Meta-symbols (such as <ATTRIBUTE> or <PERSON>) can

be matched in a number of ways, depending on how the interface

builder has defined them:

1. As a simple set (e.g., <PERSON> = the set {Mary, John, Bill});

2. As a predicate that is applied to the string to test for satis-

faction (e.g., some meta-symbol used in a piece of grammar to

recognize dates might test whether the next string of characters

is a string of digits, and thus a number); or

3. By another transition tree that has this meta-symbol as its root

node.

The above example is typical: A large amount of semantic infor-

mation is embedded in the syntactic description of the application lan-

guage. JOHN and HEIGHT are not defined as instances of the single

318 Understanding Natural Language IV

meta-symbol <NOUN> as they would be in a more formal grammar,

but rather are separated into the semantic categories indicated by the

meta-symbols <PERSON> and <ATTRIBUTED The technique of

embedding such semantic information in the syntax has been referred to

as semantic grammar (Burton, 1976), and it greatly increases the per-

formance of LIFER's automatic spelling correction, ellipsis, and para-

phrase facilities, described below.

Applications

LIFER has been used to build a number of natural language inter-

faces, including a medical database, a task scheduling and resource allo-

cation system, and a computer-based expert system. The most complex

system built with a LIFER interface involved a few man-months of

development of the natural language front-end: The LADDER system

(Language Access to Distributed Data with Error Recovery) developed at

SRI, which provides real-time natural language access to a very large

database spread over many smaller databases in computers scattered

throughout the United States (Sacerdoti, 1977; Hendrix et al., 1978).

Users of the system need have no knowledge of how the data are

organized nor where they are stored. More important from the point of

view of this article is that users do not need to know a data query

language: They use English, or rather a subset that is "natural" for

the domain of discourse and that is usually understood by the LIFER

front-end. The output of LIFER is a translation into a general database

query language, which the rest of the LADDER system converts to a

query of the appropriate databases on the appropriate computers.

Another interesting system to use a LIFER front-end was the

HAWKEYE system (Barrow et al, 1977), also developed at SRI. This is

an integrated interactive system for cartography or surveillance, which

combines aerial photographs and generic descriptions of objects and

situations with the topographical and cultural information found in

traditional maps. The user queries the database and invokes image-

processing tasks through a LIFER natural language interface. A unique

feature of this interface is the combination of natural language and

nontextual forms of input. For instance, using a cursor to point to

places within an image, the user can ask questions such as "What is

this?" and "What is the distance between here and here?" The inter-

pretation of such expressions results in requests for coordinates from the

subsystem providing graphical input, which are then handed to other

subsystems that have access to the coordinates-to-object correspondences.

F7 LIFER 319

Human Engineering

LIFER is intended as a system that facilitates, for interface builders,

the describing of an appropriate subset of a language and its inter-

pretation in their system and also helps nonexpert users to communicate

with the application system in whatever language has been defined. For

this reason, close attention was paid to the human engineering aspects

of LIFER. Experience with the system has shown that, for some

applications, users previously unfamiliar with LIFER have been able to

create usable natural language interfaces to their systems in a few days.

The resulting systems have been directly usable by people whose field of

expertise is not computer science.

The interface builder. Unlike Winograd's PROGRAMMAR language

(in SHRDLU, Article IV.F4), there is no compilation phase during which

the language specification is converted into a program. Instead, changes

are made incrementally every time a call to the language specification

functions is made. Furthermore, it is easy (by typing a prefix char-

acter) to intermix statements to be interpreted by the specification func-

tions, statements to be parsed with the partially specified grammar, and

statements to be evaluated in the underlying implementation language of

LIFER, namely, INTERLISP. Thus, the interface builder can define a

new rewrite rule for the grammar or write a predicate for some meta-

symbol and test it immediately, which leads to a highly interactive style

of language definition and debugging. A grammar editor facilitates fix-

ing mistakes. The ability to intermix language definition with parsing

allows the interface user to extend the interface language to personal

needs or taste during a session using the application system. This

extension can be done either by directly invoking the language

specification functions, or, if the interface builder has provided the

facility, by typing natural language sentences whose interpretations

invoke the same language specification functions.

The interface user. LIFER provides many features to ease the task

of the user as he or she types in sentences to be understood by the

system. Interactions with the user are numbered, and the user can refer

back to a previous question and specify some substitution to be made.

For instance:

12. Hou/ many minority students took 20 or more units of credit

last quarter?

PARSED!

87

320 Understanding Natural Language IV

13. Use women for minority in 12

PARSED!

156

(Note the "PARSED!" printed by LIFER to indicate parsing success.)

This facility can be used to save typing (and more errors), both when

similar questions are being asked and when errors in previous inputs are

being corrected. The user can simply specify synonyms to be used.

For instance:

28. Define Bi I I like William

will cause LIFER to treat the word BILL the same as WILLIAM. LIFER

also allows for easy inspection of the language definition, which is useful

for both interface builders and sophisticated users.

There are three additional features implemented in LIFER to make

interactions easier for the user—the spelling correction, ellipsis, and

paraphrase mechanisms. Spelling correction is attempted when LIFER

fails to parse an input. The INTERLISP spelling-correction facility is

used to find candidate words that closely match the spelling of the sus-

pect word. The use of a semantic grammar with its semantically

significant (and small) syntactic categories (e.g., <PERSON> instead of

<NOUN>) greatly restricts the number of alternatives that must be

checked.

While interacting with an applications system, the user may want to

carry out many similar tasks (e.g., in a database query system, one

often asks several questions about the same object). The LIFER system

automatically allows the user to type incomplete input fragments and

attempts to interpret them in the context of the previous input. For

instance, the following three questions might be entered successively and

understood by LIFER:

42. What is the height of John

43. the weight

44. age of Mary's sister

If an input fails normal parsing, and if spelling correction doesn't help,

LIFER tries elliptic processing. Again, because languages defined in

LIFER tend to encode semantic information in the syntax definition,

similar syntactic structures tend to have similar semantics. Therefore

LIFER accepts any input string that is syntactically analogous to any

contiguous substring of words in the last input that parsed without

ellipsis. The analogies do not have to be in terms of complete subtrees

of the syntactic tree, but they do have to correspond to contiguous

words in the previous input. The elliptical processing facilitates quite

natural interactions.

F7 LIFER 321

The paraphrase facility allows users to define new syntactic struc-

tures in terms of old structures. The user gives an example of the

structure and interpretation desired, and the system builds the most

general, new syntactic rule allowed by the syntactic rules already known.

The similarity between the semantics and syntax is usually sufficient to

ensure that a usable syntax rule is generated. The following example

assumes that the interface builder has included a rule to interpret the

construction shown to invoke a call to the language specification func-

tion PARAPHRASE with appropriately bound arguments. After typing

63. Let "Describe John" be a paraphrase of "Print the

height, weight and age of John"

the user could expect the system to understand the requests

64. Descri be Nary

65. Describe the tallest person

66. Describe Marys sister

even with a fairly simply designed LIFER grammar.

Conclusions

Although grammars constructed with LIFER may not be as powerful

as specially constructed grammars, LIFER demonstrates that useful nat-

ural language systems for a wide variety of domains can be built simply

and routinely without a large-scale programming effort. Human engin-

eering features and the ability of the naive user to extend the system's

capabilities are important issues in the usefulness of the system.

References

Hendrix (1977a), Hendrix (1977b), and the LIFER manual (Hendrix,

1977c) all describe the LIFER system. The LADDER information

retrieval application is described in Hendrix et al. (1978) and Sacerdoti

(1977). Barrow et al. (1977) describe the HAWKEYE system.

Chapter V

Understanding Spoken Language

CHAPTER V: UNDERSTANDING SPOKEN LANGUAGE

A. Overview / 825

B. Systems Architecture / 332

C. The ARPA SUR Projects / 848

1. HEARSAY / 348

2. HARPY / 849

3. HWIM / 853

4. The SRI/SDC Speech Systems / 358

A. OVERVIEW

A MAJOR OBJECTIVE of current work in computer science and engi-

neering is to achieve more comfortable, natural, and efficient interfaces

between people and their computers. Since speech is our most natural

form of communication, using spoken language to access computers has

become an important research goal.

There are several specific advantages to speech as an input medium.
With speech as the means of accessing the computer, even casual users

need relatively little training before interacting with a complex system.

Interactions in such a case can be quick, since speech is our fastest

mode of communication (about twice the speed the average typist can

type), and the computer user's hands are free to point, manipulate the

display, and so forth. This capability is especially important in environ-

ments that place many simultaneous demands on the user, as in aircraft

or space flight operations (see Lea, 1980c).

The Problem: Understanding Connected Speech

Work on isolated-word recognition systems in the 1960s preceded the

development of speech understanding systems. The technique of the

isolated-word systems is to compare the incoming speech signal with an

internal representation of the acoustical pattern of each word in a

relatively small vocabulary and to select the best match, using some
"distance" metric (Vincens, 1969). In doing this, several troublesome

characteristics of the speech signal must be overcome. One problem is

that the microphone and background noise introduce interference into

the recording of the spoken utterance. Another is that a given speaker

does not pronounce the same words quite the same way every time he

or she speaks, and even if the program is tuned to one speaker, the

matching process between the acoustical pattern of the vocabulary words

(the templates) and the actual utterance is inherently inexact. If the

system must recognize words spoken by more than one speaker, the task

is that much more difficult:

Sizable vocabularies (more than a hundred words) can be realis-

tically utilized with speaker-dependent templates. Smaller vocab-

ularies (on the order of one or two dozen words) can be reliably

utilized in talker-independent systems. (Flanagan et al.. 1980,

p. 442)

326 Understanding Spoken Language V

Until quite recently, these isolated-word recognition systems cost in

the tens of thousands of dollars and offered about 95% accuracy on a

small vocabulary. This methodology has recently been refined to pro-

duce a range of commercially available, isolated-word recognizers of

varying capabilities at prices from $200 to $80,000. The top-of-the-line

systems are said to recognize isolated words from vocabularies of up to

120 words with accuracy as high as 99.5% (Lea, 1980a, pp. 75-76).

Unfortunately, connected speech signals—utterances containing whole

phrases or sentences—cannot be handled by simply matching each word

in the signal against the stored patterns for vocabulary words. For one

thing, the pronunciation of individual words changes when the words are

juxtaposed to form a sentence—sometimes whole syllables are dropped,

or "swallowed," at word boundaries. In fact, finding the boundaries

between words in a connected-speech signal is itself a difficult part of

the speech understanding process. In short, the connected acoustic sig-

nal, which is the foundation for the rest of the processing, does not look

at all like the concatenation of the signals of the individual words.

The difficulties introduced in attempting to recognize connected

speech required a new outlook on the methodology. Researchers specu-

lated that there was more information available to the hearer than just

the acoustic signal and that expectations about the content of the

utterance could be gleaned from additional knowledge about the allowed

forms of utterances and about the subject being discussed (see, e.g.,

Nash-Webber, 1975). For example, in many situations there are rules

about word order (called the grammar) that can be applied to predict

which words may legally follow an already recognized word. The use of

syntactic and semantic knowledge to constrain a system's expectations in

other areas of AI research is discussed in Articles m.A and IV.A.

This change of perspective in speech research—from that of

matching acoustic patterns to one of interpretation of acoustic signals in

light of knowledge about syllables, words, and sentences, about the rules

of conversation, and about the subject under discussion—is often re-

ferred to as the change from speech recognition to speech understand-

ing. One of the key focuses of recent AI research has indeed been the

problem of organizing and manipulating these large and diverse sources

of knowledge.

Current experimental systems for understanding connected speech

can be viewed in terms of a "bottom end" and a "top end" (Klatt,

1977). The task of the bottom end in such a system is to use

knowledge about the variable phonetic composition of the words in the

vocabulary (lexicon) to interpret pieces of the speech signal by

comparing the signal with prestored patterns. The top end, then, aids

A Overview 327

in recognition by building expectations about which words the speaker is

likely to have said, applying syntactic, semantic, and pragmatic con-

straints. (See Article V.B on the architecture of speech understanding

systems.) In some systems, the top end is also responsible for deciding

what the utterance means, once it is recognized, and for responding

appropriately. Top-down processing, based on predicting what the

utterance must mean (from the context and from the words that have

already been recognized), is an important feature of some systems that

are actually capable of responding without recognizing every word that

was said, as people often do.

The ARPA Speech Understanding Research Program

In the early 1970s, the Advanced Research Projects Agency of the

U.S. Department of Defense (ARPA), a major sponsor of AI research,

funded a five-year program in speech understanding research. At that

time, a few isolated-word recognition systems existed, but none that was

capable of recognizing continuous speech. These early systems worked

only with small vocabularies under ideal acoustic conditions. Knowledge

about the phonemic and phonological structure of speech was scattered

through the linguistics literature and had not been applied to the

engineering of speech understanding systems. There was little or no

literature dealing with semantics, prosodies, or pragmatics, and the

parsers that were available were not designed to parse sentences in

which the component words might have been incorrectly identified.

A study group met in 1971 to set guidelines for the ARPA speech

understanding research (SUR) project, with the goal of achieving a

breakthrough in connected-speech understanding capability (Newell et al.,

1973). This group of scientists set specific performance criteria for each

dimension of system inputs and outputs: The systems to be designed

and built were to accept normally spoken sentences (connected speech)

in a constrained domain with a 1,000-word vocabulary and were to

respond reasonably fast with less than 10% error.

Some of the goals established for the ARPA SUR project were

intentionally flexible. In particular, they specified a lexicon of 1,000

words, but not which words; they allowed for an artificial syntax, but

did not say how simple or complicated the syntactic structure of the

language could be; they specified a constraining task, but not which

task. The various ARPA SUR projects, therefore, had considerable

freedom in the choice of the semantics, syntax, and lexicon handled by

their systems, and, as we shall see later, final performance was difficult

to compare.

328 Understanding Spoken Language V

This was one of the few times that AI programs had had any

design objectives specified before they were developed. Setting these

standards was important, since they approximated the minimum per-

formance requirements for a practical, connected-speech understanding

system in a highly constrained domain (although producing a practical

system was notably not a goal of the ARPA program).

ARPA funded five speech projects and several subcontracts for de-

veloping parts of speech-systems. Some of the major ARPA contractors

produced multiple systems during the five-year period: Work at Bolt,

Beranek and Newman, Inc. (BBN) produced first SPEECHLIS and then

HWIM (Hear What I Mean), building on earlier BBN research on under-

standing natural language (see Article IV.F3). Carnegie-Mellon University

(C.M.U.) produced the HEARSAY-I and DRAGON systems in the early

development phase (1971-1973) and the HARPY and HEARSAY-E pro-

grams by 1976. SRI International also developed a speech understanding

program, partly in collaboration with Systems Development Corporation

(SDC). Although these systems were all built for the same purpose, they

emphasized different problems in speech understanding research and

systems design.

The Status of Speech Understanding Research

The differences in emphasis among the experimental SUR systems

complicated comparison of their performance at the termination of the

ARPA project (in September 1976). Since the systems operated in

different task domains, they could not be compared on a standard set of

utterances. These different task domains—document retrieval (HARPY,

HEARSAY-E), answering questions from a database (the SRI system and

BBN's HWIM), and voice chess (HEARSAY-I)—had considerably different

levels of difficulty. If one measures a task's difficulty by the average of

the number of words that might come next after each word in each

legal sentence, called the average branching factor (ABF), then HARPY's

document-retrieval task had a difficulty of only 33 compared to an ABF
of 196 for HWIM's database-retrieval task. Furthermore, little effort was

made to exclude words from HWIM's vocabulary that sounded alike,

making recognition still harder. Although restrictions on the vocabulary

and sentences to simplify the understanding task were within the ARPA
guidelines, it has been argued that they were carried to extremes and

that the HARPY system in particular was too restricted:

This grammar . . . characterizes a non-habitable, finite set of sen-

tences, with virtually no "near-miss" sentence pairs included. . . .

The grammar permits sentences of the form "We wish to get the

A Overview 329

latest forty articles on < topic >," but one cannot say a similar

sentence with T' for "we," "want" for "wish," "see" for "get,"

"a" for "the," "thirty" for "forty," or any similar deviation from

exactly the word sequence given above. (Wolf and Woods, 1980,

p. 334)

The systems also varied in the number of speakers and amount of room

noise that could be accommodated and in the amount of tuning required

for each new speaker.

Illustrating the effect of the task domain on performance, the

DRAGON system, developed at C.M.U. during the first phase of the

ARPA-sponsored research, was tested on different tasks. The system's

performance on recognizing the words ranged from 63% to 94%, and

varied from 17% to 68% on recognition of complete utterances. This

variation of results across domains demonstrates the difficulty of spec-

ifying how well a system performs. The number of words in the lexicon

alone is an inadequate measure of the complexity of the understanding

task. For example, DRAGON'S performance was better with a particular

194-word vocabulary than with another 37-word vocabulary (consisting of

just the alphabet plus numbers), since the similiarity in phonemic struc-

ture of the 26 letters gave the latter a much higher average branching

factor.

With the proviso about comparing the performance of the systems,

HARPY demonstrated the most convincing success at the end of the

ARPA program. The performance requirements established by the work-

ing committee and the final results of the HARPY, HEARSAY-E, and

HWIM systems are compared in Figure A-l. (HWIM was not quite com-

pleted at the time of the evaluation.)

Since the ARPA-funded research work, new systems have been

developed at IBM, Bell Laboratories, and Lincoln Laboratories, and sub-

systems have been designed at the University of California at Berkeley,

Haskins Laboratories, Speech Communications Research Laboratory, and

Sperry Univac (Lea and Shoup, 1980). The IBM system, which represents

the state of the art in connected-speech understanding, utilizes the dy-

namic programming approach explored in the DRAGON system and is

the most active speech understanding project since the termination of

the ARPA program (see Bahl et al., 1978).

330 Understanding Spoken Language V

GOAL (November 1971)

Accept connected speech

from many speakers

in a quiet room

using a good microphone

wi th a few tra i n i ng

sentences for each speaker

accepting 1,000 words

using an artificial syntax

in a constraining task

y i e Id i ng < 10% error

in a few times real time

(on a very fast computer)

Figure A-l. Comparison of ARPA SUR systems (after Klatt, 1977,

and Lea and Shoup, 1980).

HARPY HEARSAY-H HWIM

Yes Yes Yes

3 ma 1 e 1 ma 1 e 3 ma 1 e

2 femaha

Compuiber terminal room

Close--ta Iking mi crophone

20-30 60 no tra i n i ng

1,011 1,011 1,097

f i n i te--state 1 anguage restricted ATM

BF = 33 BF = 33, 46 BF = 196

Document Document Trave

1

retri eva

1

retri eva

1

management

5% 9%, 26% 56%

Yes Yes, slower

than HARPY

Not qu i te

Summary

Considerable progress toward practical speech-understanding systems

was made in the 1970s. In addition to meeting performance goals, the

ARPA SUR projects developed important ideas in systems design that

influenced AI research in natural language understanding, knowledge rep-

resentation, search, vision, and control strategies (see the corresponding

chapters of the Handbook, as well as Article V.b). At the level of

phonetics, all the systems developed representations of words that

accounted for different pronunciations, and they all incorporated

between-word juncture rules to account for contextual effects. Network

representations for phonetic knowledge were developed, including SDC's

spelling graphs, HEARSAY'S pronunciation graphs, HWTM's segmented

lattices, and HARPY's integrated network.

A Overview 331

Much was learned during the ARPA SUR work about the archi-

tecture and control of large AI systems. One of the most flexible

frameworks to have emerged is HEARSAY'S blackboard organization for

representing hypotheses at different levels, which has been applied in

several domains besides speech. At the other end of the spectrum,

HARPY's precompiled knowledge structure makes it hard to modify but

results in very high performance.

The following is the summary of the conclusions in 1976 of the

same study group that had established the requirements for the ARPA
project five years earlier:

The gains go beyond empirical knowledge and engineering tech-

nique to basic scientific questions and analyses. A few examples:

Network representations for speech knowledge at several levels have

been created that have substantial generality. A uniform network

representation for the recognition process has been developed.

Rule schemes have been created to express certain phonological

and acoustic-phonetic regularities. . . . Techniques have been found

for measuring the difficulty and complexity of the recognition task.

The problem of parsing (syntactic analysis) with unreliable or

possibly missing words (so that one cannot rely on parsing left-to-

right, but must be able to parse in either direction or middle-out

from good word matches) has been successfully analyzed. New
paradigms have been developed for many of the component

analysis tasks and for the control structure of intelligent systems.

Substantial progress has been made on understanding how to score

performance in a multi-component system, how to combine those

scores, and how to order search priorities. (ARPA SUR Steering

Committee, 1977, pp. 313-314)

The next article in this chapter discusses the important issues in the

design of AI systems that emerged during the ARPA SUR projects. It

is followed by short articles outlining the main features of each of the

ARPA systems.

References

The recent book edited by Lea (1980b) contains the best com-

parative overview of the ARPA speech systems, as well as detailed

articles on the systems themselves written by their designers. The

Computing Surveys article by Erman et al. (1980) is a good, brief

account of the HEARSAY system, illuminating many of the issues in

speech understanding research. For an excellent popular account of the

ambiguities inherent in the phonetic description of an utterance, see

Cole (1979). And for descriptions of early speech research and the goals

of the ARPA program, see Newell (1975) and Reddy (1975).

B. SYSTEMS ARCHITECTURE

During the ARPA-funded research on speech understanding, different

system designs were explored that varied both in their organization of

the knowledge applied to the task and in the way the reasoning process

was controlled. In a typical system, the speech understanding process

begins with a series of transformations that are applied to the original

speech signal, resulting in a compact digital encoding of the utterance.

Further processing of the digitized signal by the different systems can be

viewed as the interpretation of this signal in light of different kinds of

knowledge about the vocabulary and grammar allowed and about the

subject under discussion.

What Knowledge Can Be Applied to Understanding Speech?

The types of knowledge at various "levels" that are used in pro-

cessing spoken language include (from the signal level up):

1. Phonetics—representations of the physical characteristics of the

sounds in all of the words in the vocabulary;

2. Phonemics—rules describing variations in pronunciation that ap-

pear when words are spoken together in sentences (coarticu-

lation across word boundaries, "swallowing" of syllables, etc.);

3. Morphemics—rules describing how morphemes (units of meaning)

are combined to form words (formation of plurals, conjugations

of verbs, etc.);

4. Prosodies—rules describing fluctuation in stress and intonation

across a sentence;

5. Syntax—the grammar or rules of sentence formation, resulting in

important constraints on the number of sentences (not all com-

binations of words in the vocabulary are legal sentences);

6. Semantics—the "meaning" of words and sentences, which can

also be viewed as a constraint on the speech understander (not

all grammatically legal sentences have a meaning—e.g., The snow

was loud); and, finally,

7. Pragmatics—rules of conversation (in a dialogue, a speaker's

response must not only be a meaningful sentence but also be a

reasonable reply to what was said to him). For instance, it is

pragmatic knowledge that tells us that the question Can you tell

me what time it is? requires more than just a Yes or No

response.

B Systems Architecture 333

Phonetic knowledge was used in the early isolated-word recognition

systems in the form of word templates, representations of the acoustic

signal produced by a speaker uttering a single word, which were

matched against the signal to be recognized. However, when words are

spoken in a sentence, the acoustic characteristics of the sounds within

the words vary, so that it is necessary to choose a representation of the

speech signal that includes elementary speech sounds as basic units.

Two kinds of basic unit are the allophone and the phoneme. Allophones

are representations of sounds as they actually occur in words. Pho-

nemes are more abstract representations that capture the common char-

acteristics of a class of allophones.

For example, the phoneme /t/ is known to have four allophones in

English, corresponding to four different ways in which it occurs. (Two

of the allophones of /t/ are the "hard" t at the beginning the word top

and the "flap" t in the middle of the word rattle.) The major advan-

tage of using phonemes as the basic unit for representing spoken words

is that there are relatively few to recognize, which simplifies the higher

levels of the speech understanding task. The disadvantage is that pho-

nemes are abstract units that are not actually found in spoken utter-

ances. To map from the allophones that can be identified in the speech

signal (like the two kinds of /t/ above) to abstract phonemes requires a

sophisticated understanding of how the speech context determines the

allophones of a phoneme. Contextual rules of this kind are the domain

of phonemics. There has been only limited success in applying phonemic

rules in speech understanding systems (see Shoup, 1980, p. 125).

A third possible "basic unit" of speech is the syllable. The syllable

is a difficult unit to define, but it can be recognized with some success

by following the stress patterns in speech. One advantage of using the

syllable as the basic recognition unit is that the subtle transitional

phenomena are subsumed in one syllabic unit. Two problems in doing

so are that it is difficult to decide where one syllable ends and another

begins in the speech signal and that there are a great many more syl-

lables in a language than there are phonemes.

The lexicon, or vocabulary, allowed by each speech understanding

system was represented internally in terms of the pronunciations of all

of the words. (Some systems encoded all of the multiple pronunciations

of each word that could arise from context effects.) In general, the

morphemic level of analysis of traditional linguistics (e.g., determining

number or tense by looking for word endings) is not used in speech

understanding research; the words in the lexicon are taken as basic units

of recognition, even though they may contain more than one morpheme.

One exception to this is the lexical knowledge used in the SDC speech

system (see Barnett et al., 1980, p. 272).

334 Understanding Spoken Language V

Prosody, the pattern of stress and intonation in spoken language,

provides extensive information about the meaning of an utterance: At

the lower levels of analysis, prosody can help identify syllable and word

boundaries; at a syntactic level, it helps to identify phrases within a

sentence; and at the semantic level, it helps to differentiate questions

from declarations and can be a cue to subtle speech acts like irony and

sarcasm. However, prosodic analysis has not yet been used in AI speech

understanding systems.

Syntax and Semantics: Top-down Processing

The most dramatic use of knowledge in speech processing focused on

the application of syntax and semantics to the generation of expecta-

tions about the speech signal. The bottom-end knowledge about pho-

nemes and words described in the previous section was used to construct

hypotheses about what words were present in the signal being analyzed.

As mentioned in Article V.A, top-end knowledge about what things

would be said at certain points in the dialogue and about what form

they might take was used to help identify the words in the speech sig-

nal. The types of knowledge used in this way include syntax, semantics,

and pragmatics.

For example, consider the HEARSAY-I speech system that played

voice chess with a human by responding to the moves that he spoke

into the microphone, using a chess program (see Article n.C5c) to figure

out its best response. Not only did HEARSAY-I apply syntactic knowl-

edge about the specific format of chess moves (e.g., "Pawn to King-4")

to anticipate the form of incoming utterances, but it also used the legal-

move generator of its chess program to suggest moves that were most

likely to be tried by the opponent and then examined the incoming

speech signal for evidence of those particular moves.

The importance of top-down or expectation-driven processing has also

been pointed out by workers in natural language understanding. In

their research on systems that respond to typed-in input, rather than to

spoken sentences, recognition of individual words is not a problem, as it

is in speech understanding. Nevertheless, determining the meaning of

the input, so that an appropriate response is evoked, requires the use of

much knowledge about the world to predict what the input might be

(see Chap. IV, especially Articles IV.F5 and IV.F6).

Similarly, in AI research on vision, where the computer must

interpret a visual scene supplied by a TV camera, a strong model of the

physical world, as well as knowledge about what things the camera is

likely to find, is typically used to help figure out what is in the scene

B Systems Architecture 335

(see Chap, xm, in Vol. m). It is generally agreed that this constraining

knowledge is necessary for adequate performance in tasks like speech

understanding: Without expectations about what to look for in the

input, the task of identifying what is there is impossible. Recent AI

research on knowledge representation using frames and scripts has

stressed this predictive use of knowledge (see Articles m.A and m.C7).

"Experiments" with several systems demonstrated the effect of re-

moving the constraints on signal interpretation supplied by syntactic and

semantic knowledge. The HARPY system, which combined all of the

phonetic, syntactic, and semantic knowledge into one integrated network,

was 97% accurate in actually identifying the words in the utterance,

even though it showed only 42% accuracy in phonetic segmentation of

the utterance. In other words, because of top-end knowledge about

what sequences of words were allowed in utterances, HARPY could often

guess the right words even when it didn't have an accurate phonetic

interpretation of the signal.

In the HEARSAY-I system, where the phonetic, syntactic, semantic,

and other knowledge was separated into independent knowledge sources,

a more convincing kind of experiment, called ablation studies by Newell

(1975), could be performed: The system was designed so that it could

run with only some of the knowledge sources "plugged in." Compared

with its performance with just the phonetics and lexicon knowledge

sources operating, the performance of HEARSAY-I improved by 25%
with the addition of its syntax knowledge source and by another 25%
with the addition of the semantics knowledge source (Lea, 1980a).

Generality versus power. The way that top-down processing is used

to constrain the expected content of sentences reflects an important, uni-

versal issue in AI systems design—the trade-off between generality and

power. The top end of the speech systems contains knowledge about a

specific language and a specific domain of discourse. In the devel-

opment of all of the speech understanding systems, the use of general

grammatical knowledge gave way to grammars that were very specific to

the task requirements (called semantic or performance grammars). By

incorporating the structure of the typical phrases used in a particular

task domain, these grammars combined syntactic, semantic, and some-

times pragmatic knowledge (see Articles V.C3 and V.C4). Repeatedly in

AI research, general methods for problem solving have proved inadequate

until supplemented with large amounts of knowledge and heuristics

specific to the problem at hand (see Article n.A).

336 Understanding Spoken Language V

Knowledge Sources

Given all of the knowledge needed during the processing of the

speech signal, much AI research focused on finding ways of organizing

this knowledge within the system. One influential approach, used by

the HEARSAY systems, involves separating the different types of knowl-

edge into coherent modules, called knowledge sources (KSs). For

example, there might be a prosodies knowledge source that examines the

speech signal for intonation and stress patterns and makes hypotheses

about syllable, word, and phrase boundaries. The knowledge sources

were viewed as independent modules of expertise that cooperated in an-

alyzing the speech signal. This modular organization of the knowledge

in the system should be contrasted with the other principal architecture

used in the ARPA SUR projects, the precompiled network, which rep-

resents all possible pronunciations of all possible sentences in one data

structure (see below).

In the HEARSAY model, the independent knowledge sources for pho-

netics, syntax, semantics, and the like were, in theory, to know nothing

about each other, not even of each other's existence. They were

thought of as independent processes that looked at the speech signal

and posted hypotheses about likely syllables, words, phrases, and so forth

on the blackboard—a global data-structure accessed by all of the KSs

through an established protocol. Hypotheses generated by the lower

level knowledge sources (about syllables and words) would be examined

for feasibility by the syntactic and semantic KSs; these, in turn, could

make suggestions about what words might be expected and post them

on the blackboard.

The advantages of this organization are those generally associated

with modularization of knowledge (see Article m.A): Adding, modifying,

or removing a knowledge source could theoretically be accomplished

without changing the other knowledge sources. Also, in a distributed-

processing implementation, where the different knowledge sources are

running as processes on different machines, a modular system would be

less sensitive to transient failures of processors and communication links,

exhibiting graceful degradation, as it is called (see Erman et al., 1976;

Lesser and Erman, in press). The blackboard organization for repre-

senting multiple types of knowledge has been used in several domains

besides speech understanding, including crystallography (Article vn.C3, in

Vol. n), signal interpretation (Nii and Feigenbaum, 1978), vision (Hanson

and Riseman, 1978b; Levine, 1978), and psychological modeling (Rumel-

hart, 1976; Hayes-Roth and Hayes-Roth, 1979).

B Systems Architecture 337

Compiled Knowledge

The other principal kind of system architecture explored in the

ARPA SUR projects is one in which the knowledge about all of the

sentences that are legal or meaningful in the task domain are pre-

compiled into one decision-tree-like network. The nodes in the network

are allophonic templates, representing the different sounds in the lan-

guage, to be matched against the voice signal. The links in the network

are used to control the matching process: After a successful match at

node N, only the nodes that are linked in the net to node N need be

tried next—no other sounds are "legal" at that point. The processing

of the input signal matches some node in the net to a portion of the

utterance and proceeds left to right through the network, trying to find

the best match according to some comparison metric. Since all of the

alternative sound sequences are already in the network and are not

"hypothesized" on the fly as in the blackboard model, precompiled

network systems are relatively efficient and fast. Deciding which alter-

natives are in fact present at each instant of the utterance is the es-

sence of the processing performed by systems like DRAGON and HARPY
and can be viewed as a form of search. (See the discussions of island

driving and beam search below.)

The HARPY system is distinguished by its integration of phonemic,

lexical, and syntactic knowledge into a single network; other systems

also adopted network representations, usually for one knowledge source

only. In particular, the SDC system used network-like spelling graphs to

represent the different pronunciations possible for a word. Similarly, the

HWIM system used a segmented lattice representation of different pro-

nunciations and embedded the lattices in a tree-like dictionary that had

the important property that any two words that could be spoken in

sequence were linked by an arc representing any contextual effect on

pronunciation. The phonemic and lexical knowledge sources in HWIM
are thus integrated in a manner similar to HARPY, although its other

knowledge sources are not.

Precompiling the alternatives has some disadvantages. For one,

every time the knowledge base is changed—for example, when a new

pronunciation of some word is added—the entire network must be

reconstructed (which took 13 hours of PDP-10 processing time for one of

HARPY's vocabularies). A second disadvantage is that, to fit into

present-day computers, the language recognized by the speech system

must be quite constrained syntactically. In general, only subsets of

English that can be represented by a finite-state grammar can be

compiled into a network of finite size (see Article iV.Ci). Finally, the

338 Understanding Spoken Language V

strategies that control the network-based understanding process may
tend to be more sensitive to errors, like getting off on a wrong track,

than are the more flexible, blackboard-like systems.

With the exception of HARPY, the ARPA SUR systems implemented

independent, modular organizations for their knowledge bases (although

only in HEARSAY was their independence a theoretical issue). The way
that knowledge sources interact, and the strategy for applying the

knowledge to the understanding process, is, as always, the complement

to knowledge-base organization in any discussion of system architecture.

Control Strategies: Hypotheses and Agendas

How do the different speech understanding systems go about inter-

preting an utterance? Where do they start? What are the steps of the

process? How do they decide what to focus on next? The different

knowledge organizations reflect different ideas about how the process of

interpreting the speech signal is to be carried out, and each of the

speech understanding systems has its own complicated algorithm. But

the basic ideas involve the concepts of agenda and search.

In the preceding discussions of knowledge sources and top-down pro-

cessing, the idea of a knowledge source posting a hypothesis on a global

data structure was introduced. The hypotheses indicate that the

knowledge source has either (a) found evidence (in the signal or already

posted on the blackboard) for a certain phoneme, word, or phrase or

(b) predicts, based on what has already been posted, that certain words

or phrases will be found at certain points in the utterance.

The question of control arises here because, somehow, this process of

hypothesis posting has to be coordinated. Will all of the knowledge

sources make hypotheses simultaneously? Or will lower level sources be

used to confirm the guesses of higher sources? Or will it be the other

way around, with phonemic and lexical sources proposing words and

syntactic and semantic sources checking the likelihood of these pro-

posals? How much effort should be focused on the different hypotheses

that are "active," and which alternative hypothesis should be tried first?

These issues of top-down versus bottom-up processing and focus of

attention find their expression within the systems in an agenda-like

mechanism—every time the processor (or one of the processors if there

are several) is free, it must decide, based on some control strategy, what

to do next.

In different systems, this strategy is more or less involved and more

or less explicit. In the HEARSAY systems, all knowledge sources post

hypotheses on the blackboard, and the lower level knowledge sources

B Systems Architecture 339

look for evidence in the speech signal supporting these hypotheses. In

the SRI system, explicit procedures were incorporated to identify the

phrases that were the focus of the discourse, and to process tasks

on the agenda in light of this knowledge. In the HWIM system, the

interaction of knowledge sources is governed by one of many control

processes, controlling the interaction of procedural (subroutine-like)

knowledge sources. In HARPY, where the posting of hypotheses is all

done implicitly when the network is compiled, the control strategy takes

the form of a search through a space of alternatives in the network.

Speech Understanding as Search

In systems like HARPY, in which all or part of the knowledge is in

the form of a precompiled network with "sounds" at each node con-

nected to all of the sounds that can follow it in any of the legal

sentences in the language, interpreting an utterance corresponds to

finding a path through the network representing a sequence of sounds

that most closely matches the sounds in the utterance. Finding such a

path can be thought of in terms of the important AI paradigm of

search (see Chap. n). The goal is the optimal path, and the search

space consists of nodes representing partially completed paths and

branches representing each alternative continuation from the partial

paths. The strategy problem is then rephrased in terms of anchor points

or islands, keeping track of alternatives, backtracking, and beam width.

Island driving. The first question that arises when a speech system

is given a sentence to understand is where to start. It turns out that

starting with the first word in the sentence is not necessarily the most

efficient strategy, just as a purely bottom-up interaction of knowledge

sources was not always optimal. This left-to-right strategy was, how-

ever, used in HARPY and works well with the precompiled network

representation. The disadvantage of this strategy is that if the first word

is not identified correctly, or is not identifiable, understanding of the

rest of the sentence is retarded.

A middle-out strategy was used in HEARSAY and the SRI speech

systems: Find whatever words can be immediately identified, then

expand out to either side of all of them. It is called island driving, be-

cause it establishes islands of relatively certain hypotheses and pushes

out from these islands into the rest of the sentence. One problem with

the strategy is that the number of hypothesized extensions of islands

can be very large, and this combinatorial problem is compounded by

having many islands, especially if the islands are not really reliable

hypotheses and will soon be abandoned.

340 Understanding Spoken Language V

A strategy explored in the HWIM system is a hybrid between island

driving and the left-to-right strategy. The problem of not being able to

understand reliably the first word in the sentence is overcome by trying

to understand any of the first three or four words. Then the expansion

of this word is in one direction at a time: first back to the beginning

of the sentence, and then on to the end. This dramatically reduces the

number of extension hypotheses that must be considered at one time.

Scoring of alternative hypotheses. The sound templates stored in the

system's database never exactly match segments of the acoustic signal,

so that the hypotheses about individual speech sounds must be "scored."

Briefly, the internal template representation of the proposed sound (pho-

neme, or allophone, or syllable) is compared with a segment of the

actual speech signal, and the similarities and differences are noted and a

number is calculated representing the likelihood that the proposed sound

exists at that point in the signal.

Above the level of individual speech sounds, the scoring of hypoth-

eses is handled differently by different systems. In HARPY, which

searches through its net of individually scored allophones, scoring can be

regarded as simple cumulation of the allophone scores along a path.

The score given to a hypothesized allophone depends on how closely it

matches the speech signal and also on the score of the preceding

allophone in the path. HARPY expands several paths at once, but the

scoring system guarantees that the highest scoring allophone in the net

is the last allophone in the best available interpretation of the sentence,

up to that point in the sentence.

In the other systems, where the knowledge sources remain separate,

each hypothesis can be evaluated by several of the knowledge sources.

A hypothesis that has the support of several knowledge sources is given

a score that is a linear combination of the individual scores contributed

by each knowledge source. The relative weights of the different KSs are

determined by trial and error in the HEARSAY systems. However, the

designers of HWIM put a great deal of effort into devloping a uniform

scoring policy for hypotheses.

Focus of attention. One important issue in the control of the

recognition process is determining which hypotheses about the contents

of the signal should be attended to at each instant. In the HEARSAY
and SDC systems, hypotheses are ordered by their score and the highest

scoring alternative is examined first. Thus, all hypotheses compete in

these systems.

In HWIM, hypotheses are not ordered by their scores alone, because

B Systems Architecture 341

it is recognized that all hypotheses should not necessarily compete. In

particular, two hypotheses about different parts of the utterance should

both be examined and a "bridge" formed between them if possible. An
ordering metric called the shortfall density was developed for HWIM
based on these considerations. (This was, in addition, an admissible

strategy—see Article V.C3.) In HARPY, if the score of an allophone falls

below a certain threshold, the entire path leading up to that allophone

is discarded. HARPY applies a heuristic technique called beam search

that involves expanding a small number of the highest scoring allo-

phones, the beam width (Article V.C2).

Backtracking. Typically in the speech understanding process, a sys-

tem will have an interpretation for some of the words in a sentence

that gets discontinued. For example, it may propose that the third

word in the sentence is elephant, only to learn from its syntactic

knowledge source that the third word in the sentence must be a verb.

In cases like this, the system must revise its interpretation; it must

backtrack to some point at which it was sure of its interpretation and

start again from there. The choice of control strategy, including the

scoring mechanism, beam width, and so on, can make backtracking

unnecessary, easy, or very expensive.

Summary

In many respects, the systems discussed here are quite similar. All

employ multiple sources of knowledge and apply constraining knowledge

about what utterances are likely to be made to help figure out what

was said. However, the systems reflect different design philosophies.

The HARPY system is noted for its use of a precompiled-network

knowledge representation; HWIM and HEARSAY-II use similar modular

knowledge sources. However, the systems differ in the control of speech

processing. Specifically, control strategies are regarded as a major vari-

able affecting the success or failure of HWIM, while in HEARSAY,

emphasis is put on the organization—the architecture—of the speech

system.

The differences in the final systems produced by the ARPA SUR
projects reflect a difference in emphasis in the research. At the outset

of the HWIM project, a technique called incremental simulation was

employed to explore the process of speech understanding. Individuals

simulated the not-yet-developed components of the system, and their

interactions were analyzed. In experiments with humans interpreting

speech spectrograms, a number of knowledge sources were identified, but,

in addition,

342 Understanding Spoken Language V

it was obvious that the spectrogram readers were making use of an

additional ability that was considerably less overt. By some cri-

teria, they were making decisions about which fragmentary hypoth-

eses to rule out, which ones to pursue further by trying to find

compatible interpretations of adjacent portions of the utterance,

and when to return to a previously rejected hypothesis in light of

new information. These decisions imply the existence of a control

strategy for speech understanding, and from the beginning, our speech

understanding system has been designed to facilitate the discovery

and exploration of such strategies. (Wolf and Woods, 1980, p. 317)

Control strategies certainly were not ignored by the HARPY or

HEARSAY designers. The emphasis, however, in both systems, has been

on knowledge representation and organization:

Much of . . . Harpy's success is the result of solving the difficult

technical problems associated with forcing all the diverse KSs into

a unified framework. (Lowerre and Reddy, 1980, p. 346)

The Hearsay II architecture is based on the view that the inher-

ently errorful nature of processing connected speech can be handled

only through the effective and efficient cooperation of multiple,

diverse sources of knowledge. Additionally, the experimental ap-

proach needed for system development requires the ability to add

and replace sources of knowledge and to explore different control

strategies. . . . The major focus of the design of the Hearsay II

system was the development of a framework for experimenting

with the representation of and cooperation among these diverse

sources of knowledge. (Erman and Lesser, 1980, p. 362)

Many of the issues of system design and language processing dis-

cussed here are also important in natural language understanding re-

search (see especially Article iV.Di). The remaining articles in this

chapter describe the main features of the HEARSAY, HARPY, HWIM,

and SRI/SDC systems in more detail.

C. THE ARPA SUR PROJECTS

CI. HEARSAY

The HEARSAY speech understanding system, developed as part of

the ARPA-funded speech understanding research project, has been one of

the most influential of all AI programs over the years. The importance

of HEARSAY lies not in how well the system understands speech, but

in the way that it is constructed—the idea of independent knowledge

sources cooperatively solving a problem by posting hypotheses on a

global blackboard data structure. This modular architecture—the knowl-

edge sources don't address each other directly—proved to allow great

flexibility as the system evolved and different combinations of knowledge

sources and control strategies were tried (see Article m.A for a discussion

of modularity in knowledge representation).

In problem domains characterized by a large search space, by the

need to combine different kinds of knowledge, and by ambiguous or

noisy data, HEARSAY'S architecture has proved especially well suited for

the design of a problem-solving system. It has been incorporated into

AI systems for solving diverse tasks in crystallography (Article vn.C3, in

Vol. n), signal interpretation (Nii and Feigenbaum, 1978), vision (Hanson

and Riseman, 1978b; Levine, 1978), and psychological modeling (Rumel-

hart, 1976; Hayes-Roth and Hayes-Roth, 1979). A considerable number

of articles about the HEARSAY architecture and its applications have

been written. In this short description of the system, we introduce the

technical terms used in the descriptions of it in the literature.

HEARSAY-I

HEARSAY went through two major stages in its development at

Carnegie-Mellon University. The first implementation of the system,

called HEARSAY-I, was already based on the idea of cooperating, inde-

pendent knowledge sources (Reddy et al., 1976). The three knowledge

sources in HEARSAY-I represented knowledge about

—

1. Acoustics and phonetics (the features in the speech signal that

are evidence for each type of syllable), including ways the signal

may change because of different speakers and noise in the

environment;

344 Understanding Spoken Language V

2. The syntax of legal utterances; and

3. The semantics of the domain.

The domain was voice chess, which pits the computer against a person

(who makes his moves by speaking into a microphone). The fact that

only particular phrases make sense in the world of chess was utilized

to limit the searching required by the program. (As discussed in

Article V.B, the use of constraining knowledge about what utterances can

be expected is a central idea in all successful speech understanding re-

search.)

Consider the possible ways that knowledge about chess could be

used to help identify a spoken chess move. For example, in trying to

understand an incomplete utterance like "Pawn to King [missing word]"

prior knowledge about the form, or syntax, of spoken chess moves would

lead to the conclusion that the missing word is a small number cor-

responding to one of the rows of the chess board. Moreover, if knowing

the current positions of all the pieces and the rules for making moves

would further narrow the possibilities to one of the places a pawn could

move to in the King's file and if a person who knew something about

chess strategy saw that this was the first move of the game, he or she

could guess that it was very likely that this was one of the standard

opening moves—for example, "Pawn to King-four." HEARSAY-I was tied

directly into the legal-move generator of a chess-playing program for its

knowledge about likely moves.

Despite the obvious simplifications inherent in this domain, it is cer-

tainly possible that speech understanding systems that could handle

domains of equal complexity might find tremendous utility in specialized

areas, like air traffic control. At any rate, HEARSAY-I was the first

system to demonstrate recognition of nontrivial, connected speech. This

system marked a radical departure in both knowledge representation and

control structure from previous AI systems. Top-down processing—the

use of expectations generated by syntactic and semantic knowledge

sources to help judge the relevance of words hypothesized by bottom-

end acoustic processing—proved to be a widely useful idea. In fact, it

is believed that had current acoustic processing techniques been available

in the early 1970s, HEARSAY-I might have met the 1976 ARPA speech

goals in the voice chess domain (Lea and Shoup, 1980). Many of the

concepts applied in this system were incorporated into the HEARSAY-II

and HARPY systems developed later at C.M.U.

CI HEARSAY 345

Changes to Knowledge Sources and the Blackboard

The modifications that resulted in the final implementation of

HEARSAY included the development of many specialized knowledge

sources—12 were used in the final version of the system. The black-

board was divided into a number of levels corresponding to a hier-

archical breakdown of speech into units such as segments, syllables,

words, and phrases (see Fig. Cl-1). Hypotheses about these sentence

units are posted at the appropriate level, along with a time frame that

indicates when the unit is hypothesized to occur in the utterance.

LEVELS

SEMAIMT

Phrase

Word—sequence

Word

•CONCAT

Sy I table

Segment

Parameter

—*

4

P 3l

*

...PARSE ~]

* *

—

• .WORD-SEQ-CTL
t

-

.. -WORD-SEQ j. • -WORD-CTL

. k. 4

. . -now •••VERIFY

4

... PON

4

>

•••SEG

n

Figure Cl-1. Knowledge sources and blackboard configuration for

final version (C2) of HEARSAY-E (from Erman et al.,

1980, p. 366).

The horizontal lines in Figure Cl-1 represent the levels of the

blackboard. Each knowledge source looks at hypotheses posted on one

level, called its stimulus frame (indicated by *
), and in turn posts hy-

potheses on one or more levels, possibly the same one (the response

frame). For example, the PREDICT knowledge source illustrated in

Figure Cl-1 works completely within the phrase level on the blackboard,

predicting the words that might extend a phrase. In contrast, the

346 Understanding Spoken Language V

VERIFY knowledge source looks for acoustic evidence in the signal for

hypotheses at the word level.

The knowledge sources shown in Figure Cl-1 were those used in the

C2 configuration of HEARSAY-H, the version that was evaluated at the

end of the ARPA SUR project in 1976. The bottom-end processing was

accomplished by the acoustic segmentation (SEG) and word-spotting

(POM, MOW, and WORD-CTL) knowledge sources. The SEG knowledge

source abstracts a string of allophones from the acoustic signal (actually

the same allophones recognized by HARPY). These are assigned to syl-

lable classes by the POM knowledge source, and the syllable classes are

used by the MOW knowledge source to hypothesize words. (HEARSAY'S

lexicon is organized by syllable classes; each section of the lexicon

contains pronunciations of all the words that make up one syllable-

class.) The number of hypotheses that MOW makes is controlled by the

WORD-CTL knowledge source. The WIZARD procedure scores the

hypothesized words by comparing their acoustic characteristics to stored

representations of the pronunciations of the words. (This representation

is similar in structure to the integrated network used to represent all

knowledge in the HARPY system.)

The top-end processing in HEARSAY-H involved predicting, testing,

and concatenating multiple-word sequences, one or more of which will

eventually account for all of the words spoken. The WORD-SEQ and

WORD-SEQ-CTL knowledge sources extend those words recognized by

the bottom end into a small number of islands of one or more words,

using a data structure that contains all legal pairings of words. Islands

can be extended recursively in this manner—by hypothesizing extensions

of the newly hypothesized words. However, the syntax of islands longer

than three words must be checked, because the island was generated

from legal pairs of words and therefore the longer island may not be

syntactically correct. The PARSE knowledge source checks the syntax.

When a number of multiple-word islands are developed, the VERIFY
knowledge source tries to check each word against the segmented

acoustic signal in the context of its island. The PREDICT and CONCAT
knowledge sources are also used to extend hypothesized word sequences.

PREDICT generates all the words that can immediately precede or follow

a word sequence, while CONCAT tries to join word sequences together

to form longer ones. Finally, the STOP knowledge source is used to ter-

minate processing of the speech signal, either because the best inter-

pretation of the sentence has been found or because too much processing

time has been used. The SEMANT knowledge source generates ma-

chine instructions to carry out the spoken command (in the case of

HEARSAY-H, answering a question about a database on AI publications).

CI HEARSAY 347

Control in HEARSAY-II

The majority of the hypotheses contributed by knowledge sources at

any level do not find their way into the final interpretation of the sen-

tence. It is important that the system focus its limited computational

resources on expanding the best word hypotheses into word sequences

and that only the best of these get verified, expanded, and concatenated

into larger phrases. This is accomplished by scoring the response frame

of each knowledge source on the hypothesis—that is, estimating the ex-

pected result of operating on the hypothesis with the relevant knowl-

edge sources—and using a scheduling routine to expand high-scoring

hypotheses before lower scoring ones.

In theory, the blackboard framework permits autonomous and asyn-

chronous activation of knowledge sources, meaning that, at any time,

any knowledge source can post hypotheses on the blackboard. In prac-

tice, some constraints were placed on the order in which knowledge

sources were activated. In HEARSAY-I the bottom-end knowledge sources

propagated hypotheses to higher levels in an asynchronous order, but it

was found that these hypotheses were not accurate enough to be reliably

expanded. As a result, processing at the bottom end of HEARSAY-II is

strictly bottom-up: The SEG, POM, and MOW knowledge sources are

activated in that order, and the processing done by one is completed

before another is activated.

Some effort was made in HEARSAY to separate the operation of

knowledge sources from the control of their operation. Two knowledge

sources, WORD-CTL and WORD-SEQ-CTL, have been included specif-

ically to control the MOW and WORD-SEQ knowledge sources, respec-

tively.

Summary

The HEARSAY-II speech understanding system achieved the per-

formance goals of the five-year ARPA SUR program in the same

document-retrieval task used to evaluate HARPY. The system has also

been used in other conversational domains. More important is that its

architecture has been useful in the design of AI systems unrelated to

speech understanding. The design ideas of HEARSAY can be summa-

rized along the following lines:

Separate, independent, anonymous knowledge sources. Isolating the

knowledge along functional lines allows efficient modification of the

problem-solving structure of the program, by allowing a free substitution

of modular knowledge sources. Substitution is possible since each knowl-

edge source is not dependent on the methodology behind, or even the

existence of, any other.

348 Understanding Spoken Language V

Self-activating, asynchronous, parallel processes. The knowledge

sources can be viewed as individual knowledge-based programs that

respond to patterns in the blackboard database autonomously. No
temporal relationship between their execution is explicitly required

(although, as described above, this condition was sometimes relaxed in

the interest of efficiency). A parallel-processor version of portions of the

HEARSAY design has been built to exploit these features (see Fox,

in press; Lesser and Erman, in press).

Globally accessed database. The blackboard acts as a structure on

which the hypotheses and their support criteria can be stored. The data

structure is fixed for each information level on the blackboard. This

feature allows the creation of kernel-accessing routines, used in common
by each KS for manipulating the global store at each level. A snapshot

of the blackboard during HEARSAY execution reveals a partial analysis

of the utterance as a three-dimensional network consisting of the levels

of representation, time, and the possible alternatives—with the contex-

tual and structural support for each alternative explicitly marked in the

network.

Data-directed knowledge invocation. The knowledge sources react to

changes in the blackboard and criticize or create hypotheses wherever

practical. This procedure sets up a new pattern over the blackboard, to

which other KSs may be able to respond. This activity continues until

no knowledge source can respond or until the time and space limits of

the program are exceeded.

References

Erman et al. (1980) is an excellent introduction to HEARSAY. Sev-

eral articles in the recent book edited by Lea (1980b) are of interest,

especially Erman and Lesser (1980). Also of interest is C.M.U. Speech

Group (1977).

C2. HARPY

The HARPY speech understanding system was developed at

Carnegie-Mellon University after extensive evaluation of two earlier sys-

tems, HEARSAY-I (Article V.Cl) and DRAGON (Baker, 1975). HARPY's

most important characteristic is its use of a single, precompiled, network

knowledge structure (Lowerre and Reddy, 1980). The network contains

knowledge at all levels: acoustic, phonemic, lexical, syntactic, and seman-

tic. It stores acoustic representations of every possible pronunciation of

the words in all of the sentences that HARPY recognizes. The alter-

native sentences are represented as paths through the network, and each

node in the network is a template of allophones. The paths through the

network can be thought of as "sentence templates," much like the word

templates in isolated-word recognition (see Article v.A). HARPY's integra-

tion of diverse forms of knowledge into a single network representation

is its principal contribution.

The Knowledge Compiler

The program that actually builds the network is called the knowl-

edge compiler. Its task is to generate allophonic representations of all

possible sentences, given HARPY's syntax and lexicon. The first step in

this process is to substitute words from the lexicon into the grammar in

order to generate all possible sentences. For example, if the syntax was

defined by the rules:

Sentence <— <ss>

<ss> <— please help <m>

<— please show <m> <q>

<q> <— everything

<

—

someth i ng

<m> <— me

<— us

then the possible meaningful sentences are:

PI ease he I p me

Please help us

Please show me everything

Please show us everything

Please show me something

Please show us something

The sentences are put into a network structure (see Fig. C2-1) that

eliminates much of the redundancy involved in representing sentences

350 Understanding Spoken Language V

individually but has the effect of introducing grammatical sentences that

are not meaningful, namely, Please help me everything and Please help

me something. (See the discussion of transition-network representations

for grammars in Article IV.D2.)

help me everything

please Y Y [end of sentence]

\ A A
..

show us someth i ng

Figure C2-1. HARPY's sentence network.

The next step in compiling the network is to substitute phonetic

representations of words for the words themselves. In the event that

there is more than one pronunciation for a word, all pronunciations are

put into the network. For example, if two pronunciations of show are

known, then both would be alternative paths following the phonetic rep-

resentation of please. In this way, the network is expanded to contain

all possible pronunciations of all possible sentences.

The last step is to embed juncture phenomena in the network.

These are descriptions of the effect of context on the allophones at word

boundaries. For example, in please show, the z sound at the end of

please is sometimes dropped, although it is not dropped in please tell

For the 1976 version of HARPY, the juncture rules were hand-tailored

to the words in the lexicon. This was a very time-consuming process,

but the phonemic rules available at the time were not sufficiently

powerful or complete to capture the necessary range of juncture phe-

nomena.

This discussion of the knowledge compiler is highly abbreviated. In

fact, the process is considerably more complicated and consumes a great

deal of computer processing time: It required 13 hours of PDP-10 time

to generate a network of 15,000 allophonic templates for HARPY's 1,011-

word vocabulary.

Control in HARPY

HARPY utilizes a heuristic search method called beam search.

Briefly stated, it proceeds left to right through the network, matching

C2 HARPY 351

spoken sounds to allophonic states. The first sounds spoken are

matched to all of the starting states in the network (in the example

above, this would correspond to all possible pronunciations of please).

HARPY assigns scores to all of these, and it prunes away the paths that

do not score well (see the discussion of scoring in Article v.b). The few

that score best are kept as alternative interpretations of the sentence.

These constitute the "beam" of hypotheses that HARPY will examine.

It is an important characteristic of beam search that the paths included

in the beam are the best interpretations of the sentence that HARPY
has found. Thus, it need never backtrack, but need only extend the

paths in its beam as long as they retain sufficiently high scores.

Beam search is an approximate heuristic method that does not guar-

antee that the interpretation of a sentence is the best possible inter-

pretation. Nevertheless, in its trial domains of chess and document

retrieval, HARPY was the most efficient and accurate performer of all of

the ARPA SUR systems (see Article v.A).

Summary

A case study of two dissimilar early speech understanding systems,

DRAGON and HEARSAY-I, led to a first in system design: a system

that met the 1976 goals of the speech understanding research com-

munity. This objective was accomplished by combining DRAGON's
dynamic programming techniques with useful heuristics for search, such

as beam search. The main ideas incorporated into HARPY are the

following.

Precompiled network. HARPY creates a large network comprised of

all phonetic "spellings" for each syntactic path in the grammar. This

network includes word junction phenomena, which are the adjustments

made in the pronunciations of words due to the words preceding and

following them in continuous speech.

Beam search. The best paths in the recognition network are se-

lected for further evaluation. This pruning is determined by the compar-

ison of the likelihood of success with a variable threshold. This strategy

eliminates evaluation of possible sentences that start correctly but

contain one or more incorrect words. HARPY keeps about 1% of the

states at each step in the evaluation of the network. Experiments

showed that neither a fixed number nor a fixed fraction worked well for

this process. Finally, a fixed range of likelihood from the best state

was settled upon (Newell, 1978).

Processing segmented speech. The decision to use a flexible division

of the acoustic signal according to acoustic events, rather than according

352 Understanding Spoken Language V

to a fixed time interval, allows for a single acoustic template per phone.

However, since the network is composed of a sequential phonetic rep-

resentation, the system is very sensitive to missing or poorly labeled

segments.

Heuristics to limit search time and size of network. The compu-

tation time of the program is drastically reduced by the compilation of

the speech recognition knowledge into the network representation. The

network is condensed by removing redundant states or by recognizing

common groupings of states. The number of states is slightly increased,

but the number of connections (i.e., pointers) can be markedly de-

creased, by introducing special states at common intersections in the

network.

The extension of HARPY's design to handle much larger vocabularies

must be examined in future research work, since the explicit creation of

the network of possibilities can have a large memory and processing

requirement. Also, the design of the current system cannot easily ac-

commodate the pragmatics of the utterance, which other systems use to

constrain search. HARPY's algorithm is also relatively sensitive to

missing acoustical segments and missing words.

References

See Lowerre and Reddy (1980). Also of interest is C.M.U. Speech

Group (1977).

C3. HWM

The HWIM ("Hear What I Mean") speech understanding system was

developed between 1974 and 1976 at BBN (Wolf and Woods, 1980).

HWIM was the successor to BBN's earlier SPEECHLIS speech under-

standing system (Woods, 1975a) and to the BBN work on natural lan-

guage understanding (see Article IV.F3 on the LUNAR system).

The BBN speech understanding system has evolved within a gen-

eral framework for viewing perceptual processes. Central to this

framework is an entity called a theory. A theory represents a

particular hypothesis about some or all of the sensory stimuli that

are present. Perception is viewed as the process of forming a

believable, coherent theory that can account for all of the stimuli.

In our framework, this is achieved by successive refinement and

extension of partial theories until a best complete theory is found.

(Wolf and Woods, 1980, p. 318)

In the speech setting, a typical theory is a set of compatible word

hypotheses, with possible gaps between words, and partial syntactic and

semantic interpretations.

HWIM was used to answer questions in the role of a travel budget

manager, using a database of facts about trips and expenses. This was

the most demanding task in any of the ARPA SUR projects, and the

resulting system shows concern with some issues of language and of

systems design that were not considered by the other SUR projects.

System Organization

In the HWIM system, all processing passes through its control strat-

egy component; in fact, this component uses the knowledge sources as

subroutines. This is in contrast to the HEARSAY model, in which

knowledge sources are autonomous and don't call each other. (Of course,

knowledge sources in HEARSAY can attempt to control processing by

what they post on the blackboard; see Article V.Cl.) HWIM's organi-

zation permits more direct experimentation with control strategies

—

manipulating, for example, how many word islands are generated, the

direction in which they are expanded, and the interactions of system

components (see Article V.b).

The lower level system components of HWIM (see Fig. C3-1) are

responsible for digitizing the speech signal (RTIME) and generating a

parametric representation of it (PSA), as well as segmenting and labeling

354 Understanding Spoken Language

the parametric representation (APR) and lexical retrieval. The APR
component produces a segmented lattice by segmenting the output of

the PSA component at phoneme boundaries, then generating one or

more possible phoneme labels for each segment, and finally ranking the

alternative interpretations of each segment. The final segmented lattice

is a graph that is read from left to right, and is divided into time

segments each of which has one or more ranked phonetic interpretations.

(See related discussion of charts in Article IV.D3.) This lattice is matched

against a dictionary of word pronunciations by the lexical retrieval com-

ponent, which generates word hypotheses.

TRIP TALKER .(LISTENER)

Di scourse

Expectations

Semanti c

Interpretations

Control Strategy

Word

Hypotheses

Word

Matches

Word

Hypotheses

Lex i ca

I

Retri eva

I

Syntactic

Hypotheses

Scores

Syntactic

Pred i ctions

Syntax

Veri f i cation

Segment

Lattice

APR

TRIP

Parameters

PSA RTINE

(Speech Si gna
I

)

Figure C3-1. The structure of HWIM (after Wolf and Woods,

1980, p. 321).

The structure of the dictionary is interesting for several reasons.

First, it is a network with phonemes for nodes. Nodes can be shared

by different words; for example, list and like share the j\j phoneme.

Another important characteristic of the dictionary is its implementation

of juncture rules. The words like, list, and some are all included in the

C3 HWTM 355

network represented in Figure C3-2, but, in addition, the phrase list

some is represented as it is actually pronounced: "lissum."

00

.(IY) >(K)

_(IH) >(S) >(T)

I

(S) >(AH)— (M)

Figure C3-2. Network of phonemes.

The dictionary is generated semiautomatically by applying phono-

logical rules to the base set of words. The initial vocabulary of 1,138

words is increased to a list of 1,363 possible pronunciations by ac-

counting for inflection patterns, then to 3,371 by the application of

within-word phonological rules, and then to 8,642 pronunciations by the

application of across-word juncture rules.

The higher levels of the HWTM system include word verification, syn-

tax, and the TRIP semantic component (Fig. C3-1). The verification

component takes a word pronunciation and the available context and

generates a synthesized acoustic signal for words that are hypothesized

by other knowledge sources. The actual acoustic signal is compared to

this synthesized signal and the hypothesis is scored. This method, which

was found to be rather expensive computationally, allows an independent

verification of hypothesized words, since all other methods use the same

acoustic source as a basis for making conclusions.

The syntactic component is used to judge whether proposed word-

sequences are grammatical or not and to predict grammatical extensions

of existing word-sequences. The parser used by this component is built

around an ATN grammar (Article IV.D2). It is a performance grammar;

that is, the parts of speech in the grammar are tailored specifically to

the trip-planning task domain, rather than being the usual parts of

speech: noun, verb, adjective, and so on. (See related discussion of

semantic grammars in Article DC.C3, in Vol. n.) The TRIP component

uses a semantic network representation of all the facts and relations

relevant to this task domain. It supplies top-down discourse expec-

tations, interprets the sentences passed to it, and carries out the spoken

instructions when they are finally interpreted.

Control Strategy

HWTM was designed to have a flexible control structure. However,

there is a basic form common to all control strategies in the system

356 Understanding Spoken Language V

that involves bottom-up word theories that are extended top-down by

the syntactic component until an entire sentence is achieved. More spe-

cifically, the following algorithm is followed:

1. Form the segmented lattice. Generate a set of words that match

the lattice well and rate these seed matches for their goodness

of fit to the segmented lattice. Put the seed matches on an

event queue ordered by their ratings.

2. Take the event at the top of the queue and send it to the

parser, which will reject it, find that it constitutes a whole

sentence, or propose words or categories of words that can ex-

tend the event.

3. Use the lexical retrieval component to predict between-word con-

text effects for each of the proposals made by the parser. Rate

the proposals and put them on the event list.

4. Before selecting the highest rating event from the event list for

further expansion, some additional processing is needed. One
task is to check the event list for islands of words that have

proposed the same word as an extension. If the proposed word

forms a bridge between the islands, then a collision event that

includes both islands is added to the event list. Another

process is used to check for the possibility that a proposed

extension exhausts the words in the sentence. This is called an

end event

5. Unless the resources allowed to HWTM for this sentence have

been exhausted, return to (2).

The HWTM system allows for many variations on this control strat-

egy. In particular, some search strategies were designed to be admis-

sible, which means that any solution they find is guaranteed to be the

best possible solution (see Article n.C3b). In general, admissible strat-

egies require more processing time than approximate methods that do

not guarantee the best possible solution (e.g., the heuristic beam search

used in HARPY). One powerful admissible strategy, a middle-out

control strategy using the shortfall density metric for scoring alternative

theories, was discovered to be not much more expensive than approx-

imate methods, although it was still not used in the final tests of HWTM
because of time limitations (see Wolf and Woods, 1980, p. 327).

A hybrid strategy for focus of attention is used in HWTM. Rather

than processing words in strictly left-to-right order (as in HARPY) or by

expanding islands wherever they are found (as in HEARSAY), HWIM was

most successful when it was configured to find an island in the first

part of the sentence, expand it backwards to the beginning of the sen-

tence, and then continue to the end of the sentence. This method

C3 HWIM 357

overcame the problem of identifying incorrectly the first word in a left-

to-right strategy and the combinatorial problems of following alternative

extensions of multiple islands (see Article v.b).

In most speech systems, it is assumed that the order in which hy-

potheses are expanded is a function of their scores. High-scoring hypoth-

eses are expanded before lower scoring ones. In HWIM, much effort

went into designing scoring and scheduling policies for theories. One

result of this was that the intuitive scheduling algorithm mentioned

above is not optimal in HWIM. Used instead is the shortfall density

strategy, which involves the difference between a theory's score and its

ideal score divided by the length of the theory in segments.

References

See Wolf and Woods (1980) and the earlier report by the BBN
speech group (Woods et al., 1976).

C4. The SRI/SDC Speech Systems

One of the ARPA speech understanding projects was to be under-

taken jointly by SRI International and Systems Development Corpora-

tion (SDC). The low-end portions of the system—signal-processing,

acoustics, and phonetics—were developed at SDC from earlier work done

there on speech recognition systems. SRI was to provide the top-end

of the system—parsing, syntax, semantics, pragmatics, and discourse-

analysis. Unfortunately, the two components were never actually merged.

The SDC research stressed the bottom-end processing involved in speech

understanding—encoding and analysis of the speech waveform (although

a top-end processor was eventually developed to make testing and

evaluation possible). Several interesting aspects of the SDC system are

described in Barnett et al. (1980).

The SRI speech understanding research extended earlier work in

natural language understanding and knowledge representation. The top-

end system was developed and tested with simulated output from the

SDC bottom-end. The important features of the SRI speech understand-

ing research included concern with the nature of real man-machine dis-

course, a language definition system for specifying the input language to

be understood, techniques for focusing the system's attention on certain

aspects of the dialogue, top-down process control stressing phrase-level

hypothesizing, knowledge representation using partitioned semantic

networks, and experimental evaluation of system design parameters.

Discourse

The SRI research stressed understanding spoken utterances in a

"natural" environment—a situation that might realistically involve a per-

son talking to a computer-based assistant. In particular, the two tasks

explored in the SRI work were an information retrieval task and an

assembly task (in which the computer acted as a consultant in a

maintainence work-station setting). The novelty of the SRI approach to

understanding dialogues in these domains was the concern with the

nature of the actual discourse: In realistic conversations focused on a

particular goal, partial utterances (words and phrases) and implicit

references to previous statements are common and present special prob-

lems for the understanding system.

For example, the two questions What is the depth of the Ethan

Allen? and What is its speed? both refer to the ship Ethan Allen. In

order to disambiguate such anaphoric references (pronoun reference to

C4 The SRI/SDC Speech Systems 359

previous phrases), the system must use information gleaned from pre-

vious utterances. Similarly, elliptic references require filling out incom-

plete phrases using terms already mentioned. For example, the utter-

ances What is the depth of the Ethan Allen? . . . The Lafayette? seek the

depth of both ships. Discourse analysis is also used to predict what

kinds of questions might be expected in subsequent utterances.

Language Definition System

The complete specification of the portion of the English language to

be accepted by the system is provided in the language definition system.

The lexicon is divided along semantic boundaries into categories for

ships, countries, and so on (a semantic or performance grammar; see

Robinson, 1975). The language definition contains rules for combining

words and phrases into larger phrases. Associated with each phrase-rule

are procedures for calculating attributes of member words (like mood,

number, meaning representation, and acoustic form) and a procedure for

evaluating the acceptability of the phrase hypothesis in context. These

rules also specify which attributes can be assigned to the new phrase;

for example, they determine the focus of the phrase or relate the se-

mantics of a particular word to the whole phrase. Prosodic information

is also included, such as the expected change in pitch at the end of an

interrogative utterance.

Process Control and Focus of Attention

Perhaps because it never really had a bottom end to work with, the

SRI system stressed top-down processing in its control strategy. Top-

down control allows the semantic information to guide the search

through potentially ambiguous acoustic information. The system is con-

trolled from the parsing mechanism that tries to form phrases to match

the acoustic signal. The parser uses the language definition system to

integrate all sources of knowledge in a coherent way. Thus, the main

program representation is at the phrase level, a relatively large linguistic

unit, with the meaning and ramifications (e.g., likelihood) of each phrase

recorded. Semantic nets encode the relations between concepts, both in

the static knowledge base and in the representations of the contents of

previous utterances. Pragmatic information is used to predict likely

utterances based on previous utterances.

The main data structure for the parser is the parse net, which rep-

resents phrases generated by the language definition system. The parse

net is made up of nodes representing the phrases that have been

generated and the predictions to be examined (usually against acoustic

360 Understanding Spoken Language V

data). Predictions are of the form: "Look for a word of category X at

location Y in the utterance." The nodes are linked by connections

between unverified phrases and the predictions they spawn. The parse

net also contains attribute information such as the expected start and

stop time of the candidate phrases. False steps are avoided in the

parsing process by storing past mistakes, but the generated mistaken

phrases can be used again if they are recognized as appropriate in

another context.

A task queue holds a selection of operations waiting to be performed

to expand the parse net (e.g., requests for checking the acoustic infor-

mation for a specific word or phrase). Tasks in the queue are scheduled

to run according to priorities determined by the language definition

system—a best-first approach. To help coordinate the choice of which

phrases to expand next, a particular part of the parse net is singled out

as being the focus of attention and this decision biases future decisions

until another area looks more promising. By considering the topics of

most recent interest, focusing attention not only can affect the amount

of processing needed but also can be used to disambiguate utterances

with multiple meanings. The parse is completed when the task queue is

empty or when limits on resources are exceeded.

Knowledge Representation

The system's knowledge representation scheme was based on the

partitioned semantic-net formalism (see Article IV.F7 on SRI's LIFER

system). The scheme was used both to encode the concepts of the sub-

ject domain and to represent the meaning of previous utterances. The

mechanism of partitioning the network into spaces is used to handle

quantification, to distinguish real and hypothetical worlds, and to dis-

tinguish different levels of abstractions. The semantic processor, for ex-

ample, contains a series of functions that map between the surface and

the deep case structures; these functions facilitate suggestions as to

which surface features to examine, based on semantic knowledge. There

are also functions that generate text (e.g., answers) corresponding to a

given semantic net representation of the intended meaning (see Article

rv.E).

Performance Evaluation

The SRI research group made a serious effort to evaluate system-

atically their speech understanding program. In particular, they attempt-

ed to determine the effect on the system's performance of changes in

several design parameters—for example, whether to consider the current

C4 The SRI/SDC Speech Systems 361

context when setting priorities, whether to match all possible words to

pick the best versus taking the first one above a certain criterion,

whether to process out from known points in the signal (island driving)

versus strictly left-to-right activity, and whether to identify and use a

focus of attention in assigning processing priorities (see Paxton, 1976).

Summary

The SRI system stressed the natural language understanding aspects

of the speech recognition problem. Detailed symbolic models of the do-

main of discourse were available for assisting in the interpretation and

response phases of the program.

References

See the summary article by Walker (1980) or the extended dis-

cussion of the system in the book edited by Walker (1978).

Bibliography

List of Abbreviations

Journals, Technical Reports, and Conference Proceedings

AAAI Conferences of the American Association for AI

ACM Journal of the Association for Computing Machinery

AFIPS American Federation of Information Processing Societies

AISB European Society for AI and the Simulation of Behavior

CACM Communications of the Association for Computing Machinery

EEEE Institute for Electrical and Electronic Engineers

IFIPS International Federation of Information Processing Societies

IJCAI International Joint Conferences on AI

SIGART Newsletter of the ACM Special Interest Group on AI

TINLAP Workshops on Theoretical Issues in Natural Language Processing

Abelson, R. 1973. The structure of belief systems. In Schank and Colby,

287-339.

Adelson-Velskiy, G. M., Arlazarov, V. L., and Donskoy, M. V. 1975. Some
methods of controlling the tree search in chess programs. Artificial Intel-

ligence 6:361-371.

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. 1974. The design and analysis

of computer algorithms. Reading, Mass.: Addison-Wesley.

Aikins, J. S. 1979. Prototypes and production rules: An approach to

knowledge representation for hypothesis formation. IJCAI 6, 1-3.

Akmajian, A., and Heny, F. 1975. An introduction to the principles of trans-

formational syntax. Cambridge, Mass.: MIT Press.

Allen, J. 1978. Anatomy of LISP. New York: McGraw-Hill.

Amarel, S. 1968. On representations of problems of reasoning about actions.

In D. Michie (Ed.), Machine intelligence S. New York: American Elsevier,

131-171.

Anderson, J. 1976. Language, memory, and thought. Hillsdale, N.J.: Lawrence

Erlbaum.

Anderson, J., and Bower, G. 1973. Human associative memory. Washington,

D.C.: Winston.

Anderson, J., Kline, P., and Beasley, C. 1979. A general learning theory

and its application to schema abstraction. In G. H. Bower (Ed.), The

psychology of learning and motivation (Vol. 13). New York: Academic Press,

277-318.

Appelt, D. 1980. Problem solving applied to natural language generation.

Proceedings of the Association of Computational Linguistics, Philadelphia, 59-63.

ARPA SUR Steering Committee. 1977. Speech understanding systems: Report

of a steering committee. Artificial Intelligence 9:307-316.

Bahl, L. R., Baker, J. K., Cohen, P. S., Cole, A. G., Jelinek, F., Lewis,

B. L., and Mercer, R. L. 1978. Automatic recognition of continuously

spoken sentences from a finite state grammar. Proceedings of the 1978 IEEE

International Conference on Acoustics, Speech, and Signal Processing, Tulsa,

Oklahoma, 418-421.

Baker, J. K. 1975. The DRAGON system: An overview. IEEE Transactions

on Acoustics, Speech, and Signal Processing ASSP-23(1), 24-29.

Baker, R. 1973. A spatially-oriented information processor which simulates

the motions of rigid objects. Artificial Intelligence 4:29-40.

366 Bibliography

Bar-Hillel, Y. 1960. The present status of automatic translation of lan-

guages. In F. L. Alt (Ed.), Advances in computers (Vol. 1). New York:

Academic Press, 91-163.

Bar-Hillel, Y. 1964. Language and information. Reading, Mass.: Addison-

Wesley.

Barnett, J., Bernstein, M., Gillman, R., and Kameny, I. 1980. The SDC
speech understanding system. In Lea, Trends, 272-293.

Barrow, H. G., Boiles, R. C, Garvey, T. D., Kremers, J. H., Lantz, K.,

Tenenbaum, J. M., and Wolf, H. C. 1977. Interactive aids for car-

tography and photo interpretation. In L. S. Baumann (Ed.), Image under-

standing: Proceedings of a workshop held at Palo Alto, California, October

20-21, 1977. Rep. No. SAI-78-656-WA, Science Applications, Inc., Sunny-

vale, Calif., 111-127.

Barstow, D. R. 1979. Knowledge-based program construction. New York: Amer-

ican Elsevier.

Bartlett, F. C. 1932. Remembering: A study in experimental and social psychol-

ogy. Cambridge, England: Cambridge University Press. Reprinted in 1977.

Baudet, G. M. 1978. On the branching factor of the alpha-beta pruning

algorithm. Artificial Intelligence 10:173-199.

Berliner, H. J. 1973. Some necessary conditions for a master chess program.

IJCAI S, 77-85.

Berliner, H. J. 1974. Chess as problem solving: The development of a tac-

tics analyzer. Dept. of Computer Science, Carnegie-Mellon University.

Berliner, H. J. 1977a. Experiences in evaluation with BKG—A program that

plays backgammon. IJCAI 5, 428-433.

Berliner, H. J. 1977b. A representation and some mechanisms for a problem-

solving chess program. In M. R. B. Clarke (Ed.), Advances in computer

chess 1. Edinburgh: Edinburgh University Press, 7-29.

Berliner, H. J. 1977c. Search and knowledge. IJCAI 5, 975-979.

Berliner, H. J. 1978a. The B* search algorithm: A best-first proof proce-

dure. Rep. No. CMU-CS-78-112, Dept. of Computer Science, Carnegie-

Mellon University.

Berliner, H. J. 1978b. A chronology of computer chess and its literature.

Artificial Intelligence 10:201-214.

Bernstein, A., Arbuckle, T., Roberts, M. de V., and Belsky, M. A. 1959. A
chess playing program for the IBM 704. In Proceedings of the Western Joint

Computer Conference, 1958. New York: American Institute of Electrical

Engineers, 157-159.

Bernstein, M. I. 1977. Knowledge-based systems: A tutorial. Rep. No. TM-
(L)-5903/000/00A, Systems Development Corporation, Santa Monica, Calif.

Bobrow, D. G. 1968. Natural language input for a computer problem-

solving system. In Minsky, 146-226.

Bibliography 367

Bobrow, D. G. 1975. Dimensions of representation. In Bobrow and Collins,

1-34.

Bobrow, D. G., and Collins, A. (Eds.). 1975. Representation and understanding:

Studies in cognitive science. New York: Academic Press.

Bobrow, D. G., and Fraser, B. 1969. An augmented state transition net-

work analysis procedure. IJCAI 1, 557-567.

Bobrow, D. G., Kaplan, R. M., Kay, M., Norman, D. A., Thompson, H., and

Winograd, T. 1977. GUS, a frame-driven dialog system. Artificial Intel-

ligence 8:155-173.

Bobrow, D. G., and Winograd, T. 1977a. Experience with KRL-0, one cycle

of a knowledge representation language. IJCAI 5, 213-222.

Bobrow, D. G., and Winograd, T. 1977b. An overview of KRL, a knowledge

representation language. Cognitive Science 1:3-46.

Boden, M. 1977. Artificial intelligence and natural man. New York: Basic Books.

Booth, A. D. (Ed.). 1967. Machine translation. Amsterdam: North-Holland.

Bott, M. F. 1970. Computational linguistics. In J. Lyons (Ed.), New hori-

zons in linguistics. Harmondsworth, England: Penguin Books, 215-228.

Brachman, R. J. 1978. A structural paradigm for representing knowledge.

Rep. No. 3605, Bolt Beranek and Newman, Inc., Cambridge, Mass.

Brachman, R. J. 1979. What's in a concept: Structural foundations for

semantic networks. In Findler, 3-50.

Brachman, R. J., and Smith, B. C. 1980. SIGART Newsletter 70 (special

issue on knowledge representation).

Bratko, L, Kopec, D., and Michie, D. 1978. Pattern-based representation of

chess end-game knowledge. Computer J. 21:149-153.

Bresnan, J. 1978. A realistic transformational grammar. In M. Halle,

J. Bresnan, and G. A. Miller (Eds.), Linguistic theory and psychological reality.

Cambridge, Mass.: MIT Press, 1-59.

Brooks, R. 1977. Production systems as control structures for programming

languages. SIGART Newsletter 63:33-37.

Bruce, B. 1975. Case systems for natural language. Artificial Intelligence

6:327-360.

Bullwinkle, C. 1977. Levels of complexity in discourse for anaphora dis-

ambiguation and speech act interpretation. IJCAI 5, 43-49.

Burton, R. R. 1976. Semantic grammar: An engineering technique for con-

structing natural language understanding systems. BBN Rep. No. 3453,

Bolt Beranek and Newman, Inc., Cambridge, Mass.

Burton, R. R., and Brown, J. S. 1979. Toward a natural-language capa-

bility for computer-assisted instruction. In H. O'Neil (Ed.), Procedures for

instructional systems development. New York: Academic Press, 273-313.

368 Bibliography

Carbonell, J. R. 1970. AI in CAI: An artificial intelligence approach to

computer-assisted instruction. IEEE Transactions on Man-Machine Systems

MMS-ll:190-202.

Carbonell, J. R., and Collins, A. M. 1974. Natural semantics in AI. IJCAI

S, 344-351.

Chafe, W. L. 1972. Discourse structure and human knowledge. In R. O.

Freedle and J. B. Carroll (Eds.), Language comprehension and the acquisition of

knowledge. Washington, D.C.: Winston, 41-69.

Chang, C. L., and Slagle, J. R. 1971. An admissible and optimal algorithm

for searching AND/OR graphs. Artificial Intelligence 2:117-128.

Charness, N. 1977. Human chess skill. In Frey, 34-53.

Charniak, E. 1972. Toward a model of children's story comprehension.

Rep. No. TR-266, AI Laboratory, Massachusetts Institute of Technology.

Charniak, E. 1975. A brief on case. Rep. No. 22, Institute for Semantic

and Cognitive Studies, Castagnola, Switzerland.

Charniak, E. 1978. With spoon in hand this must be the Eating frame.

TINLAP-2, 187-193.

Charniak, E., Riesbeck, C. K., and McDermott, D. V. 1980. Artificial intel-

ligence programming. Hillsdale, N.J.: Lawrence Erlbaum.

Charniak, E., and Wilks, Y. 1976. Computational semantics: An introduction

to artificial intelligence and natural language comprehension. Amsterdam:

North-Holland.

Chomsky, N. 1956. Three models for the description of language. IRE

Transactions on Information Theory 2:113-124. (Also in R. D. Luce, R. Bush,

and E. Galanter, Eds., Readings in mathematical psychology. New York:

Wiley, 1965, 105-124.)

Chomsky, N. 1957. Syntactic structures. The Hague: Mouton.

Chomsky, N. 1959. On certain formal properties of grammars. Information and

Control 2:137-167. (Also in R. D. Luce, R. Bush, and E. Galanter, Eds.,

Readings in mathematical psychology. New York: Wiley, 1965, 125-155.)

Chomsky, N. 1965. Aspects of the theory of syntax. Cambridge, Mass.: MIT
Press.

Chomsky, N. 1963. Formal properties of grammars. In R. D. Luce, R. Bush,

and E. Galanter (Eds.), Handbook of mathematical psychology (Vol. 2). New
York: Wiley, 323-418.

Chomsky, N. 1971. Deep structure, surface structure, and semantic inter-

pretation. In Steinberg and Jakobovits, 183-216.

Clippinger, J. H., Jr. 1975. Speaking with many tongues: Some problems

in modeling speakers of actual discourse. TINLAP-1, 78-83.

C.M.U. Speech Group. 1977. Speech understanding systems: Summary of

results of the five-year research effort at Carnegie-Mellon University.

Computer Science Dept. Tech. Report, Carnegie-Mellon University.

Bibliography 369

Codd, E. F. 1974. Seven steps to rendezvous with the casual user. In J. W.
Klimbie and K. L. Koffeman (Eds.), Data base management Amsterdam:

North-Holland, 179-200.

Cohen, P. R. 1978. On knowing what to say: Planning speech acts.

Tech. Rep. 118, Dept. of Computer Science, University of Toronto.

Cohen, P. R., and Perrault, C. R. 1979. Elements of a plan-based theory

of speech acts. Cognitive Science 3:177-212.

Colby, K., Weber, S., and Hilf, F. 1971. Artificial paranoia. Artificial Intel-

ligence 2:1-25.

Cole, R. A. 1979. Navigating the slippery stream of speech. Psychology

Today (12):11, 77-87.

COLING76. 1976. Preprints of the 6th International Conference on Computational

Linguistics, Ottawa, Ontario, Canada, June 1976.

Conway, M. E. 1963. Design of a separable transition-diagram compiler.

CACM 6:396-408.

Culicover, P. W., Wasow, T., and Akmajian, A. 1977. Formal syntax. New
York: Academic Press.

Davies, D. J. M. 1972. POPLER: A POP-2 Planner. Rep. No. MIP-89,

School of AI, University of Edinburgh.

Davis, R. In press. The application of meta-level knowledge to the con-

struction, maintenance, and use of large knowledge bases. In Davis and

Lenat.

Davis, R., and Buchanan, B. G. 1977. Meta-level knowledge: Overview and

applications. IJCAI 5, 920-927.

Davis, R., Buchanan, B. G., and Shortliffe, E. H. 1977. Production rules as

a representation for a knowledge-based consultation system. Artificial Intel-

ligence 8:15-45.

Davis, R., and King, J. J. 1977. An overview of production systems. In

E. Elcock and D. Michie (Eds.), Machine intelligence 8. Chichester, England:

Ellis Horwood, 300-332.

Davis, R., and Lenat, D. B. In press. Knowledge-based systems in artificial

intelligence. New York: McGraw-Hill.

de Champeaux, D., and Sint, L. 1977. An improved bi-directional heuristic

search algorithm. J. ACM 24:177-191.

Dijkstra, E. W. 1959. A note on two problems in connection with graphs.

Numerische Mathematik 1:269-271.

Doran, J. E. 1967. An approach to automatic problem-solving. In N. L.

Collins and D. Michie (Eds.), Machine intelligence 1. New York: American

Elsevier, 105-123.

Doran, J. E., and Michie, D. 1966. Experiments with the graph traverser

program. Proceedings of the Royal Society of London (Series A) 294:235-259.

Dreyfus, H. L. 1972. What computers can't do. New York: Harper and Row.

370 Bibliography

Duda, R. O., Hart, P. E., Nilsson, N. J., and Sutherland, G. L. 1978. Seman-

tic network representations in rule-based inference systems. In Waterman
and Hayes-Roth, 203-221.

Eastman, C. M. 1970. Representations for space planning. CACM 13:242-250.

Eastman, C. M. 1973. Automated space planning. Artificial Intelligence 4:41-

64.

Elcock, E. W. 1977. Representation of knowledge in a geometry machine.

In E. W. Elcock and D. Michie (Eds.), Machine intelligence 8. New York:

Wiley, 11-29.

Erman, L. D., Fennell, R. D., Lesser, V. R., and Reddy, D. R. 1976.

System organizations for speech understanding: Implications of network and

multiprocessor computer architectures for AI. IEEE Transactions on Com-

puters C-25(4):414-421.

Erman, L. D., Hayes-Roth, F., Lesser, V. R., and Reddy, D. R. 1980. The

HEARSAY-n speech understanding system: Integrating knowledge to resolve

uncertainty. Computing Surveys 12(2):213-253.

Erman, L. D., and Lesser, V. R. 1975. A multi-level organization for prob-

lem solving using many diverse, cooperating sources of knowledge. IJCAI 4,

483-490.

Erman, L. D., and Lesser, V. R. 1980. The HEARSAY-H speech under-

standing system: A tutorial. In Lea, Trends, 361-381.

Ernst, G., and Newell, A. 1969. GPS: A case study in generality and problem

solving. New York: Academic Press.

Fahlman, S. E. 1974. A planning system for robot construction tasks. Arti-

ficial Intelligence 5:1-49.

Fahlman, S. E. 1975. Symbol-mapping and frames. SIGART Newsletter 53:7-8.

Feigenbaum, E. A. 1969. Artificial intelligence: Themes in the second decade.

In A. J. H. Morrell (Ed.), Information processing 68: Proceedings IFIP Congress

1968 (Vol. 2). Amsterdam: North-Holland, 1008-1024.

Feigenbaum, E. A. 1977. The art of artificial intelligence: Themes and case

studies of knowledge engineering. IJCAI 5, 1014-1029.

Feigenbaum, E. A., and Feldman, J. (Eds.). 1963. Computers and thought.

New York: McGraw-Hill.

Fikes, R. E., Hart, P., and Nilsson, N. J. 1972. Learning and executing

generalized robot plans. Artificial Intelligence 3:251-288.

Fikes, R. E., and Hendrix, G. 1977. A Network-based knowledge repre-

sentation and its natural deduction system. IJCAI 5, 235-246.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new approach to the

application of theorem proving to problem solving. Artificial Intelligence

2:189-208.

Fillmore, C. 1968. The case for case. In E. Bach and R. Harms (Eds.),

Universals in linguistic theory. New York: Holt, Rinehart, and Winston,

1-88.

Bibliography 371

Fillmore, C. 1971a. Some problems for case grammar. In R. J. O'Brien

(Ed.), Report of the twenty-second annual round table meeting on linguistics and

language studies. (Monograph Series on Languages and Linguistics, No. 24.)

Washington, D.C.: Georgetown University Press, 35-56.

Fillmore, C. 1971b. Types of lexical information. In Steinberg and Jakob-

ovits, 370-392.

Filman, R. E. 1979. The interaction of observation and inference in a

formal representation system. IJCAI 6, 269-274.

Filman, R. E., and Weyhrauch, R. W. 1976. An FOL primer. Memo 288,

AI Laboratory, Stanford University.

Findler, N. V. (Ed.). 1979. Associative networks: The representation and use of

knowledge by computers. New York: Academic Press.

Flanagan, J., Levinson, S., Rabiner, L., and Rosenberg, A. 1980. Tech-

niques for expanding the capabilities of practical speech recognizers. In

Lea, Trends, 425-444.

Flavell, J. H. 1977. Cognitive development. Englewood Cliffs, N.J.: Prentice-

Hall.

Flavell, J. H. 1979. Metacognition and cognitive monitoring: A new area for

cognitive-developmental inquiry. American Psychologist 34:906-911.

Forgy, C, and McDermott, J. 1977. OPS, a domain-independent production

system language. IJCAI 5, 933-939.

Fox, M. In press. An organizational view of distributed systems. IEEE Trans-

actions on Systems, Man, and Cybernetics.

Frey, P. W. (Ed.). 1977. Chess skill in man and machine. New York: Springer-

Verlag.

Friedman, J. 1969. Directed random generation of sentences. CACM 12:40-46.

Friedman, J. 1971. A computer model of transformational grammar. New York:

American Elsevier.

Fuller, S. H., Gaschnig, J. G., and Gillogly, J. J. 1973. Analysis of the

alpha-beta pruning algorithm. Dept. of Computer Science, Carnegie-Mellon

University.

Funt, B. V. 1976. WHISPER: A computer implementation using analogs in

reasoning. Rep. No. 76-09, Computer Science Dept., University of British

Columbia.

Funt, B. V. 1977. WHISPER: A problem-solving system utilizing diagrams

and aparallel processing retina. IJCAI 5, 459-464.

Garvey, T., and Kling, R. 1969. User's guide to QA3.5 question-answering

system. Tech. Note 15, AI Group, Stanford Research Institute, Menlo Park,

Calif.

Gaschnig, J. 1977. Exactly how good are heuristics? Toward a realistic pre-

dictive theory of best-first search. IJCAI 5, 434-441.

372 Bibliography

Gelernter, H. 1959. A note on syntactic symmetry and the manipulation of

formal systems by machine. Information and Control 2:80-89.

Gelernter, H. 1963. Realization of a geometry-theorem proving machine. In

Feigenbaum and Feldman, 134-152.

Gelernter, H., Hansen, J. R., and Gerberich, C. L. 1960. A FORTRAN-
compiled list processing language. /. ACM 7:87-101.

Gelernter, H., Hansen, J. R., and Loveland, D. W. 1963. Empirical ex-

plorations of the geometry-theorem proving machine. In Feigenbaum and

Feldman, 153-163.

Gelernter, H., and Rochester, N. 1958. Intelligent behavior in problem-

solving machines. IBM J. Research and Development 2:336-345.

Gelperin, D. 1977. On the optimality of A*. Artificial Intelligence 8:69-76.

Gentner, D., and Collins, A. M. In press. Knowing about knowing: Effects

of meta-knowledge on inference. In Memory and Cognition.

Gillogly, J. J. 1972. The technology chess program. Artificial Intelligence

3:145-163.

Gilmore, P. C. 1970. An examination of the geometry theorem machine.

Artificial Intelligence 2:171-187.

Goldman, N. 1975. Conceptual generation. In Schank, 289-371.

Goldstein, I. P., and Roberts, R. B. 1977. NUDGE, a knowledge-based

scheduling program. IJCAI 5, 257-263.

Good, I. J. 1968. A five-year plan for automatic chess. In E. Dale and

D. Michie (Eds.), Machine intelligence 2. New York: American Elsevier, 89-

118.

Green, B. F., Jr., Wolf, A. K., Chomsky, C, and Laughery, K. 1963.

BASEBALL: An automatic question answerer. In Feigenbaum and Feld-

man, 207-216.

Green, C. C. 1969. The application of theorem-proving to question-answering

systems. IJCAI 1, 219-237.

Greenblatt, R. D., Eastlake, D. E., and Crocker, S. D. 1967. The Green-

blatt chess program. In AFIPS Conference Proceedings, Fall Joint Computer

Conference, 1967. Washington, D.C.: Thompson, 801-810.

Griffith, A. K. 1974. A comparison and evaluation of three machine learn-

ing procedures as applied to the game of checkers. Artificial Intelligence

5:137-148.

Grishman, R. 1976. A survey of syntactic analysis procedures for natural

language. American Journal of Computational Linguistics, Microfiche 47.

Grosz, B. J. 1980. Utterance and objective: Issues in natural language com-

munication. AI Magazine 1:11-20.

Hall, P. A. V. 1971. Branch-and-bound and beyond. IJCAI 2, 641-650.

Halliday, M. A. K. 1961. Categories of the theory of grammar. Word 17:241-

292.

Bibliography 373

Halliday, M. A. K. 1967-68. Notes on transitivity and theme in English.

Journal of Linguistics 3:37-81, 199-244; 4:179-215.

Halliday, M. A. K. 1970a. Functional diversity in language as seen from a

consideration of modality and mood in English. Foundations of Language

6:322-361.

Halliday, M. A. K. 1970b. Language structure and language function. In

J. Lyons (Ed.), New horizons in linguistics. Harmondsworth, England:

Penguin Books, 140-165.

Hanson, A. R., and Riseman, E. M. (Eds.). 1978a. Computer vision systems.

New York: Academic Press.

Hanson, A. R., and Riseman, E. M. 1978b. VISIONS: A computer system

for interpreting scenes. In Hanson and Riseman, 303-333.

Harman, G. (Ed.). 1974. On Noam Chomsky: Critical essays. Garden City, N.Y.:

Anchor Books.

Harris, L. R. 1973. The bandwidth heuristic search. IJCAI S, 23-29.

Harris, L. R. 1974. The heuristic search under conditions of error. Artificial

Intelligence 5:217-234.

Harris, L. R. 1975. The heuristic search and the game of chess: A study

of quiescence, sacrifices, and plan oriented play. IJCAI 4, 334-339.

Harris, L. R. 1977a. The heuristic search: An alternative to the alpha-beta

minimax procedure. In Frey, 157-166.

Harris, L. R. 1977b. ROBOT: A high performance natural language pro-

cessor for data base query. SIGART Newsletter 61:39-40.

Harris, L. 1979. Experience with ROBOT in twelve commercial natural lan-

guage data base query applications. IJCAI 6, 365-368.

Hart, P. E., Nilsson, N. J., and Raphael, B. 1968. A formal basis for the

heuristic determination of minimum cost paths. IEEE Transactions on SSC

SSC-4:100-107.

Hart, P. E., Nilsson, N. J., and Raphael, B. 1972. Correction to 'A formal

basis for the heuristic determination of minimum cost paths.' SIGART
Newsletter 37:28-29.

Hayes, P. J. 1973. Computation and deduction. Symposium on mathematical

foundations of computer science, Czechslovakia Academy of Science.

Hayes, P. J. 1974. Some problems and non-problems in representation the-

ory. British Computer Society, AI and Simulation of Behavior Group summer

conference, University of Sussex, 63-79.

Hayes, P. J. 1977a. In defence of logic. IJCAI 5, 559-565.

Hayes, P. J. 1977b. On semantic nets, frames, and associations. IJCAI 5,

99-107.

Hayes-Roth, B., and Hayes-Roth, F. 1979. A cognitive model of planning.

Cognitive Science 3:275-310.

374 Bibliography-

Hays, D. G., and Mathias, J. (Eds.). 1976. FBIS seminar on machine trans-

lation. American Journal of Computational Linguistics, Microfiche 46.

Hearst, E. 1977. Man and machine: Chess achievements and chess think-

ing. In Frey, 167-200.

Hedrick, C. 1976. Learning production systems from examples. Artificial

Intelligence 7:21-49.

Heidorn, G. E. 1976. Automatic programming through natural language

dialogue: A survey. IBM J. Research and Development 20:302-313.

Hendrix, G. G. 1976. Expanding the utility of semantic networks through

partitioning. Artificial Intelligence 7:21-49.

Hendrix, G. G. 1977a. Human engineering for applied natural language pro-

cessing. IJCAI 5, 183-191.

Hendrix, G. G. 1977b. LIFER: A natural language interface facility. SIGART
Newsletter 61:25-26.

Hendrix, G. G. 1977c. The LIFER manual: A guide to building practical

natural language interfaces. Tech. Note 138, Artificial Intelligence Center,

SRI International, Inc., Menlo Park, Calif.

Hendrix, G. G., Sacerdoti, E. D., Sagalowicz, D., and Slocum, J. 1978. De-

veloping a natural language interface to complex data. ACM Transactions

on Database Systems 3:105-147.

Hendrix, G. G., Thompson, C, and Slocum, J. 1973. Language processing

via canonical verbs and semantic models. IJCAI S, 262-269.

Heuristic Programming Project—1980. 1980. Computer Science Department, Stan-

ford University.

Hewitt, C. 1972. Description and theoretical analysis (using schemata) of

PLANNER, a language for proving theorems and manipulating models in a

robot. Rep. No. TR-258, AI Laboratory, Massachusetts Institute of Tech-

nology.

Hewitt, C. 1975. How to use what you know. IJCAI 4, 189-198.

Hillier, F. S., and Lieberman, G. J. 1974. Operations research (2nd ed.).

San Francisco: Holden-Day.

Hofstadter, D. 1979. Godel, Escher, Bach: an eternal golden braid. New York:

Basic Books.

Hopcroft, J. E., and Ullman, J. D. 1969. Formal languages and their relation

to automata. Reading, Mass.: Addison-Wesley.

Hudson, R. A. 1971. English complex sentences: An introduction to systemic gram-

mar. Amsterdam: North-Holland.

Hudson, R. A. 1976. Arguments for a non-transformational grammar. Chicago:

University of Chicago Press.

Jackendoff, R. 1975. A system of semantic primitives. TINLAP-1, 28-33.

Jackendoff, R. 1976. Toward an explanatory semantic representation. Lin-

guistic Inquiry 7:89-150.

Bibliography 375

Jackson, P. C. 1974. Introduction to artificial intelligence. New York: Petro-

celli.

Josselson, H. H. 1971. Automatic translation of languages since 1960: A
linguist's view. In M. C. Yovits (Ed.), Advances in computers (Vol. 11).

New York: Academic Press, 1-58.

Kaplan, R. M. 1973. A general syntactic processor. In Rustin, 193-241.

Kaplan, S. J. 1979. Cooperative responses from a portable natural language data

base query system. Doctoral dissertation, Dept. of Computer and Information

Science, University of Pennsylvania.

Karp, R. M. 1972. Reducibility among combinatorial problems. In R. E.

Miller and J. W. Thatcher (Eds.), Complexity of computer computations. New
York: Plenum Press, 85-103.

Katz, J., and Postal, P. 1964. An integrated theory of linguistic descriptions.

Cambridge, Mass.: MIT Press.

Kay, M. 1973. The MIND system. In Rustin, 155-188.

Kellogg, C. 1968. A natural language compiler for on-line data manage-

ment. AFIPS Conference Proceedings 88, 1968 Fall Joint Computer Conference.

Washington, D.C.: Thompson, 473-492.

Kister, J., Stein, P., Ulam, S., Walden, W., and Wells, M. 1957. Experi-

ments in chess. J. ACM 4:174-177.

Klatt, D. H. 1977. Review of the ARPA speech understanding project.

Journal of the Acoustical Society of America 62:1345-1366.

Klein, S. 1965. Automatic paraphrasing in essay format. Mechanical Trans-

lation 88:68-83.

Klein, S., and Simmons, R. F. 1963. Syntactic dependence and the com-

puter generation of coherent discourse. Mechanical Translation 7:50-61.

Knuth, D. 1973. The art of computer programming: Fundamental algorithms

(Vol. 1, 2nd ed.). Reading, Mass.: Addison-Wesley.

Knuth, D. 1979. TEX and Metafont: New directions in typesetting. Providence,

R.I.: American Mathematical Society and Bedford, Mass.: Digital Press.

Knuth, D. E., and Moore, R. W. 1975. An analysis of alpha-beta pruning.

Artificial intelligence 6:293-326.

Kotok, A. 1962. A chess playing program. RLE and MIT Computation

Center Memo 41, Artificial Intelligence Project, Massachusetts Institute of

Technology.

Kowalski, R. 1972. And-or graphs, theorem-proving graphs, and bi-direc-

tional search. In B. Meltzer and D. Michie (Eds.), Machine intelligence 7.

New York: Wiley, 167-194.

Kowalski, R. 1974. Predicate logic as a programming language. IFIP 74.

Amsterdam: North-Holland, 569-574.

Kuipers, B. 1975. A frame for frames: Representing knowledge for recog-

nition. In Bobrow and Collins, 151-184.

376 Bibliography

Landsbergen, S. P. J. 1976. Syntax and formal semantics of English in

PHLIQA1. In L. Steels (Ed.), Advances in natural language processing. Ant-

werp, Belgium: University of Antwerp.

Lawler, E. W., and Wood, D. E. 1966. Branch-and-bound methods: A sur-

vey. Operations Research 14:699-719.

Lea, W. 1980a. Speech recognition: Past, present, and future. In Lea,

Trends, 39-89.

Lea, W. (Ed.). 1980b. Trends in speech recognition. Englewood Cliffs, N.J.:

Prentice-Hall.

Lea, W. 1980c. The value of speech recognition systems. In Lea, Trends,

3-18.

Lea, W., and Shoup, J. 1980. Specific contributions of the ARPA SUR
project. In Lea, Trends, 382-421.

Lehnert, W. C. 1978. The process of question answering: A computer simulation

of cognition. Hillsdale, N.J.: Lawrence Erlbaum.

Lenat, D. B. In press. AM: An AI approach to discovery in mathematics.

In Davis and Lenat.

Lenat, D. B., and McDermott, J. 1977. Less than general production sys-

tem architectures. IJCAI 5, 928-932.

Lesser, V. R., and Erman, L. D. In press. Distributed interpretation: A
model and experiment. In IEEE Transactions on Computers.

Levi, G., and Sirovich, F. 1975. A problem reduction model for non-

independent subproblems. IJCAI 4, 340-344.

Levi, G., and Sirovich, F. 1976. Generalized AND/OR graphs. Artificial

Intelligence 7:243-259.

Levine, M. D. 1978. A knowledge-based computer vision system. In A. Han-

son and E. Riseman (Eds.), Computer vision systems. New York: Academic

Press, 335-352.

Levy, D. 1979. The computer chess revolution. Chess Life and Review

(February):84-85.

Lindsay, R. K. 1963a. Inferential memory as the basis of machines which

understand natural language. In Feigenbaum and Feldman, 217-233.

Lindsay, R. K. 1963b. A program for parsing sentences and making infer-

ences about kinship relations. In A. C. Hoggatt and F. E. Balderston

(Eds.), Symposium on simulation models: Methodology and applications to the

behavioral sciences. Cincinnati: South-Western Publishing, 111-138.

Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A., and Lederberg, J.

1980. Applications of Artificial Intelligence for Chemical Inference: The DENDRAL
Project. New York: McGraw-Hill.

Locke, W. N., and Booth, A. D. (Eds.). 1955. Machine translation of lan-

guages. New York: Technology Press of MIT and Wiley.

Lowerre, B., and Reddy, R. 1980. The HARPY speech understanding sys-

tem. In Lea, Trends, 340-360.

Bibliography 377

Lyons, J. 1968. Introduction to theoretical linguistics. London: Cambridge Uni-

versity Press.

Lyons, J. 1970. Noam Chomsky. New York: Viking Press.

Mann, W., and Moore, J. 1980. Computer as author—Results and prospects.

Tech. Rep. RR-79-82, Information Science Institute, Marina del Rey, Calif.

Manna, Z. 1973. Introduction to the mathematical theory of computation. New
York: McGraw-Hill.

Manove, M., Bloom, S., and Engelman, E. 1968. Rational functions in

MATHLAB. In D. G. Bobrow (Ed.), Symbol manipulation languages and tech-

niques. Amsterdam: North-Holland, 86-102.

Marcus, M. P. 1980. A theory of syntactic recognition for natural language.

Cambridge, Mass.: MIT Press.

Martelli, A. 1977. On the complexity of admissible search algorithms. Arti-

ficial Intelligence 8:1-13.

Martelli, A., and Montanari, U. 1973. Additive AND/OR graphs. IJCAI S,

1-11.

Matuzceck, D. 1972. An implementation of the augmented transition net-

work system of Woods (as revised by J. Slocum). Dept. of Computer Sci-

ences and CAI Laboratory, University of Texas, Austin.

McCarthy, J. 1977. Epistmological problems of artificial intelligence. IJCAI 5,

1038-1044.

McCarthy, J., and Hayes, P. J. 1969. Some philosophical problems from

the standpoint of artificial intelligence. In D. Michie and B. Meltzer (Eds.),

Machine intelligence 4- Edinburgh: Edinburgh University Press, 463-502.

McCord, M. 1975. On the form of a systemic grammar. Journal of Lin-

guistics 11:195-212.

McCorduck, P. 1979. Machines who think. San Francisco: Freeman.

McDermott, D. 1974. Assimilation of new information by a natural language-

understanding system. Rep. No. TR-291, AI Laboratory, Massachusetts

Institute of Technology.

McDermott, D. 1976. Artificial intelligence meets natural stupidity. SIGART
Newsletter 57:4-9.

McDermott, D., and Doyle, J. In press. Non-monotonic logic—I. Artificial Intel-

ligence 13.

McDermott, J., and Forgy, C. 1978. Production system conflict resolution

strategies. In Waterman and Hayes-Roth, 177-199.

McDermott, J., Newell, A., and Moore, J. 1978. The efficiency of certain

production system implementations. In Waterman and Hayes-Roth, 155-

176.

McDonald, D. 1980. Natural language production as a process of decision making

under constraint. Doctoral dissertation, Laboratory for Computer Science,

Massachusetts Institute of Technology.

378 Bibliography

Mcintosh, A., and Halliday, M. A. K. 1966. Patterns of language. Bloom-

ington: Indiana University Press.

McKeown, K. 1980. Generating relevant explanation: Natural language re-

sponses to questions about database structure. Proceedings of the AAAI,

306-309.

Michie, D. 1967. Strategy building with the graph traverser. In N. L.

Collins and D. Michie (Eds.), Machine intelligence 1. New York: American

Elsevier, 135-152.

Michie, D. 1977. A theory of advice. In E. W. Elcock and D. Michie

(Eds.), Machine intelligence 8. New York: Wiley, 151-168.

Michie, D., and Bratko, I. 1978. Advice table representations of chess end-

game knowledge. In Proceedings of the AISB/GI Conference on Artificial

Intelligence, 194-200.

Michie, D., and Ross, R. 1970. Experiments with the adaptive graph tra-

verser. In B. Meltzer and D. Michie (Eds.), Machine intelligence 5. New
York: American Elsevier, 301-318.

Miller, G. A. 1975. Comments on lexical analysis. TINLAP-1, 34-37.

Miller, G. A., and Johnson-Laird, P. N. 1976. Language and perception. Cam-
bridge, Mass.: Harvard University Press.

Minsky, M. 1963. Steps toward artificial intelligence. In Feigenbaum and

Feldman, 406-450.

Minsky, M. (Ed.). 1968. Semantic information processing. Cambridge, Mass.:

MIT Press.

Minsky, M. 1975. A framework for representing knowledge. In P. Winston

(Ed.), The psychology of computer vision. New York: McGraw-Hill, 211-277.

Mittman, B. 1977. A brief history of the computer chess tournaments: 1970-

1975. In Frey, 1-33.

Moore, E. F. 1959. The shortest path through a maze. In Proceedings of an

International Symposium on the Theory of Switching, Part II. Cambridge, Mass.:

Harvard University Press, 285-292.

Moore, R. C. 1975. Reasoning from incomplete knowledge in a procedural

deductive system. Rep. No. TR-347, AI Laboratory, Massachusetts Insti-

tute of Technology.

Moses, J. 1967. Symbolic integration. Rep. No. MAC-TR-47, Project MAC,
Massachusetts Institute of Technology.

Myopolous, J., Cohen, P., Borgida, A., and Sugar, L. 1975. Semantic

networks and the generation of context. IJCAI 4, 134-142.

Nash-Webber, B. 1974. Semantics and speech understanding. BBN Rep.

No. 2896, Bolt Beranek and Newman, Inc., Cambridge, Mass.

Nash-Webber, B. L. 1975. The role of semantics in automatic speech under-

standing. In Bobrow and Collins, 351-382.

Bibliography 379

National Research Council, Automatic Language Processing Advisory Com-
mittee. 1966. Language and machines: Computers in translation and

linguistics. Publication 1416, National Academy of Sciences, National

Research Council, Washington, D.C.

Newborn, M. 1975. Computer chess. New York: Academic Press.

Newborn, M. 1977. The efficiency of the alpha-beta search on trees with

branch-dependent terminal node scores. Artificial Intelligence 8:137-153.

Newborn, M. 1978. Computers and chess news: Recent tournaments. SIGART
Newsletter 65:11.

Newell, A. 1973a. Artificial intelligence and the concept of mind. In Schank

and Colby, 1-60.

Newell, A. 1973b. Production systems: Models of control structure. In

W. Chase (Ed.), Visual information processing. New York: Academic Press,

463-526.

Newell, A. 1975. A tutorial on speech understanding systems. In D. R.

Reddy (Ed.), Speech recognition: Invited papers presented at the 1974 IEEE

symposium. New York: Academic Press, 3-54.

Newell, A. 1978. HARPY: Production systems and human cognition. Rep.

CMU-CS-78-140, Dept. of Computer Science, Carnegie-Mellon University.

Newell, A., Barnett, J., Forgie, J., Green, C, Klatt, D. H., Licklider,

J. C. R., Munson, J., Reddy, D. R., and Woods, W. A. 1973. Speech

understanding systems: Final report of a study group. Amsterdam: North-

Holland.

Newell, A., and Ernst, G. 1965. The search for generality. In W. A.

Kalenich (Ed.), Information processing 65: Proceedings IFIP Congress 1965.

Washington, D.C: Spartan Books, 17-24.

Newell, A., Shaw, J. C, and Simon, H. A. 1960. A variety of intelligent

learning in a general problem-solver. In M. C. Yovits and S. Cameron

(Eds.), Self-organizing systems. New York: Pergamon Press, 153-189.

Newell, A., Shaw, J. C, and Simon, H. A. 1963a. Chess-playing programs

and the problem of complexity. In Feigenbaum and Feldman, 39-70.

Newell, A., Shaw, J. C, and Simon, H. A. 1963b. Empirical explorations

with the logic theory machine: A case history in heuristics. In Feigen-

baum and Feldman, 109-133.

Newell, A., and Simon, H. A. 1963. GPS, a program that simulates human

thought. In Feigenbaum and Feldman, 279-293.

Newell, A., and Simon, H. A. 1972. Human problem solving. Englewood

Cliffs, N.J.: Prentice-Hall.

Newell, A., and Simon, H. A. 1976. Computer science as empirical inquiry:

Symbols and search. (The 1976 ACM Turing Lecture.) CACM 19:113-126.

Nii, H. P., and Feigenbaum, E. A. 1978. Rule-based understanding of sig-

nals. In Waterman and Hayes-Roth, 483-501.

380 Bibliography

Nilsson, N. J. 1969. Searching problem-solving and game-playing trees for

minimal cost solutions. In A. J. H. Morrell (Ed.), Information processing 68:

Proceedings IFIP Congress 1968 (Vol. 2). Amsterdam: North-Holland, 1556-

1562.

Nilsson, N. J. 1971. Problem-solving methods in artificial intelligence. New York:

McGraw-Hill.

Nilsson, N. J. 1974. Artificial intelligence. In J. L. Rosenfeld (Ed.), Infor-

mation processing 74: Proceedings IFIP Congress 1974- Amsterdam: North-

Holland, 778-801.

Nilsson, N. J. 1980. Principles of artificial intelligence. Palo Alto, Calif.: Tioga.

Norman, D. A., Rumelhart, D. E., and the LNR Research Group. 1975.

Explorations in cognition. San Francisco: Freeman.

Novak, G. S. 1977. Representation of knowledge in a program for solving

physics problems. IJCAI 5, 286-291.

Oettinger, A. G. 1955. The design of an automatic Russian-English tech-

nical dictionary. In Locke and Booth, 47-65.

Paige, J. M., and Simon, H. A. 1966. Cognitive processes in solving algebra

word problems. In B. Kleinmuntz (Ed.), Problem solving. New York: Wiley,

51-119.

Paxton, W. H. 1976. A framework for language understanding. SRI Tech.

Note 131, AI Center, SRI International, Inc., Menlo Park, Calif.

Petrick, S. R. 1973. Transformational analysis. In Rustin, 27-41.

Pitrat, J. 1977. A chess combination program which uses plans. Artificial

Intelligence 8:275-321.

Plath, W. 1976. REQUEST: A natural language question-answering system.

IBM J. Research and Development 20:326-335.

Pohl, I. 1969. Bi-directional and heuristic search in path problems. SLAC
Rep. No. 104, Stanford Linear Accelerator Center, Stanford, Calif.

Pohl, I. 1970a. First results on the effect of error in heuristic search. In

B. Meltzer and D. Michie (Eds.), Machine intelligence 5. New York: Amer-

ican Elsevier, 219-236.

Pohl, I. 1970b. Heuristic search viewed as path finding in a graph. Artifi-

cial Intelligence 1:193-204.

Pohl, I. 1971. Bi-directional search. In B. Meltzer and D. Michie (Eds.),

Machine intelligence 6. New York: American Elsevier, 127-140.

Pohl, I. 1973. The avoidance of (relative) catastrophe, heuristic competence,

genuine dynamic weighting and computational issues in heuristic problem

solving. IJCAI S, 12-17.

Pohl, I. 1977. Practical and theoretical considerations in heuristic search

algorithms. In E. W. Elcock and D. Michie (Eds.), Machine intelligence 8.

New York: Wiley, 55-72.

Polya, G. 1957. How to solve it (2nd ed.). New York: Doubleday Anchor.

Bibliography 381

Post, E. 1943. Formal reductions of the general combinatorial problem.

American Journal of Mathematics 65:197-268.

Postal, P. 1964. Limitations of phrase structure grammars. In J. A. Fodor

and J. J. Katz, The structure of language. Englewood Cliffs, N.J.: Prentice-

Hall, 137-151.

Prawitz, D. 1965. Natural deduction: A proof-theoretical study. Stockholm:

Almqvist and Wiksell.

Propp, V. 1968. Morphology of the folktale (2nd. ed., transl. L. Scott). Austin:

University of Texas Press.

Pylyshyn, Z. 1973. What the mind's eye tells the mind's brain: A critique

of mental imagery. Psychological Bulletin 13:1-24.

Pylyshyn, Z. 1975. Do we need images and analogs? TINLAP-1, 174-177.

Pylyshyn, Z. 1978. Imagery and artificial intelligence. In C. W. Savage (Ed.),

Perception and cognition: Issues in the foundations of psychology. Minneapolis:

University of Minnesota Press.

Quillian, M. R. 1968. Semantic memory. In Minsky, 227-270.

Quillian, M. R. 1969. The teachable language comprehender: A simulation

program and the theory of language. CACM 12:459-476.

Raphael, B. 1968. SIR: A computer program for semantic information

retrieval. In Minsky, 33-145.

Raphael, B. 1976. The thinking computer. San Francisco: Freeman.

Reboh, R., Sacerdoti, E., Fikes, R. E., Sagalowicz, D., Waldinger, R. J., and

Wilber, M. 1976. QLISP: A language for the interactive development of

complex systems. Rep. No. TN-120, AI Center, SRI International, Inc.,

Menlo Park, Calif.

Reddy, R. (Ed.). 1975. Speech recognition: Invited papers of the IEEE sympo-

sium. New York: Academic Press.

Reddy, R., Erman, L., Fennell, R., and Neely, R. 1976. The HEARSAY
speech understanding system: An example of the recognition process.

IEEE Transactions on Computers C-25:427-431.

Reingold, E. M., Nievergelt, J., and Deo, N. 1977. Combinatorial algorithms:

Theory and practice. Englewood Cliffs, N.J.: Prentice-Hall.

Reiter, R. 1978. On reasoning by default. TINLAP-2, 210-218.

Rieger, C. 1975. Conceptual memory and inference. In Schank, 157-288.

Riesbeck, C. K. 1975. Conceptual analysis. In Schank, 83-156.

Robinson, A. E., Appelt, D. E., Grosz, B. J., Hendrix, G. G., and Robinson,

J. J. 1980. Interpreting natural-language utterances in dialogs about tasks.

Tech. Note 210, Artificial Intelligence Center, SRI International, Inc., Menlo

Park, Calif.

Robinson, J. J. 1975. Performance grammars. In Reddy, 401-427.

382 Bibliography

Rulifson, J., Derkson, J. A., and Waldinger, R. J. 1972. QA4: A proce-

dural calculus for intuitive reasoning. Rep. No. TN-83, AI Center, SRI

International, Inc.

Rumelhart, D. 1975. Notes on a schema for stories. In Bobrow and

Collins, 211-236.

Rumelhart, D. 1976. Toward an interactive model of reading. Tech. Rep.

56, Center for Human Information Processing, Univ. of California, San

Diego.

Russell, S. W. 1972. Semantic categories of nominals for conceptual

dependency analysis of natural language. Memo 172, AI Laboratory,

Stanford University.

Rustin, R. (Ed.). 1973. Natural language processing. New York: Algorithmics

Press.

Rychener, M. D. 1976. Production systems as a programming language for

artificial intelligence applications. Computer Science Dept., Carnegie-Mellon

University.

Rychener, M. D. 1977. Control requirements for the design of production

system architectures. ACM symposium on artificial intelligence and programming

languages, Rochester, N.Y., 37-44.

Sacerdoti, E. D. 1974. Planning in a hierarchy of abstraction spaces. Arti-

ficial Intelligence 5:115-135.

Sacerdoti, E. D. 1977. Language access to distributed data with error recov-

ery. IJCAI 5, 196-202.

Samlowski, W. 1976. Case grammar. In Charniak and Wilks, 55-72.

Samuel, A. L. 1963. Some studies in machine learning using the game of

checkers. In Feigenbaum and Feldman, 71-105.

Samuel, A. L. 1967. Some studies in machine learning using the game of

checkers. II—Recent progress. IBM J. Research and Development 11:601-617.

Sandewall, E. J. 1971. Heuristic search: Concepts and methods. In N. V.

Findler and B. Meltzer (Eds.), Artificial intelligence and heuristic programming.

New York: American Elsevier, 81-100.

Scha, R. J. H. 1976. A formal language for semantic representation. In

L. Steels (Ed.), Advances in natural language processing. Antwerp, Belgium:

University of Antwerp.

Schank, R. C. 1972. Conceptual dependency: A theory of natural language

understanding. Cognitive Psychology 3:552-631.

Schank, R. C. 1973a. The fourteen primitive actions and their inferences.

Memo 183, AI Laboratory, Stanford University.

Schank, R. C. 1973b. Identification of conceptualizations underlying natural

language. In Schank and Colby, 187-247.

Schank, R. C. 1975a. Conceptual information processing. New York: North-

Holland.

Bibliography 383

Schank, R. C. 1975b. The primitive ACTs of conceptual dependency.

TINLAP-1, 38-41.

Schank, R. C. 1975c. The structure of episodes in memory. In Bobrow and

Collins, 237-272.

Schank, R. C. 1980. Language and memory. Cognitive Science 4:243-284.

Schank, R. C, and Abelson, R. P. 1977. Scripts, plans, goals, and under-

standing. Hillsdale, N.J.: Lawrence Erlbaum.

Schank, R. C, and Colby, K. M. (Eds.). 1973. Computer models of thought

and language. San Francisco: Freeman.

Schank, R., Goldman, N., Rieger, C, and Riesbeck, C. 1973. MARGIE:
Memory, analysis, response generation, and inference on English. IJCAI 8,

255-261.

Schank, R., and Yale AI Project. 1975. SAM—A story understander. Research

Rep. 43, Dept. of Computer Science, Yale University.

Schubert, L. K. 1975. Extending the expressive power of semantic net-

works. IJCAI 4, 158-164.

Searle, J. 1969. Speech acts. Cambridge, England: Cambridge University Press.

Searle, J. R. 1980. Mind, brains, and programs. Behavioral and Brain Sciences

3:417-457.

Self, J. 1975. Computer generation of sentences by systemic grammar. Amer-

ican Journal of Computational Linguistics, Microfiche 29.

Shannon, C. E. 1950. Programming a computer for playing chess. Philo-

sophical Magazine (Series 7) 41:256-275.

Shannon, C. E. 1956. A chess-playing machine. In J. R. Newman (Ed.),

The world of mathematics (Vol. 4). New York: Simon and Schuster, 2124-

2133.

Shortliffe, E. H. 1976. Computer-based medical consultations: MYCIN. New York:

North-Holland.

Shoup, J. 1980. Phonological aspects of speech recognition. In Lea, Trends,

125-138.

Siklossy, L. 1976. Let's talk LISP. Englewood Cliffs, N.J.: Prentice-Hall.

Simmons, R. F. 1965. Answering English questions by computer: A survey.

CACM 8:53-70.

Simmons, R. F. 1966. Storage and retrieval of aspects of meaning in

directed graph structures. CACM 9:211-214.

Simmons, R. F. 1970. Natural language question-answering systems: 1969.

CACM 13:15-30.

Simmons, R. F. 1973. Semantic networks: Their computation and use for

understanding English sentences. In Schank and Colby, 63-113.

Simmons, R. F., Burger, J. F., and Long, R. E. 1966. An approach toward

answering English questions from text. AFIPS Conference Proceedings 29, 1966

Fall Joint Computer Conference. Washington, D.C.: Spartan Books, 357-363.

384 Bibliography

Simmons, R. F., Burger, J. F., and Schwarcz, R. M. 1968. A computa-

tional model of verbal understanding. AFIPS Conference Proceedings S3, 1968

Fall Joint Computer Conference. Washington, D.C.: Thompson, 441-456.

Simmons, R. F., Klein, S., and McConlogue, K. 1964. Indexing and depen-

dency logic for answering English questions. American Documentation 15:196—

204.

Simmons, R. F., and Slocum, J. 1972. Generating English discourse from

semantic networks. CACM 15:891-905.

Simon, H. A. 1969. The sciences of the artificial. Cambridge, Mass.: MIT Press.

Simon, H. A., and Kadane, J. B. 1975. Optimal problem-solving search:

All-or-none solutions. Artificial Intelligence 6:235-247.

Slagle, J. R. 1961. A heuristic program that solves symbolic integration

problems in freshman calculus: Symbolic Automatic Integrator (SAINT).

Rep. No. 5G-0001, Lincoln Laboratory, Massachusetts Institute of Tech-

nology.

Slagle, J. R. 1963. A heuristic program that solves symbolic integration

problems in freshman calculus. In Feigenbaum and Feldman, 191-203.

(Also in /. ACM 10:507-520 [1963].)

Slagle, J. R. 1971. Artificial intelligence: The heuristic programming approach.

New York: McGraw-Hill.

Slagle, J. R., and Dixon, J. K. 1969. Experiments with some programs that

search game trees. /. ACM 16:189-207.

Slagle, J. R., and Dixon, J. K. 1970. Experiments with the M and N tree-

searching program. CACM 13:147-154.

Slate, D. J., and Atkin, L. R. 1977. CHESS 4.5—The Northwestern Uni-

versity chess program. In Frey, 82-118.

Sloman, A. 1971. Interactions between philosophy and AI: The role of intui-

tion and non-logical reasoning in intelligence. Artificial Intelligence 2:209-

225.

Sloman, A. 1975. Afterthoughts on analogical representations. TINLAP-1,

178-182.

Stefik, M. 1980. Planning with constraints. Rep. No. 784, Computer Science

Dept., Stanford University.

Steinberg, D., and Jakobovits, L. 1971. Semantics. Cambridge, England:

Cambridge University Press.

Suppes, P. 1957. Introduction to logic. New York: Van Nostrand Reinhold.

Sussman, G., and McDermott, D. V. 1972. CONNIVER reference manual.

Memo 259, AI Laboratory, Massachusetts Institute of Technology.

Sussman, G., Winograd, T., and Charniak, E. 1970. MICRO-PLANNER
reference manual. AI Memo 203, AI Laboratory, Massachusetts Institute of

Technology.

Bibliography 385

Szolovitz, P., Hawkinson, L. B., and Martin, W. A. 1977. An overview of

OWL, a language for knowledge representation. Rep. No. TM-86, Labora-

tory for Computer Science, Massachusetts Institute of Technology.

Taylor, B., and Rosenberg, R. S. 1975. A case-driven parser for natural

language. American Journal of Computational Linguistics, Microfiche 31.

Thompson, F. B. 1966. English for the computer. AFIPS Conference Pro-

ceedings 29, 1966 Fall Joint Computer Conference. Washington, D.C.: Spartan

Books, 349-356.

Thorndyke, P. W. 1977. Cognitive structures in comprehension and memory
of narrative discourse. Cognitive Psychology 9:77-110.

Thorp, E., and Walden, W. E. 1970. A computer-assisted study of Go on

m X n boards. In R. B. Banerji and M. D. Mesarovic (Eds.), Theoretical

approaches to non-numerical problem solving. Berlin: Springer-Verlag, 303-343.

TINLAP-1 (Schank, R., and Nash-Webber, B., Eds.). 1975. Theoretical issues

in natural language processing: An interdisciplinary workshop in computational lin-

guistics, psychology, linguistics, and artificial intelligence, June 1975.

TINLAP-2 (Waltz, D. L., Ed.). 1978. Theoretical issues in natural language

processing—2. New York: Association for Computing Machinery.

Turing, A. M., et al. 1953. Digital computers applied to games. In B. V.

Bowden (Ed.), Faster than thought. London: Pitman, 286-310.

Vanderbrug, G., and Minker, J. 1975. State-space, problem-reduction, and

theorem proving—Some relationships. CACM 18:107-115.

Vere, S. A. 1977. Relational production systems. Artificial Intelligence 8:47-68.

Vincens, P. 1969. Aspects of speech recognition by computer. Doctoral

dissertation, Computer Science Dept., Stanford University.

Walker, D. E. (Ed.). 1976. Speech understanding research. New York: North-

Holland.

Walker, D. E. (Ed.). 1978. Understanding spoken language. New York: North-

Holland.

Walker, D. E. 1980. SRI research on speech understanding. In Lea, Trends,

294-315.

Waltz, D. L. 1977. Natural language interfaces. SIGART Newsletter 61:16-64.

Waltz, D. L. In press. An English language question answering system for

a large relational data base.

Waterman, D. A. 1970. Generalization learning techniques for automating

the learning of heuristics. Artificial Intelligence 1:121-170.

Waterman, D. A., and Hayes-Roth, F. (Eds.). 1978. Pattern-directed inference

systems. New York: Academic Press.

Weaver, W. 1955. Translation. In Locke and Booth, 15-23. (Originally

published, 1949.)

Weizenbaum, J. 1963. Symmetric list processor. CACM 6:524-544.

386 Bibliography

Weizenbaum, J. 1966. ELIZA—A computer program for the study of natural

language communication between man and machine. CACM 9:36-45.

Weizenbaum, J. 1976. Computer power and human reason: From judgment to

calculation. San Francisco: Freeman.

Welin, C. W. 1975. Semantic networks and case grammar. Publication 29,

Institute of Linguistics, University of Stockholm.

Weyhrauch, R. W. 1978. Prolegomena to a theory of mechanized formal

reasoning. Memo 315, AI Laboratory, Stanford University.

Whitehead, A. N., and Russell, B. 1925. Principia mathematica (2nd ed.,

Vol. 1). Cambridge, England: University Press.

Wilensky, R. 1978a. Understanding goal-based stories. Research Rep. No.

140, Dept. of Computer Science, Yale University.

Wilensky, R. 1978b. Why John married Mary: Understanding stories involv-

ing recurring goals. Cognitive Science 2:235-266.

Wilkins, D. 1979. Using plans in chess. IJCAI 6.

Wilks, Y. A. 1973. An artificial intelligence approach to machine trans-

lation. In Schank and Colby, 114-151.

Wilks, Y. A. 1974. Natural language understanding systems within the AI

paradigm: A survey and some comparisons. AI Memo 237, AI Laboratory,

Stanford University. (Also in A. Zampolli, Ed., Linguistic structures pro-

cessing. Amsterdam: North-Holland, 1977, 341-398.)

Wilks, Y. A. 1975a. An intelligent analyzer and understander of English.

CACM 18:264-274.

Wilks, Y. A. 1975b. Preference semantics. In E. L. Keenan (Ed.), Formal

semantics of natural language. Cambridge, England: Cambridge University

Press, 329-348.

Wilks, Y. A. 1975c. A preferential, pattern-seeking semantics for natural

language inference. Artificial Intelligence 6:53-74.

Wilks, Y. A. 1975d. Primitives and words. TINLAP-2, 42-45.

Wilks, Y. A. 1976. Processing case. American Journal of Computational Lin-

guistics, Microfiche 56.

Wilks, Y. A. 1977a. Good and bad arguments about semantic primitives.

Research Rep. 42, Dept. of Artificial Intelligence, University of Edinburgh.

Wilks, Y. A. 1977b. Knowledge structures and language boundaries. IJCAI 5,

151-157.

Wilks, Y. A. 1977c. Methodological questions about artificial intelligence:

Approaches to understanding natural language. Journal of Pragmatics 1:69-

84.

Wilks, Y. A. 1977d. Time flies like an arrow. New Scientist 76:696-698.

Wilks, Y. A. 1977e. What sort of taxonomy of causation do we need for

language understanding? Cognitive Science 1:235-264.

Bibliography 387

Wilks, Y. A. 1978. Making preferences more active. Artificial Intelligence

11:197-223.

Wilks, Y. A., and Herskovits, A. 1973. An intelligent analyser and generator

for natural language. Proceedings of the international conference on compu-

tational linguistics, Pisa, Italy.

Winograd, T. 1972. Understanding natural language. New York: Academic Press.

Winograd, T. 1973. A procedural model of language understanding. In

Schank and Colby, 152-186.

Winograd, T. 1974. Five lectures on artificial intelligence. AI Memo 246,

AI Laboratory, Stanford University. (Also in A. Zampolli, Ed., Linguistic

structures processing. Amsterdam: North-Holland, 1977, 399-520.)

Winograd, T. 1975. Frame representations and the declarative/procedural

controversy. In Bobrow and Collins, 185-210.

Winograd, T. 1976. Parsing natural language via recursive transition net.

In R. Yeh (Ed.), Applied computation theory: Analysis, design, modeling.

Englewood Cliffs, N.J.: Prentice-Hall, 451-467.

Winograd, T. 1978. On primitives, prototypes, and other semantic anom-

alies. TINLAP-2, 25-32.

Winograd, T. 1979. Beyond programming languages. CACM 22(7):391-401.

Winograd, T. 1980a. Extended inference modes in reasoning by computer

systems. Artificial Intelligence 13:5-26.

Winograd, T. 1980b. What does it mean to understand language? Cognitive

Science 4:209-241.

Winograd, T. In press. Language as a cognitive process. Reading, Mass.:

Addison-Wesley.

Winston, P. H. (Ed.). 1975. The psychology of computer vision. New York:

McGraw-Hill.

Winston, P. H. 1977. Artificial intelligence. Reading, Mass.: Addison-Wesley.

Winston, P. H., and Brown, R. H. (Eds.). 1979. Artificial intelligence: An MIT

perspective. Cambridge, Mass.: MIT Press.

Wolf, J., and Woods, W. 1980. The HWIM speech understanding system.

In Lea, Trends, 316-339.

Wong, H. K. 1975. Generating English sentences from semantic structures.

Tech. Rep. 84, Dept. of Computer Science, University of Toronto.

Woods, W. A. 1968. Procedural semantics for a question-answering machine.

Fall Joint Computer Conference 33:457-471.

Woods, W. A. 1970. Transition network grammars for natural language

analysis. CACM 13:591-606.

Woods, W. A. 1973a. An experimental parsing system for transition net-

work grammars. In Rustin, 111-154.

388 Bibliography

Woods, W. A. 1973b. Progress in natural language understanding: An appli-

cation to lunar geology. AFIPS Conference Proceedings £2, 197S National

Computer Conference. Montvale, N.J.: AFIPS Press, 441-450.

Woods, W. A. 1975a. SPEECHLIS: An experimental prototype for speech

understanding research. IEEE Transactions on Acoustics, Speech, and Signal

Processing 23(1):2-10.

Woods, W. A. 1975b. What's in a link: Foundations for semantic networks.

In Bobrow and Collins, 35-82.

Woods, W. A., et al. 1976. Speech understanding systems: Final report. Rep.

No. 3438, Bolt Beranek and Newman, Inc., Cambridge, Mass.

Woods, W. A., and Kaplan, R. 1971. The lunar sciences natural language

information system. BBN Rep. No. 2265, Bolt Beranek and Newman, Inc.,

Cambridge, Mass.

Woods, W. A., Kaplan, R., and Nash-Webber, B. 1972. The lunar sciences

natural language information system: Final report. BBN Rep. No. 2378,

Bolt Beranek and Newman, Inc., Cambridge, Mass.

Yngve, V. 1962. Random generation of English sentences. 1961 international

conference on machine translation of languages and applied language analysis.

(National Physical Laboratory, Symposium No. 13.) London: Her Majesty's

Stationery Office, 66-80.

Indexes

NAME INDEX

Pages where the work is discussed are italicized.

Abelson, R. P., 15, 149, 212-215, 216,

217, 219, 221, 222, 232, 255, 300-302,

305, 306, 308-310, 313-315, 365, 383

Adelson-Velskiy, G. M, 95, 96, 99, 102,

103, 104, 108, 365

Aho, A. V., 68, 71, 365

Aikins, J. S., 217, 220, 365

Akmajian, A., 248, 365, 369

Allen, J., 16, 365

Amarel, S., 27, 30, 365

Anderson, J., 15, 180, 185, 189, 193, 195,

365

Appelt, D. E., 232, 280, 365, 381

Arbuckle, T., 99, 105, 108, 366

Arlazarov, V. L., 96, 99, 102-104, 108,

365

Artsouni, G. B., 2SS

Atkin, L. R., 95, 96, 99, 100, 102, 103,

108, 384

Bahl, L. R., 329, 365

Baker, J. K., 329, 349, 365, 366

Baker, R., 204, 366

Bar-Hillel, Y., 233, 236, 238, 366

Barnett, J., 327, 333, 358, 366, 379

Barrow, H. G., 318, 321, 366

Barstow, D. R., 16, 194, 366

Bartlett, F. C, 216, 307, 315, 366

Baudet, G. M, 91, 93, 366

Beasley, C, 195, 365

Belsky, M. A., 99, 105, 108, 366

Berliner, H. J., 95, 96, 98, 99-100, 102,

103, 104, 106-107, 108, 366

Bernstein, A., 99, 105, 108, 366

Bernstein, M. L, 198, 333, 358, 366, 367

Bloom, S., 127, 377

Bobrow, D. G., 15, 147, 148, 152, 158,

217, 219, 220-221, 222, 231, 232, 267,

284, 367

Boden, M., 15, 152, 232, 287, 299, 367

Bolles, R. C, 318, 321, 366

Booth, A. D., 281, 234, 238, 367, 376

Borgida, A., 186, 378

Bott, M. F., 226, 367

Bower, G., 15, 180, 185, 189, 193, 365

Brachman, R. J., 147, 152, 184, 217, 221,

222, 367

Bratko, I., 95, 103, 107, 108, 367, 378

Bresnan, J., 248, 367

Britten, D. H. V., 234

Brooks, R., 367

Brown, J. S., 368

Brown, R. H., 16, 387

Bruce, B., 254, 255, 367

Buchanan, B. G., 16, 151, 195, 369, 376

Bullwinkle, C., 221, 367

Burger, J. F., 228, 384

Burton, R. R., 318, 367, 368

Carbonell, J. R., 186, 368

Chafe, W. L., 368

Chang, C. L., 80, 81, 83, 368

Charness, N., 95, 108, 368

Charniak, E., 15, 222, 232, 248, 255, 262,

291, 299, 368, 385

Chomsky, C, 282, 372

Chomsky, N., 227, 229, 237, 289, 243,

244, 245, 247, 248, 368

Clippinger, J. H., Jr., 279, 368

Codd, E. F., 292, 369

Cohen, P. R., 186, 232, 280, 369, 378

Cohen, P. S., 329, 365

392 Name Index

Colby, K. M., 15, 257, 369, 383

Cole, A. G., 329, 365

Cole, R. A., 331, 369

Collins, A. M., 15, 147, 152, 186, 232,

367, 368, 372

Conway, M. E., 267, 369

Crocker, S. D., 95, 100, 101, 104, 108,

372

Culicover, P. W., 248, 369

Davies, D. J. M., 176, 369

Davis, R., 16, 147, 151, 194, 195, 197,

198, 199, 369

de Champeaux, D., 78, 369

Deo, N., 64, 66, 381

Derkson, J. A., 176, 382

Dijkstra, E. W., 64, 66, 369

Dixon, J. K., 91, 93, 98, 102, 108, 384

Donskoy, M. V., 96, 99, 102-104, 108,

365

Doran, J. E., 60, 63, 67, 71, 369, 370

Doyle, J., 178, 377

Dreyfus, H. L., 370

Duda, R. O., 196, 197, 370

Eastlake, D. E., 95, 100, 101, 104, 108,

372

Eastman, C. M., 202, 370

Elcock, E. W., 122, 370

Engelman, E., 127, 377

Erman, L. D., 196, 197, 331, 336, 342,

848, 845, 348, 370, 381

Ernst, G., 30, 63, 113, 117, 118, 370, 379

Fahlman, S. E., 204, 222, 370

Feigenbaum, E. A., 14, 16, 29, 30, 63,

198, 232, 287, 336, 343, 370, 376, 380

Feldman, J., 14, 29, 30, 232, 287, 370

Fennell, R. D., 336, 343, 345, 370, 381

Fikes, R. E., 42, 128, 134, 169, 176, 188,

370, 381

Fillmore, C, 252, 255, 371

Filman, R. E., 169, 170, 205, 371

Findler, N. V., 16, 152, 189, 371

Flanagan, J., 325, 371

Flavell, J. H., 145, 147, 371

Forgie, J., 327, 379

Forgy, C, 197, 371, 377

Fox, M., 348, 371

Fraser, B., 267, 367

Frege, G., 200

Frey, P. W., 95, 102, 104, 108, 371

Friedman, J., 268, 278, 371

Fuller, S. H., 91, 93, 371

Funt, B. V., 208, 205, 206, 371

Garvey, T. D., 129, 134, 318, 321, 366,

372

Gaschnig, J. G., 59, 63, 91, 93, 371, 372

Gelernter, H., 119, 122, 201, 372

Gelperin, D., 65, 66, 372

Gentner, D., 147, 372

Gerberich, C. L., 122, 372

Gillman, R., 333, 358, 366

Gillogly, J. J., 91, 93, 97, 98, 99, 102,

103, 108, 371, 372

Gilmore, P. C, 122, 372

Goldman, N., 278, 279, 804, 305, 372,

383

Goldstein, I. P., 217, 221, 372

Good, I. J., 27, 30, 372

Green, B. F., Jr., 282, 372

Green, C. C, 155, 168, 170, 327, 372,

379

Greenblatt, R. D., 95, 100, 101, 104, 108,

372

Griffith, A. K., 97, 108, 372

Grishman, R., 262, 372

Grosz, B. J., 232, 373, 381

Hall, P. A. V., 64, 66, 373

Halliday, M. A. K., 249, 251, 373, 378

Hansen, J. R., 122, 372

Hanson, A. R., 16, 336, 343, 373

Harman, G., 248, 373

Harris, L. R., 69, 71, 97, 100, 102, 108,

232, 373

Hart, P. E., 64, 66, 134, 169, 196, 197,

370, 373

Hawkinson, L. B., 217, 220, 385

Hayes, P. J., 148, 170-171, 172, 175, 177,

179, 186, 200, 201, 373, 374, 377

Hayes-Roth, B., 336, 343, 374

Hayes-Roth, F., 16, 199, 331, 336, 343,

845, 348, 370, 374, 385

Hays, D. G., 238, 374

Hearst, E., 96, 108, 374

Hedrick, C, 195, 374

Heidorn, G. E., 374

Hendrix, G. G., 184, 186, 188, 232, 816,

318, 321, 370, 374, 381

Heny, F., 248, 365

Herskovits, A., 289, 291, 387

Hewitt, C, 172, 175, 176, 178, 179, 374

Hilf, F., 257, 369

Hillier, F. S., 64, 66, 374

Name Index 393

Hofstadter, D., 4, 15, 374

Hopcroft, J. E., 68, 71, 241, 244, 365,

374

Hudson, R. A., 251, 374

Jackendoff, R., 207, 374, 375

Jackson, P. C, 15, 30, 42, 375

Jakobovits, L., 248, 384

Jelinek, F., 329, 365

Johnson-Laird, P. N., 207, 378

Josselson, H. H., 238, 375

Kadane, J. B., 59, 63, 68, 71, 384

Kameny, I., 333, 358, 366

Kaplan, R. M., 219, 221, 232, 260, 261,

267, 268, 272, 293, 294, 367, 375, 388

Kaplan, S. J., 232, 375

Karp, R. M., 69, 71, 375

Katz, J., 248, 375

Kay, M, 219, 221, 232, 268, 272, 367,

375

Kellogg, C, 228, 375

King, J. J., 194, 197, 199, 369

Kister, J., 99, 103, 108, 375

Klatt, D. H., 326, 327, 330, 375, 379

Klein, S., 274, 275, 375, 384

Kline, P., 195, 365

Kling, R., 129, 134, 372

Knuth, D. E., xiii, 86, 87, 89, 90, 91, 93,

269, 375

Kopec, D., 95, 107, 108, 367

Kotok, A., 104, 108, 375

Kowalski, R., 25, 30, 73, 74, 81, 83, 175,

375

Kremers, J. H., 318, 321, 366

Kuipers, B., 222, 376

Landsbergen, S. P. J., 232, 376

Lantz, K., 318, 321, 366

Laughery, K., 282, 372

Lawler, E. W., 64, 66, 376

Lea, W., 16, 232, 325, 326, 329-331, 335,

344, 348, 376

Lederberg, J., 16, 376

Lehnert, W. C, 16, 212, 376

Lenat, D. B., 16, 194, 195, 196, 197, 369,

376

Lesser, V. R., 196, 197, 331, 336, 342,

845, 348, 370, 376

Levi, G., 81, 83, 376

Levine, M. D., 336, 343, 376

Levinson, S., 325, 371

Levy, D., 101, 108, 376

Lewis, B. L., 329, 365

Licklider, J. C. R., 327, 379

Lieberman, G. J., 64, 66, 374

Lindsay, R. K., 16, 281, 282, 376

Locke, W. N., 238, 376

Long, R. E., 228, 384

Loveland, D. W., 122, 372

Lowerre, B., 342, 849, 352, 377

Lyons, J., 243, 244, 248, 377

Mann, W., 280, 377

Manna, Z., 171, 377

Manove, M., 127, 377

Marcus, M. P., 16, 230, 262, 377

Martelli, A., 66, 74, 83, 377

Martin, W. A., 217, 220, 385

Mathias, J., 238, 374

Matuzceck, D., 267, 377

McCarthy, J., 148, 170, 177, 201, 377

McConlogue, K., 384

McCord, M., 251, 377

McCorduck, P., 5, 14, 15, 377

McDermott, D. V., 15, 175, 176, 178,

368, 377, 384

McDermott, J., 194, 197, 371, 376, 377

McDonald, D., 280, 378

Mcintosh, A., 251, 378

McKeown, K., 280, 378

Mercer, R. L., 329, 365

Michie, D., 59, 63, 67, 71, 95, 103,

107-108, 367, 370, 378

Miller, G. A., 207, 378

Minker, J., 31, 385

Minsky, M., 14, 29, 30, 159, 216, 217,

220, 222, 231, 232, 287, 307, 315, 378

Mittman, B., 96, 108, 378

Montanari, U., 74, 83, 377

Moore, E. F., 64, 66, 378

Moore, J., 197, 280, 377

Moore, R. C., 178-179, 378

Moore, R. W., 86, 87, 89, 90, 91, 93, 375

Moses, J., 125, 127, 378

Munson, J., 327, 379

Myopolous, J., 186, 378

Nash-Webber, B. L., 293, 294, 326, 378,

379, 388

Neely, R., 848, 381

Newborn, M., 91, 93, 96, 101, 108, 379

Newell, A., 4, 14, 29-81, 63, 98, 100,

105, 106, 108, 109, 111, 112, 118, 117,

118, 121, 157, 169, 193, 197, 827, 331,

335, 351, 370, 377, 379

394 Name Index

Nievergelt, J., 64, 66, 381

Nii, H. P., 336, 343, 380

Nilsson, N. J., 7, 15, SO, 31, 35, 38, 42,

45, 51, 53, 56, 57, 58, 60, 63, 64, 65,

66, 71, 75, 78, 83, 87, 93, 102, 108,

128, 134, 169, 171, 197, 370, 373, 380

Norman, D., 15, 149, 180, 185, 189, 207,

215, 219, 221, 232, 255, 367, 380

Novak, G. S., 221, 380

Oettinger, A. G., 285, 238, 380

Paige, J. M., 285, 380

Paxton, W. H., 361, 380

Perrault, C. R., 232, 369

Petrick, S. R., 260, 380

Pitrat, J., 107, 108, 380

Plath, W., 380

Pohl, I., 24, 51, 52, 53, 59, 63, 67, 69,

71, 72, 73, 380

Polya, G., 29, 31, 381

Post, E., 190, 381

Postal, P., 243-245, 248, 375, 381

Prawitz, D., 169, 381

Propp, V., 307, 315, 381

Pylyshyn, Z., 201, 206, 381

Quillian, M. R., 156, 180, 185, 228, 230,

275, 276, 381

Rabiner, L., 325, 371

Raphael, B., 15, 27, 31, 64, 66, 178, 185,

228, 288, 373, 381

Reboh, R., 176, 381

Reddy, D. R., 327, 331, 336, 342, 848,

845, 348, 849, 352, 370, 377, 379, 381

Reifler, E., 285

Reingold, E. M., 64, 66, 381

Reiter, R., 176, 381

Richens, R. H., 284

Rieger, C, 808, 305, 381, 383

Riesbeck, C. K., 15, 196, 261, 262, SOS,

305, 806, 315, 368, 381, 383

Riseman, E. M., 16, 336, 343, 373

Roberts, M. de V., 99, 105, 108, 366

Roberts, R. B., 217, 221, 372

Robinson, A. E., 232, 381

Robinson, J. J., 232, 359, 381, 382

Rochester, N., 122, 372

Rosenberg, A., 325, 371

Rosenberg, R. S., 254, 255, 385

Ross, R., 59, 63, 378

Rulifson, J., 176, 382

Rumelhart, D. E., 15, 149, 180, 185, 189,

207, 215, 255, 306, 307, 315, 336, 343,

380, 382

Russell, B., Ill, 112, 386

Russell, S. W., 212, 382. See also S.

Weber.

Rustin, R., 232, 382

Rychener, M. D., 193, 195, 196, 382

Sacerdoti, E. D., 185, 139, 176, 318, 321,

374, 381, 382

Sagalowicz, D., 176, 318, 321, 374, 381

Samlowski, W., 255, 382

Samuel, A. L., 27, 31, 45, 95, 97, 102,

104, 108, 382

Sandewall, E. J., 63, 382

Scha, R. J. H., 382

Schank, R. C., 14, 15, 149, 211, 212-215,

216, 217, 219, 220, 221, 222, 2S1, 232,

287, 238, 254, 255, 278, 291, 800,

301-303, 305, S06, 309, 310, 313-315,

382, 383

Schubert, L. K., 383

Schwarcz, R. M., 384

Searle, J. R., 7, 383

Self, J., 251, 383

Shannon, C. E., 27, 31, 94-99, 10S, 108,

383

Shaw, J. C., 29, 30, 98, 105, 108, 109,

111, 112, US, 118, 379

Shortliffe, E. H., 195, 197, 369, 383

Shoup, J., 329, 330, 333, 344, 376, 383

Siklossy, L., 16, 383

Simmons, R. F., 182, 186, 189, 228, 254,

256, 274, 277, 287, 375, 383, 384, 387

Simon, H., 4, 14, 15, 29-80, 31, 59, 63,

68, 71, 98, 100, 105, 106, 108, 109,

111, 112, US, 118, 121, 149, 157, 169,

285, 379, 380, 384

Sint, L., 78, 369

Sirovich, F., 81, 83, 376

Slagle, J. R., 80, 81, 83, 87, 91, 93, 98,

102, 108, 12S, 127, 368, 384

Slate, D. J., 95, 96, 99, 100, 102, 103,

108, 384

Slocum, J., 182, 186, 277, 318, 321, 374,

384

Sloman, A., 200, 205, 206, 384

Smirnov-Troyansky, P. P., 288

Smith, B. C., 152, 367

Stefik, M., 184, 217, 221, 384

Name Index 395

Stein, P., 99, 103, 108, 375

Steinberg, S., 248, 384

Sugar, L., 186, 378

Suppes, P., 171, 384

Sussman, G., 175, 176, 299, 384, 385

Sutherland, G. L., 197, 370

Szolovitz, P., 217, 229, 385

Taylor, B., 254, 255, 385

Tenenbaum, J. M., 318, 321, 366

Thompson, C, 374

Thompson, F. B., 228, 385

Thompson, H., 219, 221, 232, 367

Thorndyke, P. W., 306, 315, 385

Thorp, E., 103, 108, 385

Turing, A. M., 4, 99, 103, 108, 385

Winston, P. H., 15, 16, 87, 90, 93, 199,

387

Wolf, H. C, 318, 321, 366

Wolf, J., 329, 342, 353, 354, 356, 357,

387

Wolf, A. K., 282, 372

Wong, H. K., 278, 387

Wood, D. E., 64, 66, 376

Woods, W., 178, 184, 186, 280, 260, 261,

268, 266, 267, 292, 293, 294, 327, 329,

342, 858, 354, 356, 357, 379, 387, 388

Yngve, V., 288, 278, 275, 388

Ulam, S., 99, 103, 108, 375

Ullman, J. D., 68, 71, 241, 244, 365, 374

Vanderbrug, G., 31, 385

Vere, S., 195, 385

Vincens, P., 325, 385

Walden, W. E., 99, 103, 108, 375, 385

Waldinger, R. J., 176, 381, 382

Walker, D. E., 186, 361, 385

Waltz, D. L., 232, 385

Wasow, T., 248, 369

Waterman, D., 16, 195, 199, 385

Weaver, W., 226, 284, 287, 238, 288, 804,

385

Weber, S., 257, 369. See also S. W.
Russell.

Weizenbaum, J., 228, 285, 286, 386

Welin, C. W., 255, 386

Wells, M., 99, 103, 108, 375

Weyhrauch, R. W., 169-171, 371, 386

Whitehead, A. N., Ill, 112, 386

Wilber, M., 176, 381

Wilensky, R., 232, 818, 314, 315, 386

Wilkins, D., 95, 107, 108, 386

Wilks, Y., 149, 207, 209, 210, 215, 232,

287, 238, 248, 254, 255, 262, 279, 288,

289, 291, 299, 368, 386, 387

Winograd, T., 9, 14, 31, 147, 150-152,

156, 158, 159, 173, 176, 111, 179, 189,

199, 207, 215, 217, 219, 221, 222, 227,

280-282, 244, 251, 260, 261, 262, 267,

276, 287, 291, 295, 296, 298, 299, 819,

367, 385, 387

SUBJECT INDEX

Ablation studies, of HARPY, 335

Abstraction space, in ABSTRIPS, 136

ABSTRIPS, 22, 28, 134, 135-139, 169

Acoustics, 343

Acquisition of knowledge. See Knowledge

acquisition.

ACT, 195

Active structural network, 185. See also

Semantic network.

Ad hoc knowledge representation, 227

Ad hoc parsers, 287

Adaptive production system, 195

Add list

in ABSTRIPS, 135

in STRIPS, 128-134

Admissibility

of A*, 65

of ordered search, 80, 83

of shortfall density strategy, 341, 356

Admissibility condition, 65, 67, 73

Agenda, 338, 356, 360. See also Control

strategy.

Agreement, in natural language, 263

AI programming languages, 10, 172, 175.

See also Knowledge representation

languages.

CONNIVER, 175, 176

INTERLISP, 320

IPL-V, 281-282

LISP, 15, 173, 237, 283, 295, 303

list processing, 227, 281-287

MICRO-PLANNER, 295-297

PLANNER, 151, 155, 171, 175-178,

295-297

POPLER, 176

QA3, 129, 168, 169

QA4, 176

QLISP, 176

SLIP, 286

ALGOL, 237

A* algorithm, 64-73, 80

Allophone, 333, 337, 349

Alpha-beta pruning of game trees, 88-93,

94, 101

AM, 157, 195-197

Ambiguity

in natural language, 208-211

in speech, 325-327

Analogical knowledge representation. See

Direct (analogical) knowledge repre-

sentation.

Analogical reasoning, 146

Anaphoric reference, 293, 358

AND/OR graph, 26, 38-40, 43, 74, 113,

119, 124. See also Problem repre-

sentation,

generalized, 82

search of, 54-57, 74-83

AND/OR tree, 39, 56, 94, 268. See also

Problem representation,

context tree, 197

degree of, 91

game tree, 25, 43-45, 84

solution tree, 40, 75, 77-79

transition tree, 316-317

Application language, in LIFER, 316

Applications of AI. See also Games;

Puzzles,

chemistry, 168

document retrieval, 328, 351

education, 186

expert systems, 9

geometry, 119-122, 201-202

information retrieval, 22, 282, 283, 292,

316, 318

machine translation, 207-213, 225, 226,

233-238, 273, 274, 279, 281, 288-291

mathematics, 195

398 Subject Index

Applications of AI (continued)

medicine, 195, 220

paraphrasing, 149, 211, 255, 274,

302-304, 321

question answering, 168-169, 173,

185-186, 281, 295, 302

science, 221

space planning, 202

story understanding, 231, 300, 306

symbolic integration, 21, 22, 24, 118,

123-127

travel budget manager, 353

voice chess, 328, 334, 344

ARPA speech understanding research

(SUR), 327, 353

Augmented transition network (ATN),

186, 230, 261, 263-267. See also

Grammar; Parsing,

in GSP, 268, 271

in LIFER, 316

in LUNAR, 292-294

in MARGIE, 303, 304

in speech understanding systems, 350,

355

in text generation systems, 277-279

Automatic programming, 9

Average branching factor. See Branching

factor.

Axiomatic system, 165

Babel, 278

Backed-up values, in game trees, 87

Backgammon, 103

Backtracking control strategy, 23, 138,

203, 258, 266, 271, 298, 339, 341, 351

Backward-chaining control strategy, 195,

198

Backward reasoning, 23-25, 36, 51, 56,

74, 110, 111. See also Control

strategy; Expectation-driven pro-

cessing; Top-down processing.

Bandwidth condition, 69

Bandwidth search, 60, 69-71

Bare template, 288, 290

BASEBALL, 227, 237, 282

Beam search, 337, 341, 350, 356

Beam width, 341

Best-first search, 59, 60, 102, 360

Bidirectional search, 24, 51-53, 72-73, 74

Blackboard, 197, 331, 336, 343-346. See

also Control strategy; Knowledge

source.

Blind search, 21, 29-30, 46-57

bidirectional, 72

and heuristic search, 58

and ordered search, 61-62

in Logic Theorist, 111

Blocks world, 276

Bottom-up processing. See also Control

strategy; Data-driven processing;

Forward reasoning,

definition of, 23-24

in production systems, 198

in natural-language parsing, 259, 270

in speech understanding, 326, 334, 338,

358

Branch-and-bound, 64

Branching factor

average, in speech system grammars,

328-329

of a search tree, 91, 98

Breadth-first search, 47-48, 56-57, 61, 68,

73, 111

Caps, 106, 196

Case ambiguity, 291

Case frame, 182, 186, 231, 253

Case grammar, 229, 249, 252-255, 277

Causal chain, 301

Chart, 260, 268-271, 354

Checkers, 26, 43, 44, 95, 97

Chemistry, applications of AI in, 168

Chess, 6, 22, 23, 26, 43, 94-108, 205,

334, 351

Co-routining, 271. See also Control

strategy; Parallel processing.

Combinatorial explosion, 27, 28, 58, 98,

99, 154, 155, 168, 260, 339, 356

Competence vs. performance, 245

Compiled knowledge, 336-337, 349

Completeness, of a knowledge represen-

tation, 178

Computational linguistics, 226, 229, 233,

304

Computer-assisted instruction, 186

Conceptual analyzer, in MARGIE, 303

Conceptual dependency theory (CD)

in MARGIE, 300-303

in SAM and PAM, 306

and semantic primitives, 211-215, 231

and text generation, 278-279

Conceptualization, 213

Concordance, 226

Conflict resolution, in production systems,

192, 197

Conjunctive subgoals, 111, 119

Subject Index 399

Connected-speech understanding. See

Speech understanding.

CONNIVER, 175-176

Consistency assumption, in search

algorithms, 66, 69, 73

Consistency, of a knowledge repre-

sentation, 178

Constraining knowledge, 344

Constraint-structured planning, 203

Construction, in geometry, 121

Context

in production systems, 190, 197

in speech understanding, 333

Context tree, in MYCIN, 197

Context-free grammar. See also Phrase-

structure grammar,

definition of, 242-243

in parsing, 260, 263

in text-generation, 273-274

in transformational grammar, 247

Context-sensitive grammar, 241-242. See

also Phrase-structure grammar.

Control strategy. See also Problem solv-

ing; Reasoning; Search algorithms,

agenda, 338, 356, 360

backtracking, 23, 138, 203, 258, 266,

271, 298, 339, 341, 351

backward chaining, 195, 198

blackboard, 197, 331, 336, 343-346

bottom-up, 23-24, 198, 220, 259, 270,

326, 334, 338, 358

co-routining, 271

conflict resolution, 192, 197

data- or event-driven, 24, 198, 220

definition of, 22

demons, 303

direction of, 23-24, 198, 220

event queue, 356

expectation- or goal-driven, 183, 198,

216-218, 232, 326, 334, 336, 344

focus of attention, 190, 197, 338, 340,

347, 356, 360

forward chaining, 198

hybrid, 340, 356

hypothesis posting, 336, 338, 354

island driving, 259, 337, 339, 346, 356,

361

matching, 159, 187

parallel processing, 258, 265, 298

in parsing, 230, 258-259

in PLANNER, 179

procedural attachment, 156, 158, 179,

218-221

and procedural knowledge represen-

tation, 174

in production systems, 194, 197-198

in speech systems, 336-342, 347, 350-

351, 355-357, 359-360

scheduler, 347, 356

top-down, 183, 198, 216-218, 232, 259,

326, 334, 336, 338, 344, 355, 358, 359

CONVERSE, 228

Cost, in search algorithms, 75-77

Critical node, in a game tree, 91

Criticality value, in ABSTRIPS, 136

CRYSALIS, 336

Cybernetics, 4, 233

Data-driven processing, 23-24, 198, 220.

See also Bottom-up processing; Con-

trol strategy; Forward reasoning.

Database, 22, 328. See also Information

retrieval.

DEACON, 228

Dead position, in a game, 87, 99

Declarative knowledge representation, 230

vs. procedural knowledge representa-

tion, 151, 172, 219

Deduction, 146, 205. See also Inference;

Reasoning.

Deep structure, in language, 247, 266

Default reasoning, 176-177

Default values, 183, 216-220

Degree of a tree, 91

Delete list

in ABSTRIPS, 135

in STRIPS, 128

Demon, 303. See also Control strategy.

DENDRAL, 60, 157, 198

Denotative knowledge representation, 200

Dependency grammar, 274

Depth bound, 49, 57, 99, 115

Depth-first search, 49-51, 57, 60, 61, 101,

113, 138, 203

Depth of a node, 49

Derivation tree, 229, 242, 246, 256, 266,

273, 281, 293, 296, 302

Diagram, reasoning from, 201

Dialogue. See Discourse.

Dictionary, for machine translation, 234

Difference

in GPS, 113

in means-ends anaylsis, 24

in STRIPS, 129

400 Subject Index

Direct (analogical) knowledge represen-

tation, 158, 177, 200-206

and parallel processing, 204

vs. propositions! knowledge represen-

tation, 200

Directedness of reasoning, 151, 174-177,

185, 188, 193, 219

Direction of reasoning, 23-24, 198, 259

Discourse, 339, 358

dialogue, 220

extended, 279

pragmatics, 249, 327, 332, 334, 359

Discovery, by AM, 196

Discrimination network, 158, 278, 304

Distributed processing, 336. See also

Parallel processing.

Divide-and-conquer. See Problem

reduction.

Document retrieval task, 328, 351

Domain-specific knowledge, 151, 176, 220.

See also Heuristic.

DRAGON, 328-329, 337

Dynamic ordering, 102

Dynamic programming, 351

Dynamic weighting, 69

Early natural language programs, 227-

229, 237, 257, 260, 281-287

Education, applications of AI in, 186

8-puzzle, 32, 51, 62, 67, 68

Elimination rule, in logic, 163, 164, 169

ELIZA, 227, 257, 260, 285-287

Ellipsis, in natural language, 320, 358

Embedding, in natural language, 263

EPAM, 158, 196

Epistemology, 151, 153, 170

Evaluation function, 60, 61-62, 64, 67-73,

77, 78, 80, 83, 97

Event-driven processing. See Data-driven

processing.

Event queue, 356

Expansion of a node, 46, 55

Expectation-driven processing, 183, 198,

216-218, 232, 326, 334, 336, 344.

See also Backward reasoning; Control

strategy; Top-down processing.

Expert system, 9

explanation by, 9, 195, 198-199

knowledge-based system, 227, 229

knowledge engineering, 9, 198

Expertise, interactive transfer of, 199

Explanation, by expert systems, 9, 195,

198-199

Explicit vs. implicit knowledge repre-

sentation, 150, 172

Extended discourse, 279

Extended grammar, 245-255

Extended grammar parsers, 260

Extended inference, 176

15-puzzle, 68, 73

Finite-state grammar, 337. See also

Regular grammar.

Finite-state transition diagram (FSTD),

263-264

First-order logic, 165

Fixed ordering of nodes, in search, 90,

101

Focus of attention, control strategy, 190,

197, 338, 340, 347, 356, 360

FOL, 169, 171, 205

Formal grammar, 239-244

Formal language, 239-244, 263

Formal reasoning, 146

Formula, in preference semantics, 288-289

Forward-chaining control strategy, 198

Forward pruning, of game trees, 104

Forward reasoning, 23-25, 51, 56, 74, 198

Frame knowledge representation, 149,

156, 158-159, 216-222, 334-335. See

also Script knowledge representation,

and case frames, 183, 254

matching in, 159

and preference semantics, 208, 229, 231

and semantic networks, 183, 186, 189

Frame problem, 177, 201

Fregean knowledge representation. See

Propositional knowledge represen-

tation.

FRL-0, 221

Full-width search, 103

Functions, in logic, 165

Game tree, 25, 43-45, 84

random, 92

totally dependent, 92

uniform, 91-93

Game-tree search, 84-108. See also

Search algorithms; AND/OR tree.

alpha-beta, 88-93, 94, 101

backed-up values, 87

dead position, 87, 99

forward, 104

horizon effect, 99

killer heuristic, 102

live position, 87

Subject Index 401

method of analogies, 104

minimax, 84-87, 88, 90, 91, 94, 98

negmax, 86-87, 89

plausible-move generation, 104

quiescence, 99-100, 103

refutation move, 102

secondary search, 100

static evaluation function, 87, 96-97,

100

tapered forward, 104

Games, 153. See also Puzzles,

backgammon, 103

checkers, 26, 43, 44, 95, 97

chess, 6, 22, 23, 26, 43, 94-108, 205,

334, 351

go, 103

tic-tac-toe, 43, 94

voice chess, 328, 334, 344

General Problem Solver (GPS), 113-118,

129, 135, 169, 196. See also Means-

ends analysis.

General Space Planner, 202-203

General Syntactic Processor (GSP),

268-272

Generality vs. power, 335

Generalized AND/OR graph, 82

Generate-and-test, 30

Generative grammar, 229, 245, 247

Generative semantics, 248

Geometry Theorem Prover, 119-122,

201-202

Go, 103

Goal, 22, 36, 105, 114, 306, 308, 310-311

Goal-directed reasoning. See Backward

reasoning; Control strategy;

Expectation-driven processing;

Top-down reasoning.

Goal states, 33

GOLUX, 171, 175

GPS. See General Problem Solver.

Graceful degradation, 336

Grain size of a knowledge representation,

147

Grammar. See also Natural language

understanding; Parsing.

ATN, 186, 230, 261, 263-267, 268, 271,

277-279, 292-294, 303, 304, 316

average branching factor of, 328, 329

case, 229, 249, 252-255, 277

context-free, 242-243, 245, 247, 260,

263, 273, 274

context-sensitive, 241-242, 245

definition of, 225, 229

dependency, 274

extended, 260-261

finite-state, 337

formal, 239-244

generative, 229, 245, 247

habitability of, 328

mood system of, 249

obligatory and optional transformations

in, 247

and parsing, 256, 260-262

performance, 261, 335, 355, 359

phrase-structure, 240-246, 260, 262

regular, 243, 245, 263

semantic, 229, 261, 318, 320, 335, 355,

359

in speech systems, 326, 332, 349

story, 306

systemic, 229, 249-251, 297

transformational, 229, 233, 237, 245-

248, 249, 251, 252

transition tree, in LIFER, 316-317

transitivity system of, 249

Grammarless parsers, 261

Graph Traverser, 67

Ground space, in ABSTRIPS, 135

GSP. See General Syntactic Processor.

GUS, 220, 231

Habitability of a language, 328

HAM, 185

HARPY, 328, 329, 335, 337, 339, 344,

346, 349-352, 356

HAWKEYE, 318

HEARSAY, 196-197, 336, 338, 343-348

HEARSAY-I, 328, 334, 335, 343

HEARSAY-H, 328, 345

Heuristic, 21, 64, 66, 74, 78, 94, 119, 151,

168, 174, 177, 188, 201, 220, 228,

258, 277, 282, 284, 293, 296, 298,

299, 335. See also Heuristic search,

definitions of, 28-30, 58, 109

killer, in game playing, 102

Heuristic Path Algorithm, 67

Heuristic search, 28, 29-30, 46, 58-83,

94-108, 117, 350, 356

Hierarchical planning, 135

Hierarchical search, 135

Hierarchy. See Inheritance.

Homomorphic knowledge representation,

200

Horizon effect, in game-tree search, 99

Human engineering, 319

Human memory. See Memory, models of.

402 Subject Index

Human problem solving, 6-7, 14, 285

HWIM, 267, 292, 328, 337, 339, 353-357

Hybrid control strategy, 340, 356

Hypothesis posting, 336, 338, 354. See

also Control strategy.

Hypothesis scoring, 340, 346, 347, 351,

355, 356

shortfall density strategy, 341, 356

uniform scoring policy, 340

Hypothesize-and-test. See Generate-and-

test.

Hypothetical worlds, 360

Ideational function of language, 249

Incremental simulation, in HWIM, 341

Indeterminacy of knowledge represen-

tations, 148

Inexact reasoning, 195

Inference, 146, 188, 213, 228, 231, 236-

237, 255, 276, 303-304. See also

Reasoning,

extended, 176

rules of, 146, 154, 155, 160, 162-165,

168, 175

Information retrieval, 22, 145, 282-283,

292, 316, 318

Information-processing psychology. See

Psychology.

Informedness of an algorithm, 65

Inheritance

hierarchy, 156, 181, 218

of properties, 156, 181-184, 216, 218

Initial states, 33

Instance, in semantic networks, 182

Integration. See Symbolic integration.

Intelligence, 3-11

Intelligent technology, 3

Interactive transfer of expertise, 199

Interdependent subproblems, 56, 81-83

Interlingua, 234-235, 237, 288, 300, 303,

304

INTERLISP, 320

Intermediate OR node, 39, 56, 57

Interpersonal function, of language, 249

Interpreter, of a production system,

190-192

Interpretive semantics, 248

Intonation, in speech signal, 333

Introduction rule, in logic, 163, 164, 169

IPL-V, 281-282

Island-driving control strategy, 259, 337,

339, 346, 356, 361

Isolated-word recognition of speech, 325,

333, 349

Iterative deepening search, 100-101

Juncture rules, in speech understanding,

330, 350, 354

Killer heuristic, 102

Kinship relations, 281

KLONE, 221

Knowledge, 144. See also Heuristic,

compiled, 336, 337, 349

compiler, 349

constraining, 344

domain-specific, 151, 176, 220

explicit vs. implicit, 150, 172

world, 226, 230

Knowledge acquisition, 145, 194, 195, 198.

See also Learning.

Knowledge-based system, 227, 229. See

also Expert system.

Knowledge engineering, 9, 198. See also

Expert system.

Knowledge representation, 143-222, 226,

229-232. See also Knowledge repre-

sentation languages.

ad hoc, 227

completeness of, 178

consistency of, 178

declarative, 230

declarative vs. procedural, 151, 172,

219, 230

denotative, 200

direct (analogical), 158, 177, 200-206

homomorphic, 200

indeterminacy of, 148

issues in, 145-152

modularity of, 149, 157, 170, 178, 193,

198, 336, 343

organization of, 336

procedural, 146, 149-150, 155-156, 172-

179, 219-220, 230, 289, 295-297

procedural-declarative controversy, 151,

230

propositional (Fregean), 200

propositional vs. direct, 200

scope of, 147

semantic interpretation function, 200

Knowledge representation languages. See

also AI programming languages.

FRL-0, 221

KLONE, 221

KRL, 158, 221, 231

Subject Index 403

UNITS, 221

Knowledge source, 257, 298, 326, 336,

343-348, 353. See also Blackboard.

ablation studies of, 335

response frame of, 345, 347

stimulus frame of, 345

KRL, 158, 221, 231

Ladder, 318

Language definition system, 316, 359

Language, formal, 239-244, 263

Language understanding. See Natural

language understanding.

Learning, 9, 97, 128, 145, 157, 193, 195.

See also Knowledge acquisition.

Legal-move generator, 153, 334, 344

Length-first search, 138

Lexicon, 247, 333, 346, 354

LIFER, 231, 232, 261, 316-321, 360

Limited-logic natural language systems,

228

Linguistics, computational. See

Computational linguistics.

LISP, 15, 173, 237, 283, 295, 303

List processing, 227, 281-287

Live position in a game, 87

Logic, 4, 8, 146, 148, 151, 154-155, 160-

171, 172, 174

completeness and consistency of, 178

first-order, 165

functions in, 165

natural deduction in, 163, 164, 169,

175

predicate calculus, 128, 163, 200, 292,

297, 299

predicates in, 163, 182

propositional calculus, 109, 116, 118,

160-163

quantification in, 151, 164, 360

resolution method in, 168, 175

Logic Theorist (LT), 24, 109-112, 113,

116, 119

LUNAR, 230, 267, 292-294, 353

Machine translation

current status of, 237-238

early AI work in, 226, 233-237

and semantic primitives, 207-213

and text generation, 273-274, 279, 289,

291

Wilks's system, 288-291

Machinese. See Interlingua.

Macro-operators, 28

MACROP, 133

Manageability, of production systems,

193, 198

MARGIE, 149, 211, 231, 278, 300-305,

306, 334

Matching. See also Control strategy,

Pattern matching,

of frames, 159

of semantic network fragments, 187

Mathematics, applications of AI in, 195

Max cost. See Cost, in search algo-

rithms.

Means-ends analysis, 24, 59, 113, 117,

126, 129, 135, 169. See also

General Problem Solver.

Mechanical translation. See Machine

translation.

Medicine, applications of AI in, 195, 220

MEMOD, 215

Memory, models of. See also Psychology;

Semantic network knowledge repre-

sentation.

ACT, 195

associative, 230

EPAM, 158, 196

HAM, 185

imagery, 201

MEMOD, 215

Quillian's spreading activation system,

185, 187

semantic network, 180

Meta-knowledge, 144, 147

Method of analogies, in game-tree search,

104

MICRO-PLANNER, 295-297

Middle-out search strategy. See Island

driving control strategy

MIND, 268, 272

Minimax search in game trees, 84-87, 88,

90, 91, 94, 98

Model, semantic, in FOL, 205

Modularity of a knowledge representation,

149, 157, 170, 178, 193, 198, 336, 343

Modus ponens, 162

Mood system, of a grammar, 249

Morphemics

in speech understanding, 332-333

in transformational grammar, 246

Multiple sources of knowledge. See

Knowledge source.

Mutilated chessboard problem, 27

MYCIN, 151, 157, 195-199

404 Subject Index

Named plan, in PAM, 313

Natural deduction, in logic, 163-164, 169,

175

Natural language features, problematic

agreement, 263

ambiguity, 208-211

anaphoric reference, 293, 358

case ambiguity, 291

ellipsis, 320, 358

embedding, 263

habitability, 328

speech acts, 280

Natural language understanding, 3, 8,

225-321, 358-359. See also Speech

understanding,

competence vs. performance in, 245

early research, 227-229, 237, 257, 260,

281-287

and semantic primitives, 149, 207-214

Natural language understanding, appli-

cations

information retrieval, 22, 145, 282, 283,

292, 316, 318

machine translation, 207-213, 225, 226,

233-238, 273, 274, 279, 281, 288-291

paraphrasing, 149, 211, 255, 274, 302-

304, 321

question answering, 168-169, 173, 185-

186, 281, 295, 302

story understanding, 221, 231, 300, 306

Negmax formalism for game-tree search,

86-87, 89

Network representation. See also

Semantic network knowledge

representation.

ATN, 186, 230, 233, 261, 263-267, 268,

271, 277-279, 292-294, 303, 304, 316

discrimination, 158, 278, 304

Finite-state transition diagram, 263-264

partitioning, 186

pronunciation graphs, 330

RTN, 264-266

segmented lattice, 330, 337, 353, 356

in speech systems, 330, 337

spelling graph, 330, 337, 346

transition tree, 316-317

Node

critical, 91

depth of, 49

expansion of, 46, 55

intermediate, 39, 56, 57

solvable, 40

successor, 26, 33, 46

terminal, 38, 43

tip, 80, 87

unsolvable, 40, 55

Noise, in speech signal, 343

Nondeterminism. See Parsing.

Nonterminal symbols of a grammar, 239

NP-complete problems, 68, 69

NUDGE, 221

Obligatory transformation, in a grammar,

247

Observation of a semantic model, 205

Operator schemata, 33

Operators, in problem solving, 22, 32, 36,

74, 110, 113, 119, 123, 128, 135

Optimal solution, in search, 28, 62, 74

Optimality, of search algorithm, 65-67,

80, 83

Optional transformation, in a grammar,

247

Ordered depth-first search, 60, 102

Ordered search, 59-62, 64, 72, 77-81, 82,

124

Organization of knowledge, 336

PAM, 300, 306, 313-314

Parallel processing, 258, 265, 298

co-routining, 271

and direct knowledge representation,

204

distributed, 336

Paraphrasing, 149, 211, 255, 274, 302-304,

321

Paraplate, in preference semantics, 279,

291

PARRY, 257

PARSIFAL, 230

Parsing, 225, 229, 239-240, 256-272. See

also Grammar; Natural language

understanding,

ad hoc, 287

with an ATN, 263-267, 293, 349, 355

with charts, 260, 268-271, 354

control strategies, 230, 258-259

derivation tree, 229, 242, 246, 256, 266,

273, 281, 293, 296, 302

with extended grammars, 260

in LIFER, 316-318

by MARGIE'S conceptual analyzer,

302-303

nondeterminism, 265

grammarless parsers, 260, 261

Subject Index 405

by SHRDLU's PROGRAMMAR,
297-298

in speech understanding, 327, 359

template matching, 260

with a transformational grammar, 260

Partial development, in search, 59, 114

Partial expansion. See Partial develop-

ment.

Partial functions, operators viewed as, 33

Partitioned semantic network, 186, 360

Pattern matching, 123, 256, 260, 283-287.

See also Matching.

Perceptual primitives, in WHISPER, 204

Performance evaluation, of speech sys-

tems, 329

Performance grammar, 261, 335, 349, 355,

359. See also Semantic grammar.

PHLIQA1, 232

Phonemics

in speech understanding, 327, 332-333

in transformational grammar, 246

Phonetics, 327, 332-333, 343

Phonological component of a transfor-

mational grammar, 248

Phrase marker, in a transformational

grammar, 246, 273

Phrase-structure grammar, 240-246

compared with transformation grammar,

245

definition of, 243

in parsing, 260, 262

Plan

in problem solving, 107, 128, 131, 137

in story understanding, 306, 309-310

PLANNER, 151, 155, 171, 175-178,

295-297

Planning, 22, 28, 169. See also Problem

solving; Reasoning,

constraint-structured, 203

hierarchical, in ABSTRIPS, 135

generalized, in STRIPS, 131-134

Plausible-move generation, in game-tree

search, 104

Plausible reasoning, 177

Ply, in game trees, 99

POPLER, 176

Potential solution, in heuristic search,

77-79, 80, 82

Pragmatics, in discourse, 249, 327, 332,

334, 359

Preconditions, of an operator

in ABSTRIPS, 136

in STRIPS, 128, 131, 135

Predicate calculus, 128, 163, 200, 292,

297, 299. See also Logic.

Predicate, in logic, 163, 182

Preference semantics, 208, 279, 288-291

Primitive problem, 36, 38, 74, 121

Primitives

perceptual, in WHISPER, 204

semantic, 148-149, 183, 198, 207-215,

231, 237, 278, 288-291, 300-303, 306

Problem reduction, 7, 114, 119, 201

Problem-reduction representation, 25,

36-42, 54, 74, 113

Problem representation, 8, 22-28, 32-45

game tree, 25, 43-45, 84

AND/OR graph, 26, 38-40, 43, 74,

113, 119, 124

problem-reduction, 25, 36-42, 54, 74,

113

state space, 26, 33, 195

theorem-proving, 25

Problem solving, 7, 21, 58, 74, 109, 113,

119, 123, 128, 135, 153, 284, 296.

See also Planning; Problem represen-

tation; Reasoning; Theorem proving,

generate-and-test, 30

human, 285

interdependent subproblems, 56, 81-83

means-ends analysis, 24, 59, 113, 117,

126, 129, 135, 169

operators, 22, 32, 36, 74, 110, 113, 119,

123, 128, 135

optimal solution, 28, 62, 74

primitive problem, 36, 38, 74, 121

problem reduction, 7, 114, 119, 201

for robots, 22, 128-139

solution, 33

state-space search, 30, 35, 46-53, 55,

58-73, 77, 80, 111, 153, 195

Problem space. See State space.

Procedural attachment, 156, 158, 179,

218-221

Procedural-declarative controversy, 151,

230

Procedural knowledge, 193, 198, 219

Procedural knowledge representation, 146,

149-150, 155-156, 172-179, 219-220,

230, 289, 295-297

Procedural semantics, 229-230

Process control. See Control strategy.

Production rule, 157, 190, 239, 303

Production system, 157, 190-199

adaptive, 195

conflict resolution in, 192, 197

406 Subject Index

Production system (continued)

context, 190, 197

interpreter, 190-192

manageability of, 193, 198

PROGRAMMAR, 297, 319

Programming languages for AI. See AI

programming languages.

Pronunciation graph, 330

Property inheritance. See Inheritance.

Propositional calculus, 109, 116, 118,

160-163. See also Logic.

Propositional (Fregean) knowledge

representation, 200

Prosodies, in speech understanding, 327,

332-334, 359

PROSPECTOR, 157, 181, 196, 198

PROTOSYNTHEX, 228

Pruning, 59, 60, 121, 129, 201. See also

Game-tree search.

Pseudo-language, 233

Psychology, 157, 180, 193, 201

human problem solving, 6-7, 14, 285

memory, 180, 187, 201, 230

Puzzles. See also Games.

blocks world, 276

8-puzzle, 32, 51, 62, 67, 68

15-puzzle, 68, 73

mutilated chessboard, 27

Tower of Hanoi, 36-38, 42, 160, 165

traveling-salesman problem, 21, 34, 48,

62, 69, 70-71

QA3, 129, 168-169

QA4, 176

QLISP, 176

Quantification, 151, 164, 360

Query language, 292

Question answering, 168-169, 173, 185-

186, 281, 295, 302

Quiescence, in game-tree search, 99-100,

103

direction of, 23-24, 198

directedness of, 151, 174-177, 185, 188,

193, 219

expectation- or goal-driven, 23-24, 183,

197, 216-218, 232, 326, 334, 336, 344

extended inference in, 176

formal, 146

forward, 23-25, 51, 56, 74, 198

from a diagram, 201

inexact, 195

inference in, 146, 188, 213, 228, 231,

236-237, 255, 276, 303-304

plausible, 177

spreading activation, 185, 187, 189

top-down, 24

top-down vs. bottom up. See Control

strategy, direction of.

Recursive pattern matcher, 256

Recursive transition networks (RTN),

264-266

Refutation move, in game playing, 102

Regular grammar, 243, 245, 263. See also

Finite-state grammar.

Representation of knowledge. See Knowl-

edge representation.

Resolution method, in logic, 168, 175

Response frame, of a knowledge source,

345, 347

Rewrite rules, 239, 261, 316. See also

Grammar; Production rule.

ROBOT, 232

Robot problem solving, 22, 128-139

Robotics, 10

Rule

of inference, 146, 154-155, 160, 162-

165, 168, 175

production, 157, 190, 239, 303

rewrite, 239, 261, 316

Rule base, of a production system, 190

Rule-based system. See Production

system.

Random game tree, 92

Random text generation, 233, 273

Reasoning, 8, 146. See also Control

strategy; Planning; Problem solving.

analogical, 146

backward, 23-25, 36, 51, 56, 74, 110,

111

bottom-up, 24

data- or event-driven, 23-24, 198, 220

deductive, 146, 205

default, 176-177

SAD-SAM, 158, 227, 237, 260, 281-282

SAINT, 123-127

SAM, 211, 216, 220, 231, 300, 306,

311-313, 334

Scheduler, 347, 356

Schema. See Frame knowledge repre-

sentation.

SCHOLAR, 186

Scientific applications of AI, 221

Scope of a knowledge representation, 147

Scoring. See Hypothesis scoring.

Subject Index 407

Script knowledge representation, 216-222,

231, 300, 306, 307-309, 311, 334

SDC speech system, 337

Search, 6, 7, 21, 25, 330, 337, 338, 339,

343, 344

Search algorithms. See also Game-tree
search.

AND/OR graph search, 54-57, 74-83

A* algorithm, 64-73, 80

alpha-beta pruning, 88-93, 94, 101

bandwidth, 60, 69-71

beam, 337, 341, 350, 356

best-first, 59, 60, 102, 360

bidirectional, 24, 51-53, 72-73, 74

blind, 21, 29-30, 46-57, 58, 61-62, 72,

111

breadth-first, 47-48, 56-57, 61, 68, 73,

111

depth-first, 49-51, 57, 60, 61, 101, 113,

138, 203

fixed ordering, 90, 101

full-width, 103

generate-and-test, 30

heuristic, 21, 28, 29-30, 46, 58-83, 117,

119, 350

Heuristic Path Algorithm, 67

hierarchical, 135

iterative deepening, 100-101

length-first, 138

minimax, 84-87, 88, 90, 91, 94, 98

negmax, 86-87, 89

optimality, 65, 66, 67, 80, 83

ordered, 59-62, 64, 72, 77-81, 82, 124

ordered depth-first, 60, 102

in speech systems, 339-340

uniform-cost, 48-49, 51, 61, 65, 73

Search graph, 26

Search space, 26-28, 58, 94, 339, 343

Secondary search, in game trees, 100

Segmented lattice, 330, 337, 353, 356

Semantic analysis, in natural language

understanding, 228, 230

Semantic component, of a transforma-

tional grammar, 248

Semantic density, in preference semantics,

290

Semantic grammar, 229, 261, 318, 320,

335, 355, 359. See also Performance

grammar.

Semantic interpretation function, in

knowledge representation, 200

Semantic marker, 297

Semantic model, in FOL, 205

Semantic network knowledge

representation, 156, 172, 180-189,

193, 197, 208, 218, 229, 230, 254,

276, 277, 303, 330, 355, 360

active structural network, 185

fragment matching in, 187

partitioning of, 186, 360

spreading activation in, 185, 187, 189

Semantic primitives, 148, 149, 183, 198,

207-215, 231, 237, 254, 278, 288, 300,

306

Semantics, 184, 186, 189, 225, 235, 287,

316, 326, 327, 332, 334, 344

generative, 248

interpretive, 248

preference, 208

procedural, 229, 230

Sentential connectives, in logic, 161

Short-term memory buffer, in production

systems. See Context.

Shortfall density strategy, for hypothesis

scoring in HWIM, 341, 356

SHRDLU, 151, 176, 196, 230, 251, 257,

260, 276, 295-299, 319

Simulation structure, in FOL, 205

SIN, 125-127

SIR, 158, 173, 185, 228, 237, 260,

283-284

SLIP, 286

Slot, of a frame, 158, 216

SNIFFER, 188

SOLDIER, 125

Solution graph, 40, 55

Solution, in problem solving, 33

Solution tree, 40, 75, 77-79

Solvable node, 40

SOPHIE, 257, 261

Sort, in logic, 163, 166

Space planning task, 202

Speech acts, 280

Speech recognition, 325, 326, 333, 349

Speech signal, 332

acoustics, 343

allophone, 333, 337, 349

intonation, 333

noise, 343

stress, 333

syllable, 333, 343

Speech understanding, 158, 186, 226, 231,

257, 259, 267, 292, 325-361

connected speech, 326

evaluation of system performance, 329

isolated-word recognition, 325, 333, 349

408 Subject Index

Speech understanding (continued)

morphemics, 332-333

network representations in, 330, 337

phonemics, 327, 332-333

prosodies, 327, 332-334, 359

vs. speech recognition, 326

SPEECHLIS, 328, 353

Spelling correction, 320

Spelling graph, 330, 337, 346

Spreading activation, in semantic

networks, 185, 187, 189

SRI speech system, 339, 358-361

Start symbol, of a grammar, 240

State, 22, 32

State space, 26, 33, 195

graph, 25, 33-34, 43, 46, 61, 64, 74

representation, 24, 32-35, 36, 40-42,

46, 74, 113, 129

search, 30, 35, 46-53, 55, 58-73, 77,

80, 111, 153, 195

Static evaluation function, in game-tree

search, 87, 96-97, 100

Stereotypes, in preference semantics, 289

Stimulus frame, of a knowledge source,

345

Story grammar, 306

Story understanding, 231, 300, 306

Stress, in speech understanding, 333

STRIPS, 22, 28, 42, 82, 128-134, 135,

138-139, 169

STUDENT, 196, 227, 237, 260, 284-285

Stylistics, in text generation, 279

Subgoals, conjunctive, 111, 119

Subproblems, interdependent, 56, 81-83.

See also Problem solving; Subgoals.

Successor node, 26, 33, 46

Sum cost. See Cost, in search algo-

rithms.

Surface structure of a natural language,

247, 252, 273, 274, 277. See also

Syntax.

Syllable, in speech understanding, 333,

343

Symbolic integration, 21, 22, 24, 118,

123-127

Syntactic analysis, in natural language

understanding, 230

Syntactic categories, of a grammar, 239

Syntactic component, of a transforma-

tional grammar, 247

Syntactic symmetry, in the Geometry

Theorem Prover, 120

Syntax, 155, 225, 326, 327, 332, 334, 344,

346

Systemic grammar, 229, 249-251, 297

Systems architecture, for speech under-

standing, 332-342, 353

Table of Connections, in GPS, 115

Tapered forward pruning, 104

Tautology, in logic, 162

Taxonomy, 181. See also Inheritance.

Teachable Language Comprehender

(TLC), 185, 228

TEIRESIAS, 145, 195-199

Template

bare, 288, 290

in case grammars, 253

matching, in parsing, 260

in preference semantics, 279, 288-291

in speech recognition, 333, 337, 340,

349

word, 349

Terminal node, of an AND/OR graph,

38, 43

Terminal symbol, in a grammar, 239

Text-based NL systems, 228

Text generation, 273-280

in MARGIE, 304

random, 233, 273

and machine translation, 273-274, 279,

289, 291

Textual function, of language, 249

Theme, in story understanding, 306,

310-311, 313

Theorem proving, 22, 23, 26, 62, 74, 109,

116, 118, 119, 129, 151, 155, 168,

171, 175, 188, 297

Theorem-proving representation, 25

THNOT, in PLANNER, 176

Tic-tac-toe, 43, 94

Tip node, of an AND/OR graph, 80, 87

Top-down processing, 259, 326, 334, 338,

344, 355, 358, 359. See also Back-

ward reasoning; Control strategy;

Expectation-driven processing.

Top-down reasoning, 24

Top-down vs. bottom-up reasoning, 198

TORUS, 186

Totally dependent game tree, 92

Tower of Hanoi puzzle, 36-38, 42, 160,

165

Transfer of expertise, 199

Transformational grammar, 229, 237,

245-248, 249, 251, 252

Subject Index 409

parsers, 260

Transformations, obligatory and optional,

246-247

Transition operator. See Legal-move

generator.

Transition-tree grammar, in LIFER,
316-317

Transitivity system, of a grammar, 249

Travel budget manager task, 353

Traveling-salesman problem, 21, 34, 48,

62, 69, 70-71

Tree. See Grammar; Parsing; Problem

representation.

Triangle table, in STRIPS, 131-132

Trigger. See Procedural attachment.

Truth table, in logic, 162

Truth values, in logic, 161

Turing machine, 4, 241, 266

Understandability, of knowledge repre-

sentations, 150, 156-157, 174, 193

Uniform-cost search, 48^9, 51, 61, 65, 73

Uniform game tree, 91-93

Uniform scoring policy, of hypotheses in

HWIM, 340

UNITS, 221

Universal specialization, in logic, 164

Unsolvable node, of an AND/OR graph,

40, 55

Variable domain array, in the General

Space Planner, 202

Variable, in logic, 164

Verb sense, 278

Vision, 10, 330, 334

Voice chess, 328, 334, 344

Well-formed formula, in logic, 164

WHISPER, 203

Word island, in HWIM, 353

Word template, 349

World knowledge, 226, 230. See also

Domain-specific knowledge; Heuristic.

World model, 22, 128, 135

3. CRYSALIS
4. Applications in organic synthesis

D. Applications in mathematics

1. MACSYMA
2. AM

F. Research on miscellaneous science applications

1. The SRI computer-based consultant

2. PROSPECTOR

VOL Applications-oriented AI Research: Medicine

A. Overview

B. Medical applications systems

1. MYCIN
2. CASNET
3. INTERNIST
4. Present Illness Program

5. Digitalis Advisor

6. IRIS

7. EXPERT

IX. Applications-oriented AI Research: Education

A. Historical overview of AI applications in educai

B. Issues in the design of tutoring systems

C. Computer-based tutoring systems

1. SCHOLAR
2. WHY
3. SOPHIE
4. WEST
5. WUMPUS
6. BUGGY
7. EXCHECK

D. Research on nontutorial uses of AI in educatioi

X. Automatic Programming

A. Overview-Methods of program specification

B. Basic approaches to automatic programming

C. Automatic programming systems

1. PSI

2. SAFE
3. Programmer's Apprentice

4. PECOS
5. DAEDALUS
6. PROTOSYSTEM-1
7. NLPQ
8. LIBRA-Automatic program optimization

VOLUME m (Tentative)

XL Models of Cognition

A. Overview

B. General Problem Solver

C. Models of cognitive development

D. EPAM
E. Semantic-network models of memory

1. Quillian's semantic memory system

2. HAM

Avron Barr, a

Research Associate in

the Computer Science

Department at Stan-

ford University, has

been Managing
Editor of The Ar-

tificial Intelligence

Handbook project

since its inception in

1975. His current

research involves In-

telligent, Computer-based Instructional

Systems, Computing Environments for Novice

Programmers, and the Representation and Use
of "Meta-knowledge" in Artificial Intelligence

systems.

Edward Feigenbaum joined the Stanford

University faculty in 1965. Professor Feigen-

baum's interests include the applications of ar-

tificial intelligence methods to science and

medicine and have led to the formation of the

Stanford Heuristic Programming Project, the

world's best-known center for the applications

of Artificial Intelligence. Chairman of the

Computer Science Department since 1976,

Professor Feigenbaum also heads the national

computer facility for applications of Artificial

Intelligence to Medicine and Biology known as

the SUMEX-AIM facility, established by NIH
at Stanford University.

Jacket design by Hans-J. Wacker

"As to artificial intelligence, we have hardly begun to under-

stand what this abundant and cheap intellectualpower will do to

our lives. It has already started to change physically the research

laboratories and the manufacturing plants. It is difficultfor the

mind to grasp the ultimate consequences for man and
society . .

.

"

—Jean Riboud, Chairman and President

Schlumberger Limited

What is a ''heuristic problem-solving program?" How do com-
puters understand English? What are "semantic nets" or
"frames?" Can computer programs outperform human ex-

perts? Such questions—asked by scientists, engineers, students,

and hobbyists encountering Artificial Intelligence for the first

time—can now be readily answered by The Handbook of
Artificial Intelligence, a work which makes the full scope of im-
portant techniques and concepts of AI available for the first

time to the rapidly expanding world of computer technologists

and users.

The scope of this handbook is broad: over two hundred short ar-

ticles covering all of the important ideas, techniques, and
systems developed during twenty-five years of research in the AI
field. The articles are written for people with no background in

AI. Some articles serve as overviews, discussing the various

approaches within a subfield, the issues, and the problems. The
handbook is a reference work, a textbook, a guide to program-
ming techniques and to the extensive literature of the field, and a
book for intellectual browsing. Jargon has been eliminated in

each of the short, penetrating articles, and the hierarchical

organization of the book allows readers to choose how deeply
they wish to delve into a particular subject.

Conceived and produced at Stanford University's Department
of Computer Science, with contributions from universities and
laboratories across the nation, The Handbook of Artificial

Intelligence promises to become the standard reference work in

the rapidly growing AI field.

ISBN 0-86576-005-5

William Kaufmann, Inc. • One First Street • Los Altos, California

